A Lightweight, Versatile Gateway Platform for
Wireless Sensor Networks

Andrei Voinescu, Dan Tudose, Dan Dragomir
Automatic Control and Computers Faculty
University Politehnica of Bucharest,
{andrei.voinescu, dan.tudose, dan.dragomir} @cs.pub.ro

Abstract—A Lightweight, Versatile Gateway Platform for Wire-
less Sensor Networks

Wireless Sensor Networks enable the Internet of Things through
their many applications, and as such require multiple, flexible
gateway platforms. Gateways in Wireless Sensor Networks are
bulky, difficult to use devices requiring special deployment and
extra programming effort. We designed a lightweight, extremely
portable, dual-processor USB device with an optional external
antenna. Our design proves to be versatile both on the USB side,
where it can appear as a serial connection or a wireless network
interface, and on the RF side, where it matches the hardware of
our wireless sensor platform, and therefore shares much of its
codebase. The wireless USB device can be used standalone with
any PC, and for extra portability it can be attached to a small
Linux device (such as RaspberryPi), making it suitable for any
wireless sensor network application, both indoor and outdoor.

[6]

Index Terms—gateway, wireless sensor networks, USB

I. INTRODUCTION

Wireless Sensor Networks are not yet the ubiquitous tools that
help us interact with the physical world, but they gather more
and more deployments, both for research and business. These
deployments vary widely in assumptions and conditions, as
they range from the wireless sensor network put inside a home
to monitor basic parameters, to agricultural WSNs [3], [2] used
for fine-grained irrigation control, to space exploration appli-
cations [9] etc. All these applications require different types of
interfaces with the rest of the world and impose restrictions
on the gateway/base-station. Current gateway platforms [7],
[4], [5] are bulky devices or PCs connected to one of the
wireless nodes that serve as a base-station. We aim to show
in this paper that there exists a solution for gateway design
that is more versatile - can be included in any application -, is
smaller and cheaper and offers ease of use and programming.

We introduce SparrowDongle, a USB stick featuring two
microcontrollers that is designed to be included in wireless
networks composed of 2.4GHz Zigbee nodes, especially our
own design, Sparrowv3.2. We will show an overview of the
system architecture in Chapter II, the hardware and software
implementation in Chapter III and results of using the gateway
in Chapter IV.

Figure 1.

Sparrow v3.2 wireless node

II. SYSTEM ARCHITECTURE

The canonical implementation for Atmel Zigbee transceivers
is a USB stick device with a USB controller and radio
transceiver, which means that the USB controller unit (the
only controller present) on the device is responsible for both
radio and USB stack communication. This lack of separation
between key functions of the gateway platform leads to the
undesirable effect of software for the USB stack competing
for MCU time with the wireless stack. This greatly limits
both the USB throughput, features of the device and the
complexity of the wireless stack. The wireless stack in this
scenario cannot have tight timings built around receiving and
transmitting packets on the wireless link, as transfer to and
from the microcontroller unit (MCU) is both slow and delayed
by (possible) USB tasks running asynchronously.

Our implementation differs in that respect by including two
separate controllers on the gateway device, one for USB
communication and the other for the 2.4Ghz Zigbee stack. This
approach has several key advantages, described in sections
II-A and II-B.

Additionally, a number of design features were included for

ease-of-use in research and development, outlined in II-C, II-D

A. Separation of functionality

USB communication is poll-based and initiated by the USB
host. The SparrowDongle stick acts as a USB device and
its role requires frequent (every millisecond) and low-latency



—

@/

USB Controller
Unit

Radio Controller | /
Unit

USB Host <€

USB Stack
—

((A)) \
@ O
| / @ é
1 / /
Radio Stack | / é /
4_ ! \ /

| \ G
S Dongle | \ @ /
parrowbongie | \ é ) J
o P

WSNiIsland ~~__ _ _ 7~

Figure 2. SparrowDongle stick architecture

communication with the USB host. Having two controllers, the
RF controller can run any RF communication stack without
having the USB code intrude on key timings. The serial link
that connects the two controllers has both sufficient speed and
simplicity to allow each controller to dedicate most computing
cycles to handling communication on the USB and wireless
links, respectively.

B. Homogeneity

The components used for the RF communication in the
SparrowDongle stick are identical to those used for the Spar-
rowv3.2 nodes, thus they can share the same codebase (As
opposed to having an implementation for 8-bit AVR and an im-
plementation for ARM/x86). In many cases, gateways run on
different architectures than wireless sensor nodes and require
stacks re-purposed for that specific architecture (or for that
platform, in the case of the canonical Atmel implementation
of the gateway). SparrowDongle eliminates the need for a
different branch of the same wireless stack since the code
running on the gateway is virtually identical to that running
on any sensor node.

C. Ease of programming

SparrowDongle offers an easy-to-use programming and de-
bugging interface for both the USB controller and the RF
controller. To keep the overall size of the device small, we used
shared ISP (In-System-Programming) and JTAG (Joint Test
Action Group) headers for programming the two controllers.
This only requires an ISP header, a JTAG header and two
headers for jumper selection (One jumper connects the ISP
signal SCK to the respective SCK signal pin on one of the
controllers, the other connects the JTAG signal TCK to its
respective signal pins on one of the controllers), as shown in
Figure II-C.

D. External Antenna

The design for the SparrowDongle wireless stick includes
an optional UFL connector for an external antenna, which
greatly increases range. A large, 8dBi omni-directional antenna

Ei==E

Figure 3.

Header selection for programming clock signals

mounted on both gateways and nodes would amount to around
200 metres of communication range, well over the 70m
measured with the default antennas.

III. IMPLEMENTATION

A. Hardware Details

The hardware components present on the SparrowDongle
board are split according to functionality. The part of the board
that handles the wireless communication has similar hardware
with that of a Sparrowv3.2 wireless sensor node:

o RF-enabled microcontroller unit: The ATMegal28RFA1
is an 8-bit microcontroller from Atmel that has an on-chip
2.4GHz wireless transceiver.

e On-board antenna/External antenna connector and the
appropriate RF interface circuit enables wireless commu-
nication in the 2.4GHz band

o 16MHz MCU clock is used as the main clock domain

e 32768 Hz real-time clock is used to keep track of tight
timings in the wireless network protocol

On the USB side, an ATMega32U4 is used as an USB
Controller Unit.

Since the Radio Controller Unit needs 3.3V to operate, an
additional power supply from the USB’s 5V to 3.3V is needed,
as well as level adjusters for the signals connecting the two
controllers on SparrowDongle.



F
[l
— - —
F
[l
— - —

Figure 4. Level shifters for inter-controller communication

B. Software Implementation

Software for the SparrowDongle gateway is found on the
two controllers. Firmware on the Radio Controller Unit will
contain the wireless communication stack we developed for
the Sparrowv3.2 wireless node.

Firmware on the USB controller unit contains the USB stack.
While there are a few libraries available for an USB stack on
the ATMega32U4, our tests indicate that the highest reliability
and performance (with the smallest memory footprint) can
be obtained with “bare metal” USB code. So far the Virtual
Serial Port and Ethernet Emulation device classes have been
implemented and tested. The VirtualSerialPort works both on
Windows and on Linux, while the Ethernet Emulation device
only works on Linux currently, since no open-source drivers
exist for this USB class on Windows.

IV. RESULTS

In this chapter we will cover the results obtained with this
gateway platform and other possible applications.

Figure 5. Bottom side of SparrowDongle PCB

Figure 6. Top side of SparrowDongle PCB

A. Performance

Throughput testing was done with back-to-back packets sent
at 250kbps over 2.4GHz with one sending node in acceptable
range, with no losses. This is due to the double-buffering used
in receiving packets from the wireless network. As soon as
one packet ends, a signal is sent to the radio controller unit
with a small delay of 9u.S. Even if a new packet starts in that
small interval, receipt of the new packet goes unhindered as
the first bytes of the old packet have already been transfered
to a different memory location from which they will be sent
to the USB controller unit via the serial connection.

B. Software configurations

A great advantage of using a dedicated USB Controller Unit
for the gateway is that it can be programmed as one of several
USB Communication Classes. The USB Controller Unit is
not limited in implementing any of these classes since most
of the computing power at its disposal is reserved for USB.
SparrowDongle can appear as different USB devices:

e Virtual Serial Port: Communication with the wireless
island around the gateway can be made via a serial
link, incoming packets will appear on the receive end
of this port and packets will be sent on the transmit
end. In typical Unix fashion, our implementation sends
packet in ASCII for ease of use and debugging. They are
converted to binary form on the Radio Controller Unit of
the gateway

o Ethernet Emulation: In this fashion, packets are received
on the gateway and then encapsulated in an Ethernet
packet sent over the USB link (Ethernet is emulated
between the USB device and USB host)

e Network card: SparrowDongle behaves as a wireless
network card, the operating system will register a network
interface for the gateway and addresses assigned to this
interface will change the gateway’s address in the wireless
medium (as opposed to changing the address for the
emulated Ethernet)

e Mass Storage: SparrowDongle can offer a virtual filesys-
tem interface for innovative data acquisition from the
wireless sensor network. In accordance with the Unix
philosophy of “everything is a file”, the virtual filesystem
offered by the USB stick could have a file for each
wireless node where it stores recent data (as much as
the gateway can store in its volatile memory, 1-2 records
per node). The software implementation for this interface
is under development.

C. Applications

The versatility of the SparrowDongle gateway platform allows
it to be deployed in a wide range of applications, whether the
gateway has to be connected to a PC or a small embedded
device, whether it has to implement a virtual serial connection
or to emulate an ethernet link.



For instance, these are the application in which SparrowDon-
gle is currently deployed:

o Connected to a Windows PC, feeding wireless sensor
data into a service framework for building control, in the
FCINT project. [1]

e Connected to an Embedded Linux board, such as the
small RaspberryPi, for plug-and-play monitoring of a
wireless sensor island.

o Connected to a Parrot Drone [8], for remote monitoring
using a mobile gateway.

V. CONCLUSION

The paper presented a versatile gateway platform for wireless
sensor networks that is both capable of serving current ap-
plication needs as well as offer the ability to interface sensor
networks in a novel way (sensor data as files).

The platform is easy-to-use and to program due to clear
separation of communication mediums on different controllers
and benefits from the elimination of code duplication in the
case of the radio controller unit.

ACKNOWLEDGMENT

The research presented in this paper was supported by the
EU POS-CCE project “Ontology-based Service Composition
Framework for Syndicating Building Intelligence: FCINT”
No.181/18.06.2010

[1

—

(2]

3

—_

[4

=

[5

—_

(6]

[7

—

[8
[9

—_ =

REFERENCES

Fcint - service composition framework based on onthologies for knowl-
edge and information aggregation in smart buildings. Available: fcint. ro,
2013.

A. Baggio. Wireless sensor networks in precision agriculture. In ACM
Workshop on Real-World Wireless Sensor Networks (REALWSN 2005),
Stockholm, Sweden, 2005.

J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: Sensor
networks in agricultural production. Pervasive Computing, IEEE, 3(1):38—
45, 2004.

B. da Silva Campos, J. J. Rodrigues, L. D. Mendes, E. F. Nakamura, and
C. M. S. Figueiredo. Design and construction of wireless sensor network
gateway with ipv4/ipv6 support. In Communications (ICC), 2011 IEEE
International Conference on, pages 1-5. IEEE, 2011.

B. da Silva Campos, J. J. Rodrigues, L. D. Mendes, E. F. Nakamura, and
C. M. S. Figueiredo. Design and construction of wireless sensor network
gateway with ipv4/ipv6 support. In Communications (ICC), 2011 IEEE
International Conference on, pages 1-5. IEEE, 2011.

I. Doroftei, V. Grosu, and V. Spinu. Omnidirectional mobile robot-design
and implementation. Habib, Maki. Bioinspiration and Robotics, Walking
and Climbing Robots. Viena, Austria: I-Tech Education and Publishing,
pages 511-528, 2007.

J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. The platforms en-
abling wireless sensor networks. Communications of the ACM, 47(6):41—
46, 2004.

A. Parrot. Drone. Available: ardrone. parrot. com, 75, 2012.

C. Ulmer, S. Yalamanchili, and L. Alkalai. Wireless distributed sensor
networks for in-situ exploration of mars. Georgia Institute of Technology
and California Institute of Technology, editors, Technical Report, 2003.



