
Adaptive Query Algorithm

for Location Oriented Applications

Daniel-Octavian Rizea, Dan-Ștefan Tudose, Alexandru-Corneliu Olteanu and Nicolae Țăpuș

Computer Science and Engineering Department

University Politehnica of Bucharest

Bucharest, Romania

daniel.rizea@cti.pub.ro, dan.tudose@cs.pub.ro, alexandru.olteanu@cs.pub.ro, nicolae.tapus@cs.pub.ro

Abstract—The Internet of Things and Ubiquitous Computing

are becoming more and more popular in the IT world. There are

increasingly more heterogeneous systems of interconnected

devices, from general purpose smartphones to highly specialized

embedded devices. An important constraint of mobile devices is

the limited battery capacity. Users will stop using devices that

have to be recharged frequently and that are not reliable. For

both small sensors and mobile devices a significant energy is

consumed with data communication. We develop a system,

consisting of a smartphone and an embedded device designed to

measure air quality. This paper presents an Adaptive Query

Algorithm that can improve the energy consumption for

Bluetooth data transfers between the smartphone and the

embedded device. Our tests show that considerate querying can

lead to power consumption 20 times smaller than in the case of a

permanent connection.

Keywords— smartphones, power consumption, communication,

location oriented.

I. INTRODUCTION

With the growth of projects and systems that rely on the
Ubiquitous Computing paradigm, several challenges and
research opportunities arise. The tendency to make smaller
devices, which communicate with each other by WiFi,
Bluetooth and other emerging technologies, is faced with a
veritable power consumption barrier. In mobile devices more
than a third of the power consumption is spent on
communication tasks and in small sensors more than a half is
wasted on communication [1]. Devices can be made smaller
and smaller, but battery cells usually cannot.

We developed a system consisting of a smartphone and an
embedded device designed to measure air quality. The
communication between the mobile phone and the sensor
device needs to be effective and power efficient in order to
have a minimum effect on the phone’s recharge cycles. One
approach to this issue, presented in this paper, is to reduce the
power consumption of the device using an adaptive query
algorithm to minimize the energy used in data transfers. The
algorithm gives great advantages to location-aware projects by
reducing data communication when it is not needed.

II. BACKGROUND AND RELATED WORK

Analyzing power consumption is an interesting research
topic, as shown by various projects that can be found in the
literature. Caroll and Heiser [1] design multiple micro-
benchmarks to associate the power costs to modules of a
mobile system. They try to determine the power consumption
of different parts like CPU, GSM and WiFi. Zhang et al. [2]
describe a power module construction technique that they use
to characterize 3G, GSM, WiFi, CPU and screen, and to
introduce PowerTutor, an Android application that can use
these models for power consumption estimation on any device.
We use such tools to estimate the power consumption of
different components, but we found little solutions on
estimating power consumption from the Bluetooth radio.

Balasubramanian et al. [3] show that 3G, GSM and WiFi
incur a high tail energy overhead. Pering et al. [4] describe
methods to reduce the power consumption by switching
between Bluetooth and WiFi. The Bluetooth module has a
power consumption as much as 10 times lower than WiFi.
WiFi is intended for high-bandwidth and 100 meters coverage
while Bluetooth is designed for low-bandwidth and a coverage
of 10 meters. The authors also describe that power
consumption in idle mode compared to active mode is 4 times
smaller for WiFi and 6 to 10 times smaller for Bluetooth. We
find this significant as it justifies the need of advanced
algorithms that power down these interfaces when
communication is not necessary.

Various other papers try to determine algorithms and
technologies for reducing energy consumption, by modeling
optimum power as a Nash equilibrium [5], by employing back-
off methods for synchronization [6], or introducing an active-
sleep duty cycle [7]. We propose an adaptive algorithm for
reducing the polling rate in location-aware applications,
leveraging the fact that new queries are not necessary if the
location has not changed much.

III. SYSTEM DESIGN

The system consists of an Android application
interconnected with an embedded device, built by our team,
designed to measure air quality. The app on the smartphone
needs to query the sensor device using Bluetooth in order to

This work has been funded by the European Commission under grant
agreement FP7-ICT-258280 TWISNet project.

Fig. 1. General architecture and communication mechanism

collect pollution data and display it intuitively to the user on a
map, as shown in Fig.1.

The communication between the mobile phone and the
sensor device needs to be effective and power efficient in order
to have a minimum effect on the phone’s recharge cycles. One
approach to minimize power consumption is to switch on the
Bluetooth adapter only when a query must be done. We will
show the effectiveness of this method in the next section.

IV. THE ADAPTIVE QUERY ALGORITHM

We propose an Adaptive Algorithm that changes the update
time interval based on the previous user location and the
previous update time. This approach is suitable for location-
aware applications by reducing data communication when it is
not needed.

For example, let us consider that a user remains in a
location for about 1 hour. In a normal approach 60 queries will
be made for the device (assuming a 1 minute period between
queries). In our adaptive approach the second time the
application wakes up it will compare the last location with the
previous one and will increase the query interval by doubling
the previous time interval. Only 6 sensor queries will be
executed. Let’s assume now that the service battery usage for
about 1 hour and 60 requests is about 4%, then our algorithm
will have a total of 0.4% battery usage over 1 hour. The
improvement is significant and is needed in order to make the
application popular among users.

It is important to note that the query time interval, the cool
down time and other parameters can vary according to the
application’s purpose and needs. The variations of these
parameters influence the total power consumption of the
Bluetooth module. We will give a formal presentation of this
adaptive algorithm, tuned for our needs in the PollutionTrack
project.

A. System Characteristics

PollutionTrack is a personal pollution monitoring system. It
can be set to only record pollution information. In this case, the
system is in passive mode and the user is not informed when
the pollution levels are increasing. This mode can be used

when the user does not want to be actively informed of
pollution danger levels and only wants to collect air pollution
data. In this case, the update period, cool down time and
wakeup parameters can be relaxed. In this mode the location
will have the biggest impact on query intervals and pollution
data values will have a small contribution in setting the update
periods.

The active mode of the system is used when the user wants
to be actively informed whenever specific pollution levels are
crossed. In this case the adaptive algorithm is more aggressive
and will have a smaller wakeup time interval. It is important
for the user to be notified when a pollution level is crossed. For
this to work, the system will make more queries whenever an
increasing pattern of pollution values are detected. This being
the case, the query period of the sensor will be heavily
influenced by the pollution information and not so much by
location changes.

B. The algorithm

The update time interval is dynamically calculated and uses
the following formula:

 Tu = Tb * (cld + cdd)

, where:

 Tu: update time

 Tb: update time base

 cld: location dependent coefficient

 cdd: data dependent coefficient

Fig. 2. Pseudocode for the function that computes the location dependent

coefficient

function location_dependent(){

 if (mode is passive)

 1: if (current_location == new_location)

 cld = α * cld

 else

 cld = 1/ α * cld

2: if(cld > max_cld [passive mode])

 max_cld [passive mode] = cld

3: if(cld < min_cld [passive mode])

 max_cld [passive mode] = cld

 else // mode is active

 1: if (current_location == new_location)

 cld = 3 * β * cld

 else

 cld = 2 / 3 * β * cld

2: if(cld > max_cld [active mode])

 max_cld [active mode] = cld

3: if(cld < min_cld [active mode])

 max_cld [active mode] = cld

 return cld

}

The location dependent coefficient and the data dependent
coefficient are computed separately and their values follow the
observations made regarding the system characteristics
regarding the passive and active mode.

The function depicted in Fig.2 computes the location
dependent coefficient, based on the current and previous
location. For passive and active modes the behavior is in
principle the same, only some parameters vary. If the location
stays the same, then the time between queries is increased. This
means the smartphone will issue fewer queries and less power
will be consumed. If the location changes then the time
between queries is reduced. This will enable the sensor to
collect fresh data. This behavior is based on the fact that
pollution information does not change radically in a small
period of time and in the same location. The active mode of the
algorithm is used for dangerous environments where pollution
levels can grow rapidly in the same location and over a few
minutes.

For the data dependent function, depicted in Fig.3, we hold
a queue with the last n recorded values. Based on these and the
current value from the sensor, we determine how fast the
pollution data changes. We compute the change rate with:

 r = ∑ (v – Di) / v

, where:

 r: change rate

 n: window size

 v: current value

 D: array of size n with recently collected data

The size of the window should vary according to different
needs. In our experiments we use a size of 5 values, as this
should cover timeframes of more than one minute, given the
sampling period which, in our case is 15 seconds.

If the change rate is positive, there is a growth in the values,
so the queries should be made more often, at a rate directly
proportional with the growth rate. If it is negative, the queries
should occur less often. Also, please note how in passive mode
the effect of the change rate is twice the effect in active mode.

Fig. 3. Pseudocode for the function that computes the data dependent

coefficient

V. TESTS AND RESULTS

Communication is a critical aspect when dealing with
client-server architectures, especially considering performance
constraints.

A. Experimental Setup

The tests were run on a HTC Nexus One, running Android
2.2. Some relevant hardware characteristics are its Qualcomm
Snapdragon CPU at 1GHz and the Bluetooth module with
Bluetooth 2.0 + EDR. For testing, we have used both the sensor
device and a Java computer application that we developed,
which behaves exactly as the pollution sensor, having the same
Bluetooth communication protocol. With this program we can
emulate the behavior of the sensor and vary the sensors data to
test the data dependent function.

Each test involves running the application for 300 seconds.
Most of the performance tests were run while remaining in the
same location, as this is the maximum efficiency case for the
algorithm. We study three query strategies: Permanent
Connection, Adaptive Algorithm and Fixed Time Interval
Query. In the former, the smartphone establishes a permanent
connection with the sensor device. This is demanding in terms
of energy consumption from the CPU and also from the
Bluetooth module. For Fixed Time Interval Query the CPU and
Bluetooth module are put into connection state, where power
consumption is the biggest, only when a data query is needed.
The Adaptive Algorithm is the most efficient. It has the
characteristics of the Fixed Time Interval but also adapts the
query periods to the environment and the user’s location,
saving as much energy as possible without impacting the
usefulness of the application.

B. CPU power consumption

The power consumption has been recorded using the
PowerTutor app [2]. Fig.4 shows the power consumption on
the CPU for the three query strategies. We then estimate the
energy consumption over 300 seconds, as presented in Table I.

Fig. 4. CPU energy consumption

function data_dependent(){
array D[n]

 compute change rate according to (2)

if (mode is passive)
 cdd = 2 * λ / change_rate
 else // mode is active

cdd = λ / change_rate

 return cdd
}

TABLE I. ESTIMATED ENERGY CONSUMPTION ON CPU FOR THE THREE

QUERY STRATEGIES.

Test 1
Energy

(mJ)

Test 2
Energy

(mJ)

Test 3
Energy

(mJ)

Average
Energy

(mJ)

Permanent
Connection 136800 133800 137800 136133

Fixed Time

Query Interval 5524 5237 5635 5465

Adaptive
Algorithm 1340 1226 1364 1310

Fig. 5. Estimated values for energy consumption on CPU

From the results we can see that the Adaptive Algorithm
approach is almost 5 times better than the Fixed Time Query
Interval and 100 times better than the permanent connection
approach. The significant power saving is justified because in
300 seconds, the duration of the tests, we had 20 fixed queries
at every 15 seconds in Fixed Time Query Interval mode and
only 4 queries in the Adaptive mode (the location was not
modified) which makes the Adaptive Algorithm mode to have
5 times less queries than Fixed Time interval.

C. Data transfers

Data transfers are performed, as described in Section III, on
a query basis: the smartphone asks for data from the sensor
device, which in turn responds with a single message. Thus, for
a single exchange, we have 2 bytes sent from the smartphone
and 21 bytes received. We compute the data transfers for a
period of 300 seconds.

As an energy consumption model, we use the following
formula:

 Etotal= Pconn* Tconn+Ptrans* Ttrans +Pon* Ton (3)

Based on this formula we can calculate the estimated power
consumption for the three query strategies that we used. For all
the three cases we have a Ttrans time that is the same for

TABLE II. QUANTITY OF TRANSFERRED DATA AND ESTIMATED ENERGY

CONSUMPTION ON BLUETOOTH IN THE THREE QUERY STRATEGIES:
THE SIZE OF THE TRANSFERS IS COMPUTED GIVEN THE

MESSAGE STRUCTURE FROM SECTION III

Data transferred (bytes) Energy(mJ)

Permanent

Connection
21 x 20 = 420 28740

Fixed Time Query
Interval

21 x 20 = 420 14180

Adaptive
Algorithm

21 x 4 = 84 6228

Fig. 6. Estimated values for energy consumption on Bluetooth

Permanent Connection and Fixed Time Query Interval but is
smaller for Adaptive Algorithm. In the case of Permanent
Connection we have no Ton time because the Bluetooth is
always connected. For Fixed Query Interval we have a Tconn
time when the Bluetooth is in connected state. After the data is
transmitted the Bluetooth connection is terminated, saving
energy. In the Adaptive Algorithm the Bluetooth connection
time varies, adapting the query time based on location and
environment data.

We can also approximate the benefits of the algorithm
concerning energy consumption. The measurements done in [8]
show that a Bluetooth module in the on state (with no
connection) takes 15mW (Pon), in the connected idle state takes
65mW (Pconn) and in transmission 432mW (Ptrans). In both the
Fixed Time Query Interval and Permanent Connection we
intend to read values from the sensor at every 15 seconds.

Ttrans is less for the Adaptive Algorithm than in the other
two cases because the adaptive query algorithm varies the
query interval. In our 300 second test we have 20 requests at
intervals of 15 seconds. The transmission time takes
approximately 1 second per query. Tconn = 300 seconds and
Ttrans is 15 seconds. Ton = 285. With the help of the adaptive
algorithm, the number of queries goes down to 4 queries in 300
seconds.

VI. FUTURE WORK

We plan to further improve the algorithm. We could use the
inertial movement unit or scarce GPS readings to determine
velocity and use that to alter the query period and conserve
battery energy. Regression and other machine learning
techniques can be used to learn of possible events from the
collected data and alter the interrogation period. We can also
include other factors that depend on the purpose of the project.
For example, in our pollution detection project the query
interval can be lowered when the data collected shows that the
user is entering in a potentially dangerous environment. Data
would be collected at a higher pace in order to warn the user as
soon as the environment conditions become hazardous.

We also need to improve the accuracy in expressing power
consumption for communication. We consider changes in the
experimental setup, which would allow us to take precise
readings of the energy spent on communication.

VII. CONCLUSIONS

We have studied power consumption in a system consisting
of a smartphone and an embedded device designed to measure
air quality.

The system has two functioning modes: passive and
aggressive. These two modes influence how the adaptive
algorithm performs. In passive mode, the location factor has a
greater impact on the query interval. In aggressive mode the
recorded data varies the parameters used in the algorithm.

We have done measurements to compare power
consumption dedicated to CPU usage in three cases: using a
permanent connection, using a fixed time query interval and
using our adaptive algorithm. We find that our algorithm is 5
times more efficient than the Fixed Time Query Interval
strategy, which coincides with the improvement in the number
of queries.

We extend the estimation on energy saving for Bluetooth
communication, using energy models from the literature. We
arrive to the conclusion that, reducing the transmission time
and the connected idle time, the Adaptive Algorithm is
approximately twice more efficient than the Fixed Time Query
Interval strategy, which in turn is approximately twice more
efficient than the Permanent Connection.

The adaptive algorithm is suited for location-aware
applications, leveraging the fact that new queries are not
necessary if the location has not changed much. We find that
considerate querying can lead to energy consumption 20 times
smaller than in the case of a permanent connection. We plan to
improve the algorithm in our further studies, by determining
velocity and using machine learning techniques in order to alter
the query period.

ACKNOWLEDGEMENT

This work has been funded by the European Commission
under grant agreement FP7-ICT-258280 TWISNet project.

REFERENCES

[1] Carroll, Aaron, and Gernot Heiser. "An analysis of power consumption
in a smartphone." Proceedings of the 2010 USENIX conference on
USENIX annual technical conference. USENIX Association, 2010.

[2] Zhang, Lide, et al. "Accurate online power estimation and automatic
battery behavior based power model generation for smartphones."
Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010.

[3] Balasubramanian, Niranjan, Aruna Balasubramanian, and Arun
Venkataramani. "Energy consumption in mobile phones: a measurement
study and implications for network applications." Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement conference.
ACM, 2009.

[4] Pering, Trevor, et al. "Coolspots: Reducing the power consumption of
wireless mobile devices with multiple radio interfaces." Proceedings of
the 4th international conference on Mobile systems, applications and
services. ACM, 2006.

[5] Yu, Wei, George Ginis, and John M. Cioffi. "An adaptive multiuser
power control algorithm for VDSL." Global Telecommunications
Conference, 2001. GLOBECOM'01. IEEE. Vol. 1. IEEE, 2001.

[6]] Agarwal, Anant, and Mathews Cherian. Adaptive backoff
synchronization techniques. Vol. 17. No. 3. ACM, 1989.

[7] Van Dam, Tijs, and Koen Langendoen. "An adaptive energy-efficient
MAC protocol for wireless sensor networks." Proceedings of the 1st
international conference on Embedded networked sensor systems. ACM,
2003.

[8] Perrucci, G. P., F. H. P. Fitzek, and J. Widmer. "Survey on energy
consumption entities on the smartphone platform." Vehicular
Technology Conference (VTC Spring), 2011 IEEE 73rd. IEEE, 2011.

[9] Frank Fitzek et al., “Bluetooth: consumption for different states”,
Technical Report, Retrieved 21.12.2012, Available online:
http://mobiledevices.kom.aau.dk/research/energy_measurements_on_mo
bile_phones/results/data_communication/bluetooth_different_status/

