
POD - real-time urban pollution monitoring using
stationary devices

Adriana Drăghici, Marius Andrei, Dan Tudose
Computer Science Department

University Politehnica Bucharest,
Bucharest, Romania

adriana.draghici@cs.pub.ro, marius.andrei@cti.pub.ro, dan.tudose@cs.pub.ro

Abstract—Pollution tracking in urban environments can now
be performed through a variety of means, both dynamic and
stationary. We envision a pollution data acquisition system that
can be made accessible to end users, by including them in the
collection process not just presenting the results through web
pages or applications. We propose a low-cost device, easily
configurable by anyone, which measures gas levels, dust,
temperature and noise. The users can deploy them at home,
connect them to their local Wi-Fi network and see the pollution
data in real-time through a web interface. We address the design
challenges of such a sensing device and the iterations that lead to
its current hardware and software components. The node can
function as part of a system that collects and stores the data and
makes it available in real-time to all its users.

Keywords—air pollution, noise pollution, low-cost device, urban
environments

I. INTRODUCTION
Pollution represents one of the biggest problems of the

modern world, greatly affecting the population's quality of
life. In the urban environments, the air pollution is also called
smog, a mix of carbon monoxide and nitrogen dioxide,
generated by the vehicular emissions. The dust also plays a
major role in increasing the air pollution and affects the
respiratory system.

The purpose of our work is not to directly offer a solution
for diminishing the pollution levels or their prevention, but to
raise the awareness of the urban pollution levels and the
population's exposure to them. We created a device, called
POD, capable of measuring the level of pollution-contributing
gases, dust, noise and temperature. Besides sensing, POD
performs basic filtering and uploads the data to a service in
the cloud.

One of the main goals of our work is to create a
community of users willing to share the measured data
through their home internet connection to the other citizens.

In order to obtain a competitive device, POD has to
provide more or improved features and better pricing than the
systems presented in section 2. The main objective is to design
and develop an accurate low cost measurement system,
capable of directly transmitting the collected data to a server,

without the mediation of the data transfers by a mobile
application.

Some of POD's requirements in terms of functionality and
usability are:

• to incorporate low cost but accurate sensors; creating a
device that measures erroneous data is not our goal

• to have a cheap or free internet connection for sending
data

• the collected dataset must be easily accessed by the
POD's owner and others but the values must not be
changed by those

• to support common power sources such as phone
chargers

• device configuration should be easily performed, not
requiring reprogramming of the main controller. POD
targets all users not only those experienced in
embedded systems.

 Our contributions include the design and implementation
of the POD device and the hardware and software iterations
needed to support the functional and pricing requirements. We
also present the technical challenges and the evaluation of the
last iteration of the device.

 In Section 2 we will discuss the related projects and
sensing devices in relation with the requirements of our
device and our overall system policies. In Section 3 we present
both hardware and software components and in section 4 the
design challenges and how we addressed them. Section 5
presents the results and Section 6 offers conclusions and
possible directions for future work.

II. RELATED WORK
 Pollution monitoring solutions have been around for a
while, but the recent technological trends have given us new
ways of implementing them. In addition to the existing
vehicular-based solutions or stations placed throughout the
cities, we observe now an increased interest in using mobile
solutions accessible to all users. We have also seen that large
even a high-cost project initiated and sponsored by the local
government can be inefficient and also offer a poor interface

to its users [1][2]. As researchers and also citizens, we are now
concerned with finding cheaper and more community oriented
alternatives for monitoring the environment.

 The participatory mobile sensing paradigm [3] has gained
a lot of popularity during the past five years, making the users
active contributors to the sensing process. Currently there are
numerous sensing applications for crowdsourcing data about
the environment, transportation or community specific issues.
In urban environments, pollution monitoring implies both air
pollution and noise pollution and mobile solutions usually
focus on the latter, based on the smartphones' sensing
capabilities. Noisetube [4] offers a complete solution for
monitoring the noise levels using mobile phones, has a
considerable user-base (tens of thousands of users) and offers
free access to its data collection API [5].

 For air pollution tracking, the mobile-based systems also
employ specialized sensors that perform the data acquisition
and transmit it to the phone. The users can access the data
through a mobile application. The system proposed by
Hasenfratz et al. [6] puts the smartphone in control of the data
acquisition, not only of the user interface. The sensing device
is connected directly to the phone using a serial interface and
the user can start the measurements, observe the results and
upload them to the server for further processing. The system
aggregates the data from all its users and offers the dataset
them publicly on a web page. One of the issues regarding the
adoption of this system is the constraint imposed by the
application, which requires a phone with a modified Android
kernel in order to work. The system currently supports only
ozone, temperature and humidity measurements.

 CitiSense[7] and CommonSense[8] are two community-
driven pollution sensing projects employing smartphones.
They also use custom wearable nodes but monitor more
parameters than [6] and communicates via Bluetooth with the
mobile phone, which can be more convenient for its users.

 In our previous work [9] we have implemented a system
based on dynamic measurements from sensors placed in cars.
We measured just air pollution, specifically the carbon
monoxide, various oxides of nitrogen, oxides of sulphur and
dust particles. Unlike the current system, the previous one
wasn't designed for end users, but for installing the nodes in
public transportation vehicles (buses, taxis).

 While the combination of handheld sensing devices and
smartphones leverages the users mobility to track pollution in
multiple locations, it is has constraints in terms of energy
consumption (it is battery dependent), size and incentives for
the users to carry them. Our sensing node is designed to be
independent of mobile applications, and upload data directly
to the server. Of course, the system may offer mobile
applications for visualizations and account control, but they
are not dependent on the nodes. Since the node is designed for
home usage it does not rely on batteries and so it offers more

sensors and higher sampling rates than the devices discussed
above. The disadvantage of not collecting data from all the
areas the user goes can be diminished by having a large
enough community of users covering many areas of the city.

 Notable commercial products offering sensing nodes
related to our solutions are Smart Citizen System [10],
RESPIRA [11] and Air Quality Egg [12]. They can be
incorporated as static sensors in systems that collect pollution
data, but they do not fit very well with ours due to pricing or
features issues (e.g. they do not measure dust levels). The
Smart Citizen System device supports almost all the sensing
we are interested in, including the noise level detection but it
has a considerable higher price, four times higher than of our
device. RESPIRA consists of a sensing board for temperature,
humidity, CO and SO2 with no communication support,
requiring an additional board for that purpose. Even with that
board, it has an issue with the communication frequency,
requiring a gateway device to mediate the communication
with a server. It also needs a non-standard power source
between 6V and 10V, instead of 5V like our device. Air
Quality Egg is similar with RESPIRA but also offers a user-
friendly packing. Unfortunately, it is not suitable for novice
users, since it requires them to install the Arduino
programming platform and reprogram it with the SSID and
password of their Wi-Fi Access Point. It also has a higher
price, costing six times more than ours (240$).

III. THE POD DEVICE

A. Functional requirements
 As we presented in the previous section, there are already
some devices more or less compatible with our purpose. By
developing a new one, we intend to combine all the
advantages of the existing products and add additional ones.

 We require that POD has a low price and a permanent Wi-
Fi connection and to access the server through any wireless
router. This is the simplest way, since it does not require
additional devices through which to transmit the collected
data, such as a smartphone. We chose Wi-Fi in favor of a
GSM connection because it does not impose additional costs
on the user. Moreover, the use of GSM for data transmission
would require components more expensive than the Wi-Fi
ones.

 As a data collection policy we considered that the data
acquisition should be performed continuously from all the
sensors. Our communication policy imposes that all the
collected values are sent to the server at regular intervals (e.g.
2 minutes). The current storage policy is to save the processed
data on the server but we plan to extend it in the future to
support temporary local history on devices. To support these
policies, the system must offer an analog to digital converter
because most of the sensors have an analogical output.
Moreover, the main controller must support I2C protocol in

order to communicate with digital sensors. Another
mechanism needed is the interrupts system, which notifies the
microcontroller when an event has happened, for example a
pin state change.

 In order to be used by anyone, regardless of their technical
background, POD must be easy configurable. Consider the
following typical user scenario for the first deployment after
the user bought a sensing device. The users must get an IDE
together with the source code. Then, they must modify the
code by writing their home SSID and password and probably
also setting a static IP, all of these followed by compiling and
uploading the firmware. This is not what an easy configurable
device looks like and we do not intend for this scenario to be
applicable for our device's deployment. Our goal is to create a
device capable of being configured from a personal computer,
a tablet or even a smartphone without special cables or
adapters.

 Measured data must be accessible from all over the
Internet. Consider the following scenario: An owner wants to
see the temperature from his device but he is at work. To
access POD, which is connected to a router, the user needs to
know the IP address of that router; usually the IP address is
assigned dynamically. First step is to find that address. But
POD answers to the request only if the router has a rule set to
redirect the request to POD's local IP. Achieving this
functionality requires knowledge of computer networks. In
order to solve this problem, we considered using a server as a
buffer between device and user. DeviceHub.net is an online
platform specially designed for IoT, capable of storing data
from sensors for as long as the developers request it, being
free for the first 30 days. For now, this online platform is
perfect for POD, because measured values are stored online,
the user can access them from all over the internet and the
device memory can be small so no extra costs are involved.

B. Hardware architecture

 Considering the functional requirements for our device, we
will present the components for sensing, data acquisition and
communication. Fig. 1 presents how the sensors, the
microcontroller and the Wi-Fi module and are connected in
order to obtain a functional device.

 The sensors we used were chosen based on the following
criteria: functionality, communication interface and price.
Since most of the gas sensors are a greedy current consumers
because they use a permanently powered heaters, energy
efficiency was not a criteria when choosing the components.

 For measuring temperature and relative humidity, POD
uses a low cost pre calibrated sensor, Si7020 [14]. The sensor
values can be accessed by the main controller using I2C
protocol. Gases are measured using two sensors: MICS4514 -
an analogical CO and NO2 sensor [15] and MQ-135capable of
detecting multiple type of gases like CO2, NH3. Those are
resistive sensors which means that for each analogical output
there is a proportional gas value variable resistor. Measuring
CO and NO2 is important because as we mentioned in section
1, and those gases are produced by vehicular emissions. MICS
sensor is used by RESPIRA and Air Quality Egg too.

 Dust is a another important pollution component and it is
measured using SM-PWM-01A, a digital sensor capable to
determine small particles (1-2µm) and bigger particles (3-
10µm). For every particle, this sensor generates an interrupt
maintained as much as the dust particle stays in front of the
sensor [16].

To determine the noise level POD uses an electret
microphone. But the output signal variation from microphone
is so slow that requires an operational amplifier in order to
measure wave form. The signal frequency is determined using
a Fast Fourier Transform which converts time signal to
frequency signal. But the sound level is measured in decibels,
so we use the following formula to convert to dB:
 dB=20 log10 A/Ar
where Ar is reference amplitude and A is the measured one.

 The main controller a compatible Arduino Nano board..
The reason why we use this board for POD is the price: it is
cheaper to use directly an Arduino Nano board instead of
buying all those parts and solder them on a PCB. Another
advantage is that this board is equipped with a 16MHz crystal
oscillator for the AVR controller and an USB-UART adapter,
so the firmware can be easily uploaded without the need of a
special programming tool.

 To access the Internet using Wi-Fi, POD uses an ESP8266
module. This one is very popular in the IOT world. It
implements the 802.11 b/g/n protocol and also has the TCP/IP
protocol stack integrated [17]. The communication between

Fig. 1.Overview of the hardware components

the Arduino board and the Wi-Fi module is performed through
a serial connection. Since the Nano board has just one
hardware serial port, which we used for programming and
debugging, we simulate a software serial interface and use any
of the available pins. We encountered an interconnection
problem regarding power levels: the Arduino Nano is a 5V
logic level device and ESP8266 is 3.3V logic level device. So
in order to communicate and not to damage the ESP, the
routes are level shifted using two resistors and a nMOS
transistor. The same level shifters are used for the connection
between the Arduino Nano and the Si7020 sensor.

C. Software description

 This subsection presents the firmware architecture of POD
and the manner in which all the functionality policies are
implemented.

 Arduino supplies a user friendly environment for
using the board's peripherals like GPIO, ADC, Serial
communication and also provides many open source libraries.
By including the compatibility with Arduino in our device's
design, any interested user can develop her own mechanism
for data acquisition and data uploading to DeviceHub or to
any other server. Arduino generated code source is run on an 8
bit AVR architecture microcontroller uploaded using a
bootloader. In POD's current firmware implementation, we
chose to use directly the standard C library, compatible with
Arduino's booloader. In this way our code is more efficient
since we could handle the microcontroller's IO and internal
peripheral's registers directly.

 The communication between Arduino and Wi-Fi module
on any of the GPIO pins is possible using the SoftSerial
library. Using this library, an Arduino board that supports
only one hardware UART interface can be connected to
multiple serial devices. For its communication protocol, this
connection uses AT commands. For example, when Arduino
sends to Wi-Fi module "AT" string, the module responds with
"OK". Any other command starts with "AT+" followed by the
command name and its arguments. Thus, Arduino must also
maintain in memory all the strings needed for server
communication, users, passwords and sensors data. When a
command is sent, the microcontroller starts a timer, set with
the interval needed for waiting the response. In case of
timeout, the response is considered unsuccessful.

 The board's memory consists of 32 kBytes of Flash, 2kBytes
of RAM and 1 kByte of EEPROM [18]. During development,
we observed that the RAM size was not enough to keep all the
strings and variables. Without attaching any external memory,
POD uses the remaining program memory space to store all
the strings it needs. The strings declared in the Flash memory
cannot be accessed directly so when a PROGMEM declared
string is required, it is copied in a general buffer and used
from the buffer. For each sensor we use array in which are
stored the last achieved values. When POD sends data to

server, it sends the average of values stored in buffers. This
same action is taken when POD needs to respond to a local
user access. It will show all the current measurements in a web
page.

 Considering the memory constraints, POD is unable to
maintain a local archive of data, it can store the data of the last
couple of minutes. Currently the system relies on a reliable
connection with the server for continuous data transfers, but
we consider adding an extra memory in the future. Although it
increases the price, it will guarantee no data loses due to
problems with the Wi-Fi connectivity. Moreover, with this
storage support, the user can have the option to just use the
device in local mode, not transmitting the data to the server.
The user would not be able to contribute to the community but
it is a viable user-scenario for those very concerned with
privacy.

 Since we considered that the user can change parameters
for this device without modifying the source code, POD uses
its EEPROM memory for saving Access Point credentials for
the Internet connection and the DeviceHub account
information. Also, to have an accurate location for device, the
user can set the POD's geographic coordinates. This location is
saved locally, in the EEPROM memory and also sent to the
server. In order to set those parameters, the user must access
POD from any browser using its IP address. If the SSID and
password stored in memory are wrong, our device creates its
own wireless network that user can connect to. After setting
the values, the user must restart POD by clicking the web page
button "Restart device". Internally, the firmware activates the
microcontroller's watchdog and the device restarts, trying to
connect to the new Access Point. For easily accessing POD,
the user can set a static IP because the mobile DNS service is
not implemented yet.

 The program installed on the device consists of a loop with
a two minutes interval dedicated for data acquisition, followed
by an uploading to the server procedure. While the board is
measuring values, POD's page can be accessed. This page
displays the current measured sensor values and a link to the
settings web page. A timer handles an interrupt every
millisecond, responsible for data acquisition. When a second
passes, it starts an analog conversion for one gas sensor,
chosen in a circular order. At every 5 seconds it saves the
number of dust particles. When 10 seconds pass, we perform
a new temperature and relative humidity measurement. Those
values are stored in a circular buffer, one for each sensor and
an average is sent to server. Between these intervals POD
performs analog conversion for sound measuring applying an
Fast Fourier Transform whenever a sound buffer is fill. This
feature is still under development and requires more extensive
testing.

 When it boots up, the device initializes the peripherals end
checks if the EEPROM SSID has changes. If so, Arduino
sends the new credentials to the Wi-Fi module and waits for

the connection to be established. If the settings are the same,
the microcontroller just waits for the Wi-Fi connection,
because the module is capable to auto connect to the last
SSID. If the connection is successful the module starts to work
in client function. This means that the device measures data,
sends it to server and responds to local requests. If the
connection is not successful the device loads the server mode
in which creates a Wi-Fi network designed just for
configuration. The user must connect to this network and
must access the web page located at "192.168.4.1" IP address.
This loads directly the settings webpage. After restart the
module follow the same procedures.

IV. DESIGN CHALLENGES AND EVALUATION
 When designing a sensing device with cost-restrictions and
supporting more sensors than the existing ones discussed in
section 2, we came across several hardware and software
issues. In this section we will present the iterations our device
went through, more specifically the components we tried to
integrate and the strategies we adopted for implementing the
functionalities

 The first design of POD was even cheaper and costing
about 30-33$. In this first iteration, the Wi-Fi module
ESP8266, which also consists of a microcontroller, was in
charge of both the data acquisition and communication. It was
also compatible with the Arduino libraries and we could use
them for managing the GPIO pins and performing analog-to-
digital conversions while preserving its main functionality of a
Wi-Fi module. Since it has a single ADC channel we used a
multiplexer to iterate through the analog sensors. The
problems with this solution were twofold. First, the ADC
reference voltage was just 1V and dividing all analog outputs
from 5V to 1V results in a lot of noise and precision loss. The
second problem concerned the interrupts. Usually,
microcontrollers have hardware support for interrupts that
signal the end of an analog-to-digital conversion. ESP8266 on
the other hand, had only software interrupts support for some
of the pins. Due to this fact we had difficulties handling dust
sensor interrupts, which did not work all the time. On the other
hand, temperature and humidity measurement was functional
and the server sockets handling was able to keep more than 5
clients at once.

 The problems with the analog-to-digital converter provided
by the Wi-Fi module motivated us to change our design. We
wanted to eliminate the constraints regarding the single
channel, the low resolution and the lack of interrupts. In our
second iteration we added an external I2C analogical module
with the same precision but a higher reference voltage. Due to
price constraints we used a cheap one, less complex, which
had only two channels. We used one channel for sound
measurement and the other one to iterate through other sensors
by using the same multiplexer.

In the second revision of POD we encountered problems with
the Wi-Fi module's EEPROM memory, which caused the
board to reset randomly In the third and current iteration we

added another microcontroller in charge of sensor
measurements with a negligible impact on the overall price.
Adding this microcontroller implied the same costs as using
the analog extension and an additional EEPROM memory.

 The current version is stable and all the functionalities
described in the previous chapters are implemented. During
the evaluation we encountered some software problems such
as memory management or responding to local area requests
but we managed to successfully solve them. One of the most
interesting issue was temperature values which were greater
with a couple of degrees like the real ones but relative
humidity was right. After some tests we realized that the
thermal inertia of the PCB was causing the problem. Therefore
we moved the sensor to a dedicated board and the values were
normal.

 During the evaluation process we placed our device into a
box with a cooler which pulled the air out in order to make an
air flow inside. The box was fixed at the 4th floor on a
window, west side so the Sun was heating up the box after
2pm, (as shown in Fig. 3) when the values rises at about the
middle of the graph. We can observe the dependency between
relative humidity and temperature because the relative
humidity represents the water maximum quantity which can
be absorbed at the given temperature.

 For dust particles, in Fig.4. we can observe two similar
graphs. The sensor is capable to measure particles greater than
2.5µm (higher values - PM2.5) and higher than 10 µm (lower
values - PM10) The small particles sensors measure the
others too.

 In Fig.5, we can observe the CO and NO2 gases variation
during an entire day (July 13, 2016). In the first half of the day

Fig. 2. Board placement during the testing process

the value for CO is constant, about 0.7PPM while the NO2
value increases with 0.3PPM. In the second part of the day,
the values has an In the second part of the day, the values
have an erratic evolution probably because the window was
opened and there was an air flow in the room.

Fig.3.Temperature[*C](blue) vs Relative Humidity[%] (orange) June 14, 2016

Fig. 4. Dust: PM10(blue) vs PM2.5(orange) [PPM] June 14, 2016

Fig. 5. Gases: CO(blue) vs NO2 (orange)[PPM] July 13, 2016

V. CONCLUSIONS
 In this paper we presented the key features of the pollution
monitoring device we designed and implemented. This device,
called POD, is addressed to all citizens interested in obtaining
information about air and noise pollution in the areas they live.
With a large-enough user-base our web-based system can

show real-time pollution information covering many urban
areas.

 The challenge of this project was to balance the tradeoff
between the costs and functionalities. We managed to obtain a
device cheaper than the ones available on the market and with
a extra features. We started by using a popular device in the
Internet-of-Things field, with a cost of about 30$ and we
added some extra hardware getting an approximate production
price around 40$. We successfully managed to use all desired
sensors and to respect our usability policy. The setup of the
device is extremely easy and requires no embedded systems or
programming knowledge. During our evaluation process no
auto restart or system freeze was observed. By presenting the
design iterations and the issues we overcome, we hope our
work can help other researchers in designing their own
solutions using accessible and simple hardware components.

 One of the functionalities we plan to add is a mobile DNS
service which will ease the device's discovery in the local
network. We also consider adding a SD card holder and
support for local storage. This will ensure that the data is not
lost when there are problems with the user's Wi-Fi connection.

 We plan to expand the project with an online platform
accessible to the general public in which to present the
measured data, updated in real time. Our goal is to create an
infrastructure for measuring pollution in Bucharest, Romania,
based on these devices.

References

[1] Official website made available by the Romanian National
Environmental Protection Agency on pollution reports. (Romanian).
Available online at: http://www.calitateaer.ro. Last accessed on 14 July
2016.

[2] Air Quality in Bucharest and its impact on human health. (Calitatea
aerului în București. Efecte asupra sănătății) (Romanian). Available
online at:
http://www.ecopolis.org.ro/media/files/studiu_calitatea_aerului_bucurest
i.pdf. Last accessed on 14 July 2016.

[3] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., &
Campbell, A. T. (2010). "A survey of mobile phone sensing". IEEE
Communications magazine, 48(9), 140-150.J. Clerk Maxwell, A Treatise
on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68-73.

[4] D’Hondt, Ellie, Matthias Stevens, and An Jacobs. "Participatory noise
mapping works! An evaluation of participatory sensing as an alternative
to standard techniques for environmental monitoring." Pervasive and
Mobile Computing 9.5 (2013): 681-694.

[5] NoiseTube Developers Page. http://noisetube.net/api_overview. Last
accessed on 14 July 2016.

[6] Hasenfratz, David, Olga Saukh, Silvan Sturzenegger, and Lothar Thiele.
"Participatory air pollution monitoring using smartphones." Mobile
Sensing (2012): 1-5.

[7] Zappi, Piero, Elizabeth Bales, Jing Hong Park, William Griswold, and T.
Šimunic Rosing. "The citisense air quality monitoring mobile sensor
node." In Proceedings of the 11th ACM/IEEE Conference on
Information Processing in Sensor Networks, Beijing, China. 2012.

[8] Dutta, Prabal et al. "Common sense: participatory urban sensing using a
network of handheld air quality monitors." In Proceedings of the 7th

http://www.calitateaer.ro/
http://www.ecopolis.org.ro/media/files/studiu_calitatea_aerului_bucuresti.pdf
http://www.ecopolis.org.ro/media/files/studiu_calitatea_aerului_bucuresti.pdf
http://noisetube.net/api_overview

ACM conference on embedded networked sensor systems, pp. 349-350.
ACM, 2009.

[9] Tudose, Dan Ştefan, Traian Alexandru Pătraşcu, Andrei Voinescu,
Răzvan Tătăroiu, and Nicolae Ţăpuş. "Mobile sensors in air pollution
measurement." In Positioning Navigation and Communication (WPNC),
2011 8th Workshop on, pp. 166-170. IEEE, 2011.

[10] Smart Citizen System board. https://acrobotic.com/featured/sck-00001.
Last accessed on 14 July 2016.

[12] RESPIRA sensor.
http://old.panstamp.com/announcements/respirasensor. Last accessed on
14 July 2016.

[13] Air Quality Egg http://airqualityegg.com/. Last accessed on 14 July
2016.

[14] Silicon Labs, "" Si7020-A20 I2C Humiditry and Temoperature Sensor"
Si7020 Datasheet, 2015, Rev 1.1

[15] e2v technologies (uk), " MiCS-4514 Combined CO and NO2 Sensor",
2008, A1A-MiCS-4514 Version 2

[16] Amphenol Sensors "SMART Sensor SM-PWM-01C Application
Notes", Nov. 2015

[17] Espressif Systems IOT Team, "ESP8266EX Datasheet", August 1, 2015
[18] Atmel Corporation, “ATmega48A/PA/88A/PA/168A/PA/328/P”

ATmega328P datasheet, 11/2015 [Revised Rev.: Atmel-8271J-AVR-
ATmega48A/48PA/88A/88PA/168A/168PA/328/328P-
Datasheet_11/2015]

https://acrobotic.com/featured/sck-00001
http://old.panstamp.com/announcements/respirasensor
http://airqualityegg.com/

	I. Introduction
	II. Related Work
	III. The POD Device
	A. Functional requirements
	B. Hardware architecture
	C. Software description

	IV. Design Challenges and Evaluation
	V. Conclusions
	References

