
Home Automation Design Using 6LoWPAN Wireless Sensor Networks

Dan Ştefan Tudose†, Andrei Voinescu∗, Madi-Tatiana Petrăreanu‡, Andrei Bucur§, Dumitrel Loghin¶, Adrian Bostan‖,
Nicolae Ţăpuş∗∗

Faculty of Computer Science and Computer Engineering
Polytechnic University of Bucharest

Bucharest, Romania
Email: {†dan.tudose, ∗andrei.voinescu, ‡madi.patrareanu,
§andrei.bucur, ¶dumitrel.loghin, ‖adrian.bostan}@cti.pub.ro,

∗∗ntapus@cs.pub.ro

Abstract—Wireless sensor and actuator networks
(WS&ANs) are a new technology based on networks of
small radio-enabled embedded devices that are being deployed
in areas such as environmental monitoring, vehicle tracking,
building management, body monitoring and other applications.
Power sources for network nodes are often limited, which
imposes restrictions on hardware resources and their use by
the underlying embedded software. We propose a new wireless
sensor network architecture that is especially designed for
the task of home automation. Our system relies on a low
power WS&AN that employs energy harvesting techniques to
maximize node lifetime and an embedded residential gateway
that offers user interaction and secure connectivity to the
outside world. The advantages of our system are its scalability,
low power, self sufficiency and versatility.

Keywords-Wireless Sensor Networks, Home Automation, Per-
vasive Computing, Energy Harvesting, Embedded Systems,
6LoWPAN

I. INTRODUCTION

Wireless Sensor Networks (WSNs) or more generally
Wireless Sensor and Actuator Networks (WSANs) are em-
ployed in a wide range of data acquisition, data processing,
and control applications. Their advantages over traditional
wired sensor and actuator networks include node mobility,
increased reliability (due to availability of adaptive multi-
hop routing), easier installation and lower deployment cost.

Home automation is the process in which the household
environment is given additional functionalities through the
integration of sensors and actuators into otherwise non-
automated systems like lighting, heating, air conditioning
and even regular appliances with the purpose of providing
improved convenience, security and energy efficiency.

Almost all of the home automation systems that are
currently available on the market employ wired networks
and a multitude of communication protocols like X-10,
Universal Powerline Bus (UPB), MODBUS, or even via a
standard Ethernet connection. They all have been available
for at least a couple of decades and, while technologically
and functionally proven, they offer some disadvantages that
hindered their widespread adoption. For example, MODBUS
and Ethernet require cabling for both power and data lines

that can be expensive and aesthetically displeasing. X-10
and UPB have the major advantage of utilizing the already
existing power line and outlet infrastructure but suffer from
low bandwidth and are susceptible to high error rates on low
quality or noisy power lines.

Wireless sensor networks seemed the logical step to
address the issue, because of their ability to function using
relatively small, inexpensive, low-power nodes that can form
short range networks using protocols like Bluetooth, Zigbee,
WirelessHART[3], or 6LoWPAN [5].

However, not all of the above standards are equally
well suited to a home automation scenario. For example,
Bluetooth networks are usually limited to a small number of
nodes and have higher energy consumption than its Zigbee
counterparts. WirelessHART, although reliable and highly
flexible, is more suited to Process field device networks that
are used in industrial environments.

The 6LoWPAN standard promises the fulfillment of the
emerging trend of embedding Internet technology into all
aspects of everyday life [4], mainly because of its low costs,
low power, scalability, possibility to easily adapt existing
technologies.

In this paper we present a home automation infrastructure
that is built around a 6LoWPAN wireless sensor network, an
embedded gateway and an application suite for deploying,
monitoring and controlling the system.

II. SYSTEM REQUIREMENTS

Home automation systems consist of interlinked compo-
nents that are in effect a type of centralized distributed sys-
tem that has a set of characteristic properties and attributes.
According to [4], these are the following:

• Future-proof. A HA system cannot be easily upgraded
or uninstalled during the lifetime of a building, so it
needs to use a stable, proven and future-proof technol-
ogy.

• Moderate cost. A HA system usually consists of a
large quantity of sensing and actuating entities that need
to be in constant communication both with each other



and with the central entity. Because of these speci-
fications, most of the solutions for home automation
tend to be either too costly, either inefficient. For the
system to be effective, a compromise between cost and
functionality must be achieved, while at the same time
maximizing the benefits.

• Low installation overhead. Because current HA so-
lutions rely entirely on wired communication, the in-
stallation of such a system proves complex and often
needes modifications in the building itself. Any modern
HA system has to have a low installation overhead,
requiring little or no modification to the existing home
environment.

• Configuration effort. System configuration should be
easy and time-efficient. Adding new functions or mod-
ules to the system should be facilitated by a paradigm
that is similar to plug-and-play.

• Connectivity. All entities of the system need to be
connected, either through a unified interface or through
a specialized one that allows bridging different tech-
nologies and hardware. Connectivity with the outside
world is also a desired functionality.

• User interaction. Special care must be taken with
interface ergonomics. The user should not be asked
for ambiguous or repetitive commands and the inter-
face must have familiar controls that need little or no
training even for an inexperienced user.

• Security. The system must be aware and protect its
users from threats like unauthorized access, privacy
invasion or destruction.

Most of today’s residences and apartments already have
Internet connectivity, so, utilizing the existing Ethernet in-
frastructure as a backbone for our application is not only
logical, but also satisfies all of the above requirements.

III. OVERALL SYSTEM ARCHITECTURE

Our goal is to develop a house monitoring system that
is robust, flexible, easy to use and has a wide range of
capabilities. The main components of the monitoring system
are a gateway and a network of low power sensor and
actuator nodes.

Our Wireless Sensor Network (WSN) architecture has
three main hardware components:

• Wireless Sensor Motes
• Network Gateway
• Android-enabled Smartphone

The way these components are interlinked to create a reliable
WSN system is shown in the diagram below:

The embedded gateway is the core of the system. It pro-
vides the user with a touchscreen interface for configuring
and monitoring the sensor network and the gathered data.
As an enhancement to data monitoring, the user has the
possibility of setting up alarms (e.g. the gateway sends

Figure 1. System architecture

a text message to the user if the temperature crosses a
threshold). The nodes may be equipped with various sensors.
The collected data is wirelessly sent to the gateway, where it
is stored and eventually displayed. The system also provides
means to monitor data remotely. The user can connect to
the gateway via the Internet and view real-time graphs and
statistics of the network data using an Android smartphone.

A. Sensor hardware

In this section we describe the hardware implementation
of our sensor motes. A sensor mote is a node in a wireless
sensor network that is capable of performing some process-
ing, gathering sensory information and communicating with
other connected nodes in the network.

1) Typical wireless sensor node architecture: WSN nodes
have specific hardware characteristics and limitations. Most
WSN nodes have limited available energy: some rely on
batteries and some employ environmental energy harvest-
ing techniques such as solar panels, wind- or vibration-
powered generators or thermoelectric generators. Therefore
WSN nodes tend to be small embedded systems with few
processing resources and low bit rate, low range radio links.
Cost and size restrictions impose similar constraints. A
typical architecture of a sensor node is shown below.

Figure 2. Typical wireless mote hardware architecture

2) The Sparrow v2 wireless sensor mote: For this project
we developed the Sparrow v2 node [7] which is built
around the Zigbit A2 module from Atmel. It has a low-
power 8-bit RISC microcontroller connected to a 2.4GHz
802.15.4 radio transceiver. In order to increase versatility,
the microcontroller is linked to an extended sensor bus
that can accommodate up to three different types of analog
and digital sensors. Although the mote has very low power



consumption and can function for long periods of time on a
single battery charge, we designed the node for total energy-
independence. Additional components for power manage-
ment and energy harvesting were needed and we opted for
the architecture presented in the diagram below. The voltage

Figure 3. Sparrow v2 architecture

from the energy harvester is used to charge the battery pack
by the first stage DC-DC converter. Then, battery voltage
is supplied at a stable level to the node’s main circuitry.
For power management purposes, the node also needs to
continuously monitor the voltage and the current drawn
from the battery pack, which is achieved by the energy
measurement module.

3) Energy Harvesting: is the process by which energy
from the surrounding environment is captured and stored.
In recent years the term has been applied mainly to sensor
networks, where autonomous sensor nodes employ this
process to replenish their energy resources. When applied to
our architecture, energy harvesting increases the robustness
and availability of the system, making it energy-independent.

Harvesting Technology Power Density
Photovoltaic Cells(maximum illumination) 15mW/cm3

Piezoelectric (cantilever structure) 330uW/cm3

Vibration(kitchen appliance) 116uW/cm3

Thermoelectric(∆t = 10 degC) 40uW/cm3

Acoustic noise (100dB) 960nW/cm3

Table I
MOST COMMON ENERGY HARVESTING SOURCES

We can approximate the sensor network with a closed
energy system where each node has a total energy produc-
tion rate Pp(t) and a total energy consumption rate Pc(t).
Therefore, the excess of harvested energy by the node at any
moment can be estimated by the following formula:

E(t) =

∫ t

0

(Pp(t)− Pc(t))dt (1)

A node is deemed energy-independent if its excess energy
satisfies the following formula:

E(t) > 0,∀t > 0 (2)

A variety of sources for energy harvesting have been re-
searched, such as solar power, thermal energy and kinetic
energy. All of the energy sources stated above have small
energy density values compared to more classic energy
sources, such as batteries. In the past, the use of radio
transceivers often implied large amounts of power consump-
tion. This is no longer the case today, as recent advances
in the design of low-power electronics and energy storage
have made wireless sensor networks a prime candidate for
the successful integration of energy harvesting techniques.
By analyzing the data from the Table I we can see that solar
cells offer the best efficiency while at the same time being
a environmentally-friendly power source. This can be a
suitable energy source for locations in which the availability
of light to network nodes can be guaranteed to a sufficient
degree, and for which mains and primary battery supply
is impractical. A WSN node that has energy harvesting
capabilities can virtually run for an infinite amount of time
without the need of periodically replacing its batteries. For
our project we used 2V, 200mA polycrystalline silicon solar
cells, and we established that they can harvest sufficient
energy for the mote’s needs, even in low illumination
conditions. To establish if they can successfully power our
nodes we did the following experiment: we measured the
average output power on a fixed 1kΩ load when the cell
was in full sunlight. We came up with an average 261mW

Figure 4. Photovoltaic cell voltage drop measured in the course of one
day on a fixed resistive load

over the course of one day, taking into account that the solar
cell is placed into an area of moderate to high illumination,
such as a window frame. We can calculate the total energy
harvested in one day by the solar cell:

Eharvest = P × t = 261mW × 24h = 22600Joule (3)

The Sparrow node drains a maximum of 30mA at 3V from
the power supply. By taking also into account the sensors
and additional circuitry with an additional 10mA at the very
most, and implying that no software sleep algorithms are
implementes, the total energy required for the node to run



without pause for the duration of a single day will be:

Espent = U×I×t = 3V ×40mA×24h = 10368Joule (4)

This proves that, given enough storage capacity and enough
incident radiation, solar energy harvesting can power a node
for an indefinite amount of time. Taking into account the fact
that nodes employ power management in the software stack,
alternating between long periods of sleep and only short
intervals when they’re active, there is actually excess energy
produced. This additional energy is stored in the battery pack
to be consumed during the night or on clouded days.

B. Sensor firmware
The nodes in our testbed run a light-weight operating sys-

tem designed specifically for use in WSNs, named Contiki
[1]. It offers a cooperative protothread model and an RFC-
compliant wireless IPv6 stack, built on top of IEEE802.15.4.

Our system features two firmware versions of Contiki,
one that runs on the regular sensor nodes and is suited for
data gathering, and another version for a coordinator node.
The coordinator has the added burden of a serial link to the
embedded gateway, fulfilling the role of sensor data sink.

Sonda is the client firmware that runs on the sensor
motes. It enables a node to wirelessly transmit data from its
sensors to the gateway. Each sensor node can accomodate a
wide range of sensors: temperature, pressure, humidity, light
intensity, proximity detection, air quality, etc.

Transmission of the sensor values is done periodically
over a UDP/IPv6 connection to the gateway. IPv6 addresses
are fixed in EEPROM memory, as dynamic addresses are
not implemented in the operating system. This makes the
addresses easy to reconfigure, as opposed to rewriting the
firmware on each node. The dissemination of data using
UDP over uIPv6 allows a certain flexibility of the system
since the coordinator does not have to know about what
nodes are available, because it maintains the list of all the
nodes that are contributing with sensor data. Data is sent
over the network in a simple text format, therefore, is self-
describing. Neither the coordinator nor the gateway have
to know which are the capabilities of each individual nodes
since they can be discerned easily from the data it is sending.

Sonda Gateway runs on the coordinator mote. It accepts
wireless UDP connections that carry sensor data. Each mote
sends datagrams containing pairs of values denoting the
sensor type and measured data. The role of the coordinator
mote is to forward the received pairs via UDP/IPv6 to the
embedded gateway on a serial connection.

Sonda Power runs on a custom-built mote that measures
power consumption at a mains outlet. The mote itself is a
board based on the Sparrow module but features additional
circuitry for AC voltage and current measurement.

IV. EMBEDDED GATEWAY

1) Platform setup: When designing the gateway, we had
to respect some specific constraints. The gateway must be

Figure 5. Screenshot of the embedded gateway system

a dedicated hardware device, low-cost and power efficient,
easy to use by the end-user, reliable and secure. It has to
provide the following functions:

• Collect data from wireless nodes (act like a gateway
for the WSN) .

• Provide a direct interface for basic user settings and
control via a touch screen.

• Provide a web interface for extended settings, visual-
ization and control of the WSN.

• Process data and send it to MonALISA, a grid-based
large-scale monitoring platform discussed by [2].

We needed a powerful yet low-cost platform that can
interface a wide range of peripherals. For the prototype, we
chose the Atmel’s ATNGW100 board that has all the features
above and can run a Linux operating system. The board is
equipped with an AP7000 (Atmel’s proprietary AVR32 32
bit RISC architecture) processor that can run at 140MHz,
which gives it enough computing power to run Linux, a
small HTTP server with server-side scripting and a GUI
application.

We interfaced to this board a 320x240 pixel color TFT
display with touchscreen, to provide a basic user interface.
In order to give the gateway access to the wireless network,
we also added a Sparrow node.

For this system we used an up-to-date kernel version,
2.6.30.6, with several additional drivers enabled, mainly
framebuffer support for the LCD display. The systems was
built with buildroot, which is a set of makefiles for both
kernel and userspace libraries. It includes all necessary
support for a web server and a menu interface that uses
Qtopia for the LCD.

The gateway receives and stores sensor data from the
motes. This can be then viewed in a graphical form from the
menus on the LCD screen and, at the same time, it is made
available on the Ethernet connection by a HTTP server via
REST-like queries. This enables a variety of possible Web
applications to integrate sensor data, such as the Android
platform we developed.

2) Application Design: The application running on the
gateway is meant to be a terminal for the entire home
automation system, providing both configuration screens and
up-to-date information on the system. It has several graph



screens to plot the reported sensor data and configuration
panels to setup gateway network parameters and to add
alarms for certain sensor data.

As Figure 5 shows, the main screen has a representative
map of the residence (designed by the user) along with the
sensors mapped to each room. Users can also quickly view
node availability and logged events in the system.

3) Gateway Interface: The system is designed to be
easily customized after being deployed in the user’s home.
The graphical interface of the gateway can be configured
to resemble the actual design of the house, providing the
user with a simple, intuitive tool for interacting with the
monitoring system. This facility is implemented through
a web interface hosted on the gateway. We used Scalable
Vector Graphics and Javascript in creating this interface,
therefore it must be accessed form a browser that can
interpret SVG files.

The purpose of the interface is to generate a PNG image
that mimics the design of the home, along with some other
information about each room: a room name and a list of
sensors that are active in that room. The user inputs first
a layout of the rooms in the house and then enters data
regarding active sensors in each room. This is all that is
required in order to generate a fully customized interface
for the gateway.

Figure 6. Customize interface screen

Generating the final image to be displayed on the gateway
occurs as follows: first, the user input is used to generate
a SVG image. Next, this image is scaled to the exact
dimensions of the gateway’s screen. This way we can obtain
a clear image and use the screen’s limited resolution as much
as possible. Finally, the SVG image is converted to PNG
format. The list of sensors for each room is stored into a
configuration file. The interface configuration is completed
after the PNG image and configuration file are uploaded to
the gateway.

V. ANDROID MONITORING APPLICATION

The Android application is meant to give additional ways
of presenting and manipulating data obtained from the gate-
way. The gateway hosts an Apache 2.X HTTP server with
the PHP and SSL modules installed, making the server-client
connection secure. The application makes certain REST-like
queries to the gateway, it makes parametrized requests and
receives the data in JSON format. This format is preferred
over other representation protocols because it integrates very
well with JavaScript environments and many frameworks
offer support for it. For example, when an user wants to
observe the live variations in sensors data, a request is sent
to the server by the Android application. The server responds
with an HTML page containing a graphic configured with
the parameters we sent. The page is displayed in an Android
WebView control.

After the plot is configured, a script makes periodic
XHR (XmlHttpRequests) to the server requesting the current
reading for a named sensor with in certain measurement unit.
When the readings for all the sensors have been updated, the
graphs are redrawn. The sensors data is encoded in JSON
format:

name: <sensor_name>,
data: [<server_time>, <sensor_value>]

Figure 7. Android monitoring application

VI. ONLINE MONITORING

We developed a method for monitoring and controlling
a WSN remotely over the Internet, based on the successful
MonALISA framework [2]. Our method uses an abstraction
layer to provide remote monitoring and control to essentially
any kind of WSN. MonALISA is a joint development of
CERN, Caltech and UPB, typically used in monitoring large-
scale systems such as computer clusters. It can be used to
monitor and control any kind of system, including WSNs,
as long as the appropriate interfacing software is available.
In short, MonALISA employs repositories to which data



can be sent remotely using a portable software module
named ApMon (Application Monitor) and to which users
can connect with graphical client programs to view the
data remotely. The connections can be established over
the Internet, allowing user access to the WSN from any
location, or over a local area network. Data in MonALISA is
organized as parameter-value pairs pertaining to a ”host” or
”node”. Hosts are grouped into clusters, which are grouped
into farms.

Each mote is presented as a host-type entity with a list of
parameters. The name of the host is the IPv6 address and
parameters include any sensor data that the mote provides
(temperature, voltage, current). The user can filter parame-
ters by name in order to concentrate on data of immediate
concern.

Figure 8. Data visualization with MonALISA

The parameters are sampled at defined intervals by the
ApMon script and sent to MonALISA. The sensor data
is made available on the graphic client in near real-time
(delayed by storing the data on the various repositories),
viewable from any point in the Internet.

VII. RELATED WORK

Prior work exists in the field of Web-enabled Home Au-
tomation systems presenting both IP networks and WSNs[6].
The authors in [4] argue that Home Automation systems
have a lot to benefit from using IP technology and integrating
with the Web. As the sensor networks become part of the
”Web of Things”, they become much easier to use in other
applications due to their Internet connectivity and standard
interfaces. They present two project to argue this case, the
first being an island of sensor nodes with RESTful interfaces,
together with a mash-up editor in which a user can use
their sensed data and actuator interfaces to create their own
application. The second project involves obtaining real-time
consumption data from an electricity outlet and displaying
it on an IPhone.

While our system has characteristics that encompasses
both of these projects, there are some key divergences: The
authors interface the sensor nodes directly with RESTful
interfaces, which we see as energy inefficient.

Another project [6] also uses IPv6 on sensor motes, but
communication is mediated by a proxy server, which is
more akin to our solution. This brings the advantages of
connecting a WSN to the Internet without the drawback of
increased traffic in the WSN by having the enhanced base
station/proxy server mediate all the traffic.

VIII. CONCLUSIONS

The future work we envision for this system involves
setting up the actuation infrastructure. Since the REST-
like interface is already in place, this would only require
tweaking the communication between motes and gateway to
include this feature. Our customization interface can then be
extended to include automation rules.

REFERENCES

[1] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt.
Contiki - a lightweight and flexible operating system
for tiny networked sensors. Local Computer Networks,
Annual IEEE Conference on, 2004.

[2] H B Newman et. al. Monalisa: A distributed monitoring
service architecture. Technical report, CERN, Geneva,
Jun 2003.

[3] Jianping Song et al. Wirelesshart: Applying wireless
technology in real-time industrial process control. Real-
Time and Embedded Technology and Applications Sym-
posium, IEEE, 2008.

[4] Matthias Kovatsch, Markus Weiss, and Dominique
Guinard. Embedding internet technology for home
automation, 2010.

[5] Geoff Mulligan. The 6lowpan architecture. In EmNets
’07: Proceedings of the 4th workshop on Embedded
networked sensors. ACM, 2007.

[6] L. Schor, P. Sommer, and R. Wattenhofer. Towards a
zero-configuration wireless sensor network architecture
for smart buildings. In Proceedings of the First ACM
Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings. ACM, 2009.

[7] Dan Tudose. Sparrow v2 specifications, 2011.
URL http://elf.cs.pub.ro/pm/wiki/
media/sparrowv2.pdf.


