
Task Scheduling in Wireless Sensor Networks

Andrei Voinescu∗

Dan Ştefan Tudose†

Nicolae Ţăpuş‡

Faculty of Computer Science and Computer Engineering
Polytechnic University of Bucharest

Bucharest, Romania
Email: ∗andrei.voinescu@cti.pub.ro, †dan.tudose@cs.pub.ro, ‡ntapus@cs.pub.ro

Abstract—This paper discusses a scheduling algorithm for
the sub-tasks of an application in a Wireless Sensor Network.
With the next generation of sensor networks, task-based
systems are needed to provide services to entities outside the
network. Allocation of tasks on different wireless nodes must
take into account energy constraints, compatibility of tasks
to a given node or topology and must be in agreement with
the purpose of the network. The problem described in this
paper requires maximizing network lifetime and satisfying
these allocation constraints. The solution proves to be correct
though in some cases it can lead to algorithmic complexity,
such that further work on an approximation algorithm might
be indicated.

Keywords-wireless; sensor; task; scheduling;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have different necessi-
ties than normal distributed systems, and as such scheduling
has to be WSN specific. Wireless Sensor Networks are
generally application-oriented networks, the requirements
for these networks are often high-level (e.g., detect fires,
monitor temperatures). As such, distribution of necessary
work over the network can be transparent to the application
that is built on top of it. Given an application that is divisible
into a number of interdependent tasks, different allocation
of these tasks on the nodes of the network will consume
different amounts of energy. Energy is paramount to wireless
sensor networks because it is assumed that their only power
supply are batteries. Changing batteries relates to costs and
network downtime, which has to be kept to a minimum.
The goal of a task scheduler in this environment would be
to maximize network lifetime, i.e., assign the tasks such that
the application would run for the maximum amount of time.
Since energy consumption in WSNs is mainly related to
wireless communication, this paper proposes an algorithm
that would allocate tasks to a WSN such that communication
between nodes is minimal.

This paper describes two methods of solving similarly-
defined problems of scheduling in the context of Wireless
Sensor Networks (WSNs) in Related Work, then the authors’
definition of the scheduling problem, followed by the algo-
rithm itself.

II. RELATED WORK

Related work for task scheduling is generally found
under “task mapping“ or ”task allocation“. In recent times
many articles discuss this topic, as it is fundamentally
different to actively researched topics that mark a certain
resemblance, such as Task Scheduling in high performance
computing systems. WSNs have unique requirements in
respect to network lifetime, availability, reliability that make
research previously done not applicable. The objective of
these articles is to find schedules with balanced energy
consumptions for tasks. These schedules will allow a higher
processing power of the resource-restricted WSN. Some
research advocates splitting WSNs into lesser nodes and
more powerful nodes, around which the other nodes are
gathered, cluster heads. The lesser nodes deal with lower
level sensing tasks, while cluster heads deal with higher level
processing tasks. This generates an asymmetrical network
that puts too much pressure on the cluster heads. Even if the
cluster heads have much higher processing power and are not
energy restricted (they are connected to a power outlet), this
deviates from the concept of a WSN as well as not being as
applicable. Hence the following related work is picked from
those articles that either treat a WSN as homogeneous, or
as a heterogeneous network in which there isn’t a lot of
difference in processing power between types of nodes.

A. EcoMapS

EcoMapS(Energy-constrained Task Mappping and
Scheduling) is a scheduling system aimed to map and
schedule tasks of an application with minimum schedule
length subject to consumption constraints [1] . EcoMapS is
application-independent, as it uses simple tasks with data
dependencies noted in a Directed Acyclic Graph (DAG)[2].
The network is considered to be semi-homogeneous, being
divided into smaller clusters, each having a cluster head.
The cluster head is responsible for assigning the tasks in
each cluster, as well as mediating communication (each
cluster has star topology, with the cluster head in the middle;
cluster communications do not overlap). The algorithm
consists of arranging the tasks into a list such that each
task is set after its predecessors and the most critical path

is put first. The tasks are then assigned to the nodes where
they can start executing earliest, following the E-CNPT[3]
algorithm, an extension of the CNPT[4] algorithm which is
subject to energy consumption constraints. The algorithm is
run several times for different numbers of ”active“ nodes,
the one with the least number of ”active“ nodes that meets
the deadline requirements is considered to be the most
energy efficient.

B. PA-EDF

A different aspect of the scheduling problem is scheduling
a given set of tasks (can be repeatable) on a single node,
taking into account energy efficiency, as done in [5]. For the
scheduler to be able to make correct, power-aware decisions,
tasks that are set to execute on the node must specify a worst
execution time and a deadline, as well as an indicator of
“importance”. This “importance”, also denoted as a power
index, shows the relative importance of a task in relation to
the other tasks under low-power conditions.

The main idea is that to extend network lifetime, non-
critical tasks will be scheduled at greater intervals. All tasks
have an initial deadline; if the sensor node is in a low-energy
state (30% battery left), then the tasks runs a piece of code to
redetermine its deadline in respect to the remaining battery
life. Extending the deadlines for most of the tasks executing
on the node can mean that there’s time left in which the
MCU is idle, which is supposed to consume less power than
in the active state, hence the average power consumption is
lowered and network lifetime increases.

III. PROBLEM DEFINITION

The problem we address is an unconventional scheduling
algorithm, in the sense that the main constraint is not time,
but energy. As previously shown, research on scheduling is
generally focused on hard time deadlines. Instead, we pro-
pose a solution where time is of least importance, preceded
by energy consumption, battery awareness, availability and
affinity.

The task that we wish to schedule is the smallest indi-
visible part of an application. Tasks can be classified into
sensing tasks, actuating tasks, computation tasks, etc. For
example, we have a fire detection system implemented with
a WSN. We can have smoke sensing tasks on nodes that have
smoke sensors, an event detection task, which detects in a
stream of sensor input when smoke levels have risen, and
an alarm task, which handles the behaviour of the network
in the case of fire (bell, speaker, opening doors, etc.).

For the previous scenario, the scheduler needs some basic
information for each task: its importance, an affinity to a
certain type of node (a smoke sensing task can only be
assigned to wireless nodes that have a smoke sensor), a
frequency with which to run (if the task is repeatable)
and dependencies (both data sinks and data sources). The
scheduler will have to choose which assignment is best for

energy consumption, to put intermediary tasks on sensing
nodes or to put the on the alarm nodes (a variation of the
algorithm that takes into account low-battery states for nodes
or just where a task can’t be scheduled due to network over-
encumbrance can be implemented, similar to[5]).

The assumption is made that this algorithm runs in a
single-hop network, as our initial testing platform (AVR
Raven[6] with Contiki OS) only supports single-hop routing.
Multiple hops could be quantified into the energy cost of
transmission. As this scheduler targets the application layer,
energy costs were considered to be proportional to the
quantity of data transmitted. Although this is not necessarily
true, it would not bring much benefits to the algorithm to
include lower-layer energy consumption patterns.

IV. ALGORITHM

In this subsection we will formalize the problem defined.
First, we will consider the total energy remaining in a node,
Wmk

, mk being the node. This energy can be deduced from
the battery voltage and the discharge profile of the type
of battery used. We will use this energy, together with the
estimated consumption per second, to deduce the number
of seconds that the node can run. The minimum of these
times, calculated over each node in the network, will be the
network lifetime. The purpose of the scheduling algorithm
is to maximize this value.

Because the platforms that we use never enter sleep
mode (and their consumption is always very low compared
to the transmission/reception power consumption), we will
consider the energy they use incorporated into Pidle, which
can be specific to each node, Pidlemk

. This value represents
the energy consumed by the sensor node during idle mode
in one second.

Figure 1. A Directed Acyclic Graph with edges proportional in
weight to transmission energy cost.

We consider the energy wasted in trasmitting/receiving
directly proportional to the number of bits in the payload,

in part because we are interested in optimizing the schedule
of tasks at an application level, and because costs that are
not directly associated with the data do not scale with the
increase in network traffic. To model the tasks and their
dependencies we use a Directed Acyclic Graph (DAG), in
which edges represent data dependencies, their cost being
the maximal number of bits transmitted between the tasks
(We consider that a transmission occurs after each period).

Let:
• T (mk) be the set of tasks allocated to node mk.
• Pidlemk

the idle energy consumed by a node mk during
one second.

• B(eij), eij ∈ E (E the set of edges in the task DAG)
is the average number of bits per second transmitted by
task i to task j

• Wtr b,mk
,Wrcv b,mk

the energy cost of transmitting/re-
ceiving a payload bit on/from node mk.

• M(v) is the node to which the task v was assigned.
The power used by a task while receiving data would be:

Prcv,vi =
∑

j, vj /∈M(vi)

B(eji) ·Wrcv b,M(vi) (1)

Aside from the exit point of the application, all tasks will
also transmit data:

Ptr,vi
=

∑
j, vj /∈M(vi)

B(eij) ·Wtr b,M(vi) (2)

Thus the network lifetime is:

max
k,mk∈M

Wmk

Pidlemk
+
∑

i, vi∈T (mk)
(Prcv,vi + Ptr,vi)

(3)

Taking into account that Pidlemk
is almost the same on

all nodes, and presuming that we have the same amount
of energy available from the batteries, the important part
remains the energy consumed in radio transmission. Thus,
to maximize network lifetime, a general goal would be to
minimize this consumption. We do not consider tasks that
need to be run on all capable nodes, we will address this as
a restriction in the algorithm.

We have accounted for both energy while transmitting
and while receiving. Even if they are not exactly the same,
their sum should be uniform over each bit transmitted, so
we can say that the power used by the network in radio
communication, Pradio is

Pradio =
∑

i,j,M(vi)6=M(vj)

B(eij) ∗K (4)

We have reduced the scheduling problem to a known
graph-problem, for which a polynomial algorithm has been
found in 1988. It is called the min k-cut problem. If we
imagine in our setup the assignment of tasks to nodes, and
ascertain that no task is duplicated among nodes (we can

enforce that easily by duplicating in advance tasks that have
to be run on all nodes), then the scheduling is in fact a
partition of the node sets {C1, C2, ..., Ck} , each resulting
set containing the tasks that have to run on that node. In
graph theory, this is called a k-cut.

Figure 2. A Directed Acyclic Graph with a minimal 3-way cut. Note
that even though on this particular graph the cut is representable
in 2D, this is not always true.

A. Minimal K-Cut

Given a graph G = (V,E) and a weight function w : E →
and an integer k ∈ [2..|V |) the k-cut is a partition of V into
k disjoint sets F = {C1, C2, ..., Cn} and its measure is the
sum of the weight of the edges between the disjoint sets

k−1∑
i=1

k∑
j=i+1

∑
v1∈Civ2∈Cj

w(v1, v2)

or otherwise written ∑
i,j, vi,vj in different sets

w(v1, v2)

The minimal k-cut algorithm is described in Listing 1

B. The maximal source minimal s-t cut

The (s, t) cut, needed by the min K-Cut algorithm, is
a partitioning of the vertices of a flow graph such that the
source is in S and the sink is in T . The min K-Cut algorithm
needs a version where the source and sink are a set of nodes,
not just one. To do this, we can collapse the nodes in the
sink set into a super-node. Edges on the interior of the super-
node do not count for the search of the minimal s-t cut, only
those on its exterior. We then proceed to solve the maximum-
flow problem on the graph, interpreting weights as flow
capacities. Using the residual graph (graph with edges that
have weight the capacity - flux passing at one time), we
can start from the sink and expand until we hit 0 residual

Algorithm 1 Min K-cut algorithm
function KCut(V,k)
if k is even then

k’ = k - 2
else

k’ = k - 1
end if
S ← the set of subsets of k’ elements from V
T ← the set of subsets of k-1 elements from V
Find s ∈ S, t ∈ T such that W(cut(s,t)) = min
/* cut(s,t) splits V into s’ and t’*/
/* Find the minimal cut(s,t) with maximal source set */
return s’

⋃
KCut(V-s’, k-1)

capacity edges. The nodes found will be the smallest sink
set of a minimal s-t cut, the source set being the rest of the
nodes.

r(i, j) = c(i, j)− f(i, j)

Algorithm 2 Maximal source minimal s-t cut
/* replace sink and source set by supernodes */
V ′ = V

⋃
{s, t} − (S

⋃
T)

modify the edges external to supernodes
E′ = {eij |i, j /∈ S, T}

⋃
{esi|eji ∈ E and j ∈ S}

⋃
{eti|eji ∈ E and j ∈ T}

⋃
{est|eij , i ∈ S, j ∈ T}

Fij = 0, ∀i, j ∈ V
loop

find path p from s to t in residual graph
m← minimum residual capacity on path p
for all edges eij , such that eij on path p do
Fij ← Fij +m
Fji ← Fji - m

end for
end loop
A← set of nodes reachable by BFS from t
B ← V −A

C. Adaptation of K-Cut

When reducing the scheduling problem to K-Cut, some
constraints were ignored that now must be satisfied. Since
every step of the algorithm is partitioning the node set
in half, one being final and one remaining to be further
partitioned, we can say that each step represents scheduling
tasks on a single node. Constraints must be inserted in each
step, relevant to the node whose tasks are being scheduled.
In the pseudo-code of the algorithm, finding the source set
S is what must be modified to satisfy constraints.

We have several constraints that must be added to the
algorithm:
• Some tasks can only run on compatible nodes

• Some tasks have to run on all capable nodes (e.g.
sensing tasks)

To enforce the first constraint we have to include only
compatible tasks (tasks v such that NA(v,m) = 1 for the
current node m) in the source set, as well as filter the cuts in
which the first resulting set contains incompatible tasks. For
the second constraint, we will include the tasks that have to
be duplicated in the sink set of the cut (so that they will be
available for the next step of the algorithm), then in the end
we add those tasks to those obtained in the minimal (s, t)
cut.

Figure 3. A directed graph with a task that has to be duplicated
on all capable nodes

Algorithm 3 Adapted min K-Cut
function AKCut(V,k,mi)
if k is even then

k’ = k - 2
else

k’ = k - 1
end if
MT ← tasks that have multiplicity
V’ ← V - MT
S ← the set of subsets of k’ elements from V’
T → the set of subsets of k - 1 elements from V’

⋃
MT

Find s ∈ S, t ∈ T such that W(cut(s,t)) = min
/* cut(s,t) splits V into s’ and t’ */
/* Find the minimal cut(s,t) with maximal source set */
T (mi) = {s′}

⋃
{vj |vj ∈ MT, NA(vj ,mi) = 1}

return T (mi)
⋃

AKCut(V-s’, k-1, mi+1)

Assigning the tasks for each node at each step gives great
versatility in constraints management for the algorithm to
better model and solve the problem. For instance, battery
status has no role yet, but it is easy to add: We set a threshold
for the battery/tasks ratio, if the current node crosses that

threshold we will settle on another solution, not necessarily
with the same min k-cut, but with less strain on the node.

D. Complexity

The complexity of the min k-cut with the algorithm we
described is:

T (n) = O(nk′+k+1) ·O(n3) + T (n− 1),

where O(n3) is the bound for the minimum (s,t)-cut
algorithm.

For k even, we have:

O(n2k−3(n3 + n2k−4(n3 + ...n4(n3 + n3)))))) = O(nk2

)

A precise evaluation gives, as found by [7]:

O(nk2−3k/2+2), k even

O(nk2−3k/2+5/2), k odd

V. SENSEI STUFF

A. Check framework

In WSNs packets are typically forwarded in first-come
first-served order. However, this scheduling does not work
well in real-time networks where packets have different
end-to-end deadlines and distance constraints. There are
different healing strategies based on locality awareness of
the sensor node and/or energy efficient algorithms: graph
healing, binary tree healing, automatic fault recognition,
the forgiving tree, DASH or SASHA. One of the generic
design principles of SENSEI is the efficient utilisation of
system resources, and the scheduling component of the
Check framework is meant to address this point. Monitor-
ing and actuation frameworks for heterogenous WS&AN
islands crossing the borders of different organisations, each
having a different network setup is a major challenge. The
monitoring of all the components of Environmental Sensor
Networks (ESN), Community Sensor Networks (CSN), and
Body Sensor Networks (BSN), such as load, link quality,
processor and radio usage on the nodes, as well as en-
abling actuation in these networks, is not yet solved in
a heterogenous environment. The Check framework will
therefore address this point by implementing multi-hop task-
scheduling algorithms, based on multi-hop routing schemes
for homogenous wireless sensor networks. The multi-hop
task- scheduling scheme from the Check framework needs
topology information from the network, which will be
gathered using network discovery algorithms. Check is also
used to provide a high-level, service-oriented self-healing
[137][138] strategy. The WS&AN is regarded here as a ser-
vice provider. Check thus offers a high-level framework for
assuring service availability in WS&ANs. The self-healing
[139][140] component identifies failing or poorly performing
services and it orders the scheduler to reallocate them.
Additionally, Check offers a centralized monitoring, control

and reconfiguration framework, which will work toward the
realization of the scalable internetworking, horizontalization
and heterogeneity design goals of SENSEI. It allows the
move of services in heterogenous WS&AN islands if data
dependencies allow for it. The solution is based on the
MonALISA [141][142] framework. A big challenge will
be to enable push and pull algorithms to get monitoring
data and issue commands to and from the monitoring nodes
transparently, efficiently and reliably.

B. Check - Scheduling Algorithms for Task-based WS&ANs

Description: Task-scheduling is a fundamental require-
ment for the middleware subsystem in WS&ANs. It can be
used, for example, in the smart places scenario to reschedule
the appointments at the post office or the shopping mall, and
in the worker in a plant to enable the parallel execution of
tasks and to prevent workers from performing conflicting
operations. The Check framework will implement a multi-
hop task-scheduling algorithm, based on multi-hop routing
schemes used in conjunction with other SENSEI subsystems
(e.g. EMR) for homogenous wireless sensor networks. The
multi-hop scheme needs topology information from the
network, which will be gathered using network discovery
algorithms that we will implement in our framework, as well
as possible solutions from other middleware components
(e.g. Titan [98]). Network Control will be provided by the
Check scheduling service, which schedules tasks to given
nodes through SENSEI specific RAI interfaces. Possible
commands sent to sensors will be starting a task, ending
a task, subscribing to a tasks output (which means that
the task will send its output to multiple data sinks). The
Check scheduling service will also respond to the self-
healing service and reallocate tasks as needed together with
other management components (e.g. Check Self-healing or
SYNAPSE++). The service will base its reallocation on
performance metrics and capability specifications obtained
from the network.

Results: Currently we are successfully allocating tasks
and resources on single-hop WS&ANs. Tasks can be re-
garded as functionalities offered by specific WS&AN islands
by using SENSEI resources to achieve the desired design
goal. The multi-hop scheme is currently under development.
As a platform for development of our task-scheduling algo-
rithms we are using Raven sensor boards and the Contiki
Operating System [97]. Although the scheduling service is
meant to be platform independent, the implementation of the
middleware system local to a sensor board is deeply archi-
tecture specific. This means that the protocol can be defined
and standardized for generic scenarios, while its specific
implementation will depend on the hardware platform. The
Contiki OS uses a cooperative model for processes. Each
process that runs on the processor at any given time must
at some point relinquish its position, or the system would
come to a halt. Contiki’s cooperative process subsystem is

based on event queues, where events are associated with
processes and wake them up. In reality, when one process
yields it’s control of the processor, the scheduler looks for a
new process to run, so an event is taken out of the queue and
the process associated with it takes hold of the processor.

Scheduler Contiki task_server Contiki task

start task

start process

status=WAITINGstop task

subscribe subscriber1 task

subscriber1

data

data

Figure 4. Task Scheduling in Contiki OS

There are two possibilities regarding the implementation
of generic tasks, one is to have them all run under a single
process, using timer events with a scheduler similar to real-
time operating systems. A timer would be set to expire
when the first task is due. The downside of this method
is a difficulty in coming up with a metric for processor
use versus idling. The other possibility is to treat a task
as a process. The task manager starts and stops tasks, alters
settings, append subscribers, etc. A performance metric
can thus be calculated using this method concerning the
scheduler. As the system keeps more and more tasks running
and using even more CPU time, the time slices between
schedules will consequently increase.

Starting the task is similar to starting a process in Contiki,
while stopping a task means marking it as a waiting process,
as can be see in Figure 5-1. While being marked as waiting,
the task is in its (presumed) main infinite loop and it waits
until it is taken out of this state by the scheduler. Obtaining
information from the task can be done in one of two ways,
namely: collecting data directly, with get/set ¡parameter¿, or
using the data sink method, where the entity that connects to
the sensor can register itself or another entity as a data sink
for the output that is generated from the task. Parameters can
be given, such as the frequency, with which data is forwarded
to the subscriber. A list of processes can be kept with the
linked list API available in Contiki OS. The scheduling
service thus has three ways of controlling the running of
tasks in the WS&AN island: by starting/stopping a task on
a sensor; choosing data sinks for output data of a task; and
by adjusting the frequency with which data is outputted. The

scheduler then takes decisions taking into account the state
of the network, the priority and complexity of the task to be
executed.

Task scheduling in a star network topology involves the
gateway sending commands directly to the sensor nodes,
while in mesh networks the current implementation of task-
scheduling uses the gateway to schedule tasks on remote
nodes by sending commands via a multi-hop routing scheme,
as shown in Figure 5-2. The state of the network, other
than the topology of the network which is not discussed
here, consists of the load on each sensor node. This can be
estimated by measuring the time between two schedules of
a given task, and taking that value, or a weighed sum over a
number of iterations. This data is obtained by the scheduler
either by subscribing to this task or by querying it directly
from the task server interfaces on each sensor [99]. The
energy left in the sensor must also be taken into account
when scheduling tasks on a node. The energy estimation
module (energest) provided by the Contiki platform, together
with ADC data from the power supply are used to determine
whether the given node is able to finish the task or not. Since
providing continuous service for the task is paramount, it
must first be determined if the task is not repeatable. If this
is the case the node with the highest available energy is
chosen when scheduling the task.

Currently there are two types of tasks being considered,
namely: tasks that only have output (e.g. periodic tasks, that
just calculate different metrics or send sensor data to data
sinks), and tasks that process data. The latter can aggregate
sensor data from several sensors (they are subscribed by
the scheduler to the other sensors’ data) and, for example,
transmit a mean value or detect sudden change in the data.
The scheduler then picks the nodes or sensors that can
handle the extra energy loss due to the extra communication
required to execute this type of tasks and schedules the tasks
on these new resources.

Integration and Dependencies: The component from
the Check framework implementing task-scheduling in
WS&ANs contains five functional blocks that can be used
through both standard and non-standard SENSEI interfaces.
In Figure 5-3 one can see these elements, as well as
some interfaces and functionalities the Check Scheduling
component offers to the SENSEI system.

The Check-Scheduling component offers through its five
functional blocks the following functionalities:
• Collect data:

– Gathers data from the sensors inside a WS&AN
island e.g. RAI.get(parameters)

• Start/Stop Tasks:
– Start a task inside a WS&AN island e.g.

RAI.set(run)
– Stop a task inside a WS&AN island e.g.

RAI.set(stop)

Figure 5. Check Scheduling as building block

– Set the task parameters on multiple nodes accord-
ing to the scheduling algorithm inside a WS&AN
island e.g. RAI.set(stop) or RAI.set(run)

• Send Output to Multiple Sinks:
– The output of a certain task can be obtained by

multiple sinks by subscribing to a listener associ-
ated to that specific task

• Tasks: Lists, Status, Logs:
– List available tasks and show running tasks status
– Show logs of scheduled/run tasks, thus allowing

for statistics to be performed
• Multi-hop Scheduling:

– Collect data, start/stop, send data to multiple sinks,
gather status and logs of tasks inside a WS&AN
island over multiple hops

The Check Scheduling component has the following
dependencies, as shown in Figure V-B:
• Connectivity Subsystem:

– Multi-hop Routing EMR (Energy-efficient Multi-
hop Routing)

• Management Subsystem:
– Monitoring Check-Monitoring for WS&AN is-

lands
– Reprogramming/Reconfiguration: SYNAPSE++,

GADGET and Check-Self-healing

C. Check - Service Self-healing in WS&ANs

Description: Check is a framework used to provide
a high-level, service-oriented self-healing 99 strategy. The
WS&AN is regarded as a service provider. Check offers
a high-level framework for assuring service availability in
WS&ANs. Whenever a component of a WS&AN island
fails, it is of paramount importance that the functionality

Figure 6. Integration and Dependencies of Check - Scheduling

it provides is not lost, to ensure the availability and re-
liability of the services being offered. Check Self-Healing
is the SENSEI component providing the recovery strategies
employed when these events occur. A service model is used
for data input, output and processing in between various
WS&AN nodes. The service model includes data sources
and sinks which are connected to form a service graph.
Services can be allocated to nodes by the middleware
component Check-Scheduling. The self-healing component
identifies failing or poorly performing services and signals
and orders the scheduler to reallocate them or reallocates
them itself and configures the nodes directly.

The self-healing algorithms 99 can manage multiple
WS&AN islands through the Check Monitoring and Re-
configuration management component, and can thus move
services in heterogenous WS&AN islands if data dependen-
cies allow it. It must also be noted that this coupling of the
Self-Healing and Monitoring components, by being able to
gather information from a wide variety of devices, using
many operating systems and offering numerous services,
will provides a hardware- and operating system-independent
mechanism for service-level self-healing in a SENSEI sys-
tem.

Results: The first implementation of the service-level
self-healing component of the Check framework is available
and will be adjusted to conform to the required interfaces.
The implementation has been tested in conjunction with a
simulated WS&AN running the middleware Titan compo-
nent, using the TOSSIM simulator. The following aspects
were thus tested and verified:
• Node and service discovery through the Titan compo-

nent:
1) Determine the WS&AN topology
2) Determine the services currently running on each

node
3) Determine the services that each node are capable

of running
• Identification of failing nodes through communication

analysis:

1) Failing nodes are identified when their replies
time-out too often

• Identification of failing nodes through data analysis:
1) Failing nodes are identified when the sensor data

they report contains a significant proportion of
erroneous samples (e.g. values that cannot be
found in a normal environment here there is a
possibility of connecting with the outlier detection
middleware component)

• Automatic engagement of the self-healing procedure:
1) Upon detection of a failing node, the system suc-

cessfully launches a self-healing procedure with
the current WS&AN topology data.

• Manual engagement of the self-healing procedure:
1) A manual procedure can be initiated with the

intent of optimizing the current WS&AN, even
if no hard failure is detected on any node

• Basic service-level self-healing algorithm:
1) A Greedy algorithm was implemented for service

reallocation, with constraints such as inter-service
communication and node resources

• Near-transparent switch-over of services from failing
nodes to healthy ones:

1) The system was tested in configurations where
communication between services is based on
packets of raw or processed sensor data with little
state information. In this case the self-healing
procedure does not affect the correct functioning
of the services, the only noticeable effect being a
delay that can be interpreted as missing samples.

• Correct invocation of external task allocator:
1) The self-healing component can interface a task

scheduler and instruct it to allocate certain tasks
away from a failing node.

• Correct reconfiguration of nodes:
1) The self-healing component is also able to instruct

the nodes directly to start necessary services and
establish communication between them, bypass-
ing any local WS&AN island task-scheduler.

Figure V-C illustrates the fault tolerance offered by the
service self-healing component of the Check framework. In
the first case when a leaf becomes unavailable, data from
the other leaves continues to be aggregated and the service
continues to be available. In the second case, when the
aggregating node breaks down, the remaining functioning
leaves are reallocated to another node, thus making the
service available again.

The self-healing component is developed alongside man-
agement Check Monitoring and Reconfiguring component.
The following functionality is currently implemented and
available on a development WS&AN island using Sensinode
nodes:

Figure 7. Service self-healing fault tolerance: leaf and aggregation node
failure (red dots) - corresponding recovery/service migration strategies
(green arrows)

• Node and service discovery:
1) Determine the services currently running on each

node of the island
2) Determine the services that each node is capable

of running
• Node parameter collection:

1) Performance parameters from nodes are collected
and stored in a repository, from where they are
available to the self-healing component

• Identification of failing nodes using specific perfor-
mance metrics like: the link quality, service availability,
number of service time-outs, number of erroneous
samples, etc.

• Setting of node parameters according to the deployed
service self-healing algorithm.
Integration and dependencies: The service self-healing

component from the Check framework over multiple
WS&ANs contains four functional blocks which can be
accessed through standard as well as non-standard SENSEI
interfaces. Figure 6-67 shows these elements as well as
some interfaces and functionalities the Check Self-healing
component proposes to the SENSEI system.

Figure 8. Check - Service Self-healing as building block

The Check Service Self-healing component offers
through its four functional blocks the following function-
alities:

• Collect data:
– Collect node parameters and service data from the

sensors in the network (RAI.get)
– Discover available service providers in WS&ANs

islands through middleware service discovery com-
ponents like Titan

• Set Node Configuration:
– Set multiple node parameters according to the self-

healing algorithms over multiple WS&AN islands
using other Management components for Moni-
toring and Reprogramming / Reconfiguration (e.g.
RAI.set)

– Start and stop services on different WS&AN is-
lands using Middleware components (e.g. RAI.add,
RAI.invoke)

• Performance Metrics:
– Identify failing or poorly performing services ac-

cording to system or user-specified performance
metrics (e.g. RAI.get)

• Service Self-healing and Task-Reallocation:
– Respond to the service self-healing requests (e.g.

from SYNAPSE++ or Gadget) and determine a
reallocation scheme for tasks as required (e.g.
RAI.add, RAI.set, RAI.remove, RAI.invoke)

– Task-Reallocation (ordered for example by
SYNAPSE++ or Gadget) is based on performance
metrics obtained from the specific functional
block. The services needing reallocation are
handled either:
∗ Directly by the self-healing component by di-

rect node configuration and service restart (e.g.
RAI.add, RAI.set, RAI.remove)

∗ Through the middleware component Check
Scheduling which is able to set the required pa-
rameters in a single WS&AN island and start the
necessary task according to the request from the
Service Self-healing component (e.g. RAI.add,
RAI.set, RAI.remove, RAI.invoke)

The Check Service Self-healing component has the fol-
lowing dependencies and possible integration possibilities,
as shown in Figure 9:
• Connectivity Subsystem:

– Multi-hop Routing EMR (Energy-efficient Multi-
hop Routing)

• Middleware Subsystem:
– Resource Discovery Titan
– Task-scheduling Check-Scheduling for a WS&AN

island
• Management Subsystem:

– Reprogramming/Reconfiguration: SYNAPSE++,
GADGET

– Monitoring Check-Monitoring for WS&AN is-
lands

Figure 9. Integration and Dependencies of Check-service Self-healing

D. Check - Monitoring and reconfiguration of WS&AN
islands

Description: Monitoring and reconfiguration in het-
erogenous WS&AN islands is a non-trivial task that is a
essential for any system aiming at providing complex func-
tionalities across different types of wireless devices. Check
Monitoring and Reconfiguration is the SENSEI component
providing a wide spectrum of monitoring capabilities for
WS&AN islands implemented with different technologies
as well as facilitating their reprogramming and reconfigura-
tion. A centralized monitoring, control and reconfiguration
framework for WS&AN islands is thus being developed. A
data collecting service runs on a gateway node and uploads
relevant data to an Internet-based repository. Data is gathered
either by polling specifically, or by intercepting normal
traffic. The repository can then be accessed by client soft-
ware running on PCs or PDAs, which summarizes the data
to provide relevant information queried by administrators.
Commands can also be given in the reverse direction, and
the configuration of components in WS&AN islands can also
be modified.

Our solution is based on the MonALISA [141][142]
framework (http://monalisa.cern.ch/), developed by a team
from Politehnica University Bucharest in collaboration with
Caltech and CERN, which has been successfully used in
monitoring large distributed systems, as depicted in Figure
6-6. The software monitors parameters related to the health
and performance of all the components of ESN, CSN, and
BSN networks, such as load, link quality, processor and
radio usage on the nodes, etc. Automatic detection will be
implemented as well, to support automatic monitoring of
new nodes that enter the network, in conjunction with the
Check Service self-healing component that is also being
developed as a management component. Other types of
sensor node hardware, as well as network software will be
supported.

The main difficulty in setting up a monitoring framework
for WS&AN is the network. Just like computing cluster

Figure 10. General Architecture of the Monitoring Framework

grids, WS&ANs will cross borders of different organisa-
tions, each having a different network setup in place with
its own rules. We plan to deploy an agent based network
that will consitute a basic overlay over the main network,
that enables us to send and receive data from monitoring
services without interfering with network firewall policies.
This solution is currently known to support a running mon-
itoring capacity of over 1.5 million parameters per second
and it has proven itself as mature.

Furthermore another component of this system is the
integration module with the gateway. The main challenge
will be to enable push and pull algorithms to get monitoring
data in and out of the monitoring nodes with regard to
energy consumption. Using this architecture we will enable
the use of private company policies inside the WS&AN
network while still allowing a unified network monitoring
system. The third component makes this unified WS&AN
overview system to all clients by enabling the discovery and
registration of the collected data.

Results: Results for monitoring and reconfiguration of
SENSINODE and AVR Raven nodes are available as shown
in Figure 6-7. Nodes from ETHZ, UO and SEN will also
shortly be visible through the monitoring framework.

Figure 11. Monitoring WS&ANs with Check

The framework has also been adapted to collect data from

the Titan / TinyOS network. Monitoring data has been sent
through an XDR protocol named ApMon in our monitoring
system. The code has been ported to support Java enabled
mobile phones used by the Personal Area Network testbed of
ETHZ. The delay of reading measurements was one second,
and workarounds to further compress this time delay have
been found. All data was recorded in a central database
named a MonAlisa Repository so that algorithms like the
self - healing Check mechanism are able to interrogate this
data source. An embedded C/C++ port of this library is
under way to support Contiki nodes natively.

As a management application, this system has been tested
so that it can control different node types by using un-
modified node firmware and drivers. This communication
is performed by using the MonAlisa Proxy services so it
does not need direct network access. A monitoring and
management module is being developed for the Gateway
node so it can receive commands from a MonAlisa service,
as presented in Figure 12.

Figure 12. Check - Monitoring and Control Network

Integration and dependencies: Currently this system is
modified to support communication through the Sensei RAI
interfaces and is part of the implementation plan of WP5.
Figure 6-9 depicts the components involved in the monitor-
ing and reconfiguration. By design, the MonAlisa framework
offers all- or-nothing remote control access the underlying
services by using public-private key authentication. We will
be able to interconnect to WS&AN nodes using fine grained
AAA methods by using a dedicated management module on
the Sensei Gateway. An added feature to that will be that
data producers will use both push and pull methods from
the nodes further enhancing the use of the nodes energy.

The Check framework implements the monitoring and re-
configuration component over multiple WS&ANs using four
functional blocks. These can be used through standard and
non-standard SENSEI interfaces. These elements are shown
schematically in Figure 6-10. The Check Monitoring and
Reconfiguration component offers through its four functional

Figure 13. Check - Monitoring and Reconfiguration Core

blocks the following functionalities to the SENSEI system:
• Collect data:

– Gathers data (e.g. load, link quality, processor, and
radio usage) from the sensors and actuators dis-
tributed over multiple WS&AN islands a monitor-
ing service runs on the gateway of each WS&AN
island being monitored. (e.g. RAI.get)

– Changes in the network configuration can be
observed by using middleware service discovery
component Titan. (e.g. RAI.get, RAI.invoke)

• Data Repository:
– Store all the data gathered from various WS&AN

islands on a dedicated internet- repository site. (e.g.
RAI.add)

– The stored data can be used by the reconfiguration
functional block as well as for statistical purposes.
Other management subsystems like SYNAPSE++
or GADGET can also query this data repository.
(e.g. RAI.add, RAI.set)

• Set Node Configuration:
– Set multiple node parameters according to the

specification of the reconfiguration requested by
users or algorithms. This can be done directly by
Check or by using other management subsystems
e.g. SYNAPSE++, GADGET. (e.g. RAI.invoke)

• Sensor/Actuator Reconfiguration:
– Reconfiguration of nodes across multiple WS&AN

island is offered through the services running
on the gateway of each WS&AN island. (e.g.
RAI.add, RAI.set, RAI.remove)

The Check Monitoring and Reconfiguration component
has the following dependencies, as shown in Figure 6-11:
• Middleware Subsystem:

– Resource Discovery Titan
• Management Subsystem:

Figure 14. Check - Monitoring and Reconfiguration as building block

– Reprogramming/Reconfiguration: SYNAPSE++,
GADGET

Figure 15. Integration and Dependencies of Check - Monitoring and
Reconfiguration

VI. CONCLUSION

The algorithm proposed solves the schedule problem with
minimal energy consumption. It is designed for heteroge-
neous networks and it is application-independent. Although
it was described as for a mesh topology network, the idea
can be easily extended by introducing a “hop” factor in
the communication between certain nodes - as dictated by
topology.

The scheduler suffers from great algorithmic complexity,
a different solution based on an approximation algorithm of
the same problem is required for large-scale networks. A
viable approach would be to use the theorem in [8], that
states that the k-cut problem can be solved with Gomory-
Hu trees within twice the optimal. An implementation based
on this approximation (detailed in [9] and [10]) has proven
to be within twice the optimal, as shown in Figure 4.
The approximation solution to the scheduling problem also
proves to be a viable alternative from the complexity point
of view. Asymptotically it has the same complexity as the
Gomory-Hu algorithm it is based on, although with a higher
constant.

Figure 16. Percentage of addition to the optimal of the approxi-
mation solution - Twice the optimal is represented by 100%.

Figure 17. Runtime comparisons (on semi-logarithmic scale)
of variants of the approximation solution, GH is the standard
Gomory-Hu algorithm, AGH is our solution of the scheduling
problem based on Gomory-Hu

ACKNOWLEDGMENT

The authors would like to thank Emil Sluşanschi, Răzvan
Tătăroiu and Răzvan Rughiniş, for support and feedback.

This research is partially supported by the European
Union through the FP7 IP Project Nr. 215923 SENSEI In-
tegrating the Physical with the Digital World of the Network
of the Future.

REFERENCES

[1] Y. Tian, E. Ekici, and F. Ozguner, “Energy-constrained task
mapping and scheduling in wireless sensor networks,” in
Mobile Adhoc and Sensor Systems Conference, 2005. IEEE
International Conference on, Nov. 2005, pp. 8 pp.–218.

[2] Y. Tian, Y. Gu, E. Ekici, and F. Ozguner, “Dynamic critical-
path task mapping and scheduling for collaborative in-
network processing in multi-hop wireless sensor networks,” in

Parallel Processing Workshops, 2006. ICPP 2006 Workshops.
2006 International Conference on, 0-0 2006, pp. 8 pp.–222.

[3] T. Hagras and J. Janecek, “A high performance, low com-
plexity algorithm for compile-time task scheduling in het-
erogeneous systems,” in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, April
2004, pp. 107–.

[4] ——, “A high performance, low complexity algorithm for
compile-time job scheduling in homogeneous computing en-
vironments,” in Parallel Processing Workshops, 2003. Pro-
ceedings. 2003 International Conference on, Oct. 2003, pp.
149–155.

[5] F. C. Delicato, F. Protti, J. F. de Rezende, L. F. R.
da Costa Carmo, and L. Pirmez, “Application-driven node
management in multihop wireless sensor networks.” in ICN
(1), ser. Lecture Notes in Computer Science, P. Lorenz and
P. Dini, Eds., vol. 3420. Springer, 2005, pp. 569–576.

[6] Atmel, “Rzraven hardware user’s guide.” [Online]. Available:
www.atmel.com/dyn/resources/prod documents/doc8117.pdf

[7] O. Goldschmidt and D. Hochbaum, “Polynomial algorithm
for the k-cut problem,” in Foundations of Computer Science,
1988., 29th Annual Symposium on, Oct 1988, pp. 444–451.

[8] B. Jacokes, “Lecture notes on multiway cuts and k-cuts,”
July 2006. [Online]. Available: math.mit.edu/∼goemans/
18434S06/multicuts-brian.pdf

[9] C. Chekuri and S. Guha, “The steiner k-cut problem,” SIAM
J. Discret. Math., vol. 20, no. 1, pp. 261–271, 2006.

[10] C. Checkuri, “Approximation algorithms: Lecture on
multiway cut problem,” 2009. [Online]. Available: www.cs.
illinois.edu/class/sp09/cs598csc/Lectures/lecture 7.pdf

