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Abstract: Wireless sensor networks (WSNs) are employed in environmental monitoring, vehicle tracking, 

building management, body monitoring and other applications. Power sources for network nodes are often 

limited, which imposes restrictions on hardware resources and their use by the embedded software. In 

developing more efficient software, it is useful to obtain performance metrics from all network nodes in a 

centralized manner, as well as upgrading the embedded software or configuring its parameters. It is also 

useful for a WSN user or administrator to obtain sensor readings and network health and performance 

metrics, and to control actuators or change software behavior remotely. Remote access to the WSN is 

especially important when nodes are physically inaccessible, mobile, or spread over a large geographical 

area. We have developed a method for monitoring and controlling WSN nodes from a graphical interface 

over an Internet connection, using the successful MonALISA framework. Data is gathered from the 

network and stored in an Internet-based repository, from where it can be read remotely using a graphical 

client program. A control service is accessed through the same client and routes commands and control 

data to the nodes. The interface between the WSN and the Internet services contains an abstraction layer, 

allowing uniform access to nodes built using various technologies and running different software and 

protocols. 

 

1. INTRODUCTION 

Wireless Sensor Networks (WSNs) or more generally 

Wireless Sensor and Actuator Networks (WS&ANs) are 

employed in a multitude of data acquisition, data processing, 

and control applications (Callaway 2004). Their advantages 

over traditional wired sensor and actuator networks include 

node mobility, increased reliability (due to the possibility of 

adaptive multi-hop data routing), easier installation and lower 

deployment cost. There are situations where wired data 

acquisition networks are impractical, such as environmental 

monitoring over large areas, or „intelligent” wearable devices 

forming so-called Body Sensor Networks. 

A typical WSN node is capable of reading sensor 

information, controlling external actuators, processing data 

and communicating over a radio channel. 

WSN nodes have specific hardware characteristics and 

limitations. Most WSN nodes have limited available energy: 

some rely on batteries and some employ environmental 

energy harvesting techniques such as solar panels, wind- or 

vibration-powered generators or thermoelectric generators 

(Rahimi 2003). Therefore WSN nodes tend to be small 

embedded systems with few processing resources and low bit 

rate, low range radio links. Cost and size restrictions impose 

similar constraints. 

Fig. 1 depicts the main components of a WSN node. The 

lightly-coloured ones are optional. 

 

 

Fig. 1. WSN node structure 

Hardware limitations give rise to specific software aspects. 

Software running on WSN nodes must be power-aware. 

Ideally the microcontroller spends most of the time in very 

low-power sleep states, and the radio transmits data in small 

bursts. Radio chips used on WSN nodes draw significant 

current when transmitting data, but also when listening for 

data, sometimes even more than when transmitting (Texas 

Instruments 2007), therefore special low-duty-cycle 

communication protocols and algorithms are ideally 

employed, such that the radio is completely off most of the 

time. Although all the nodes in a WSN can share a radio 

channel, due to the low transmitter power only nodes in close 

proximity can communicate. From a software standpoint this 

is both beneficial (no interference between nodes spaced far 

apart) and problematic (the need for multi-hop data routing 

arises). 

Traditional wired sensor networks usually employ one or 

more master nodes with generous hardware resources and 

energy available, such as a PC-type computer, therefore data 

Micro- 
controller 

Power 
Supply 

Sensors Radio 
Transceiver 

External 
Memory 

Actuator 
Control 



 

processing usually happens on the master nodes. Wireless 

sensor nodes on the other hand are more autonomous because 

of the limited communication capacity between sensor nodes 

and master nodes. In some cases WSNs are purely peer-to-

peer networks, lacking master nodes altogether. WSNs can 

perform data processing and aggregation inside the network, 

reducing the need to centralize large amounts of data. Given 

the fact that processing data on the nodes and forward the 

results between them can be energetically cheaper and more 

reliable than sending all the raw sensor data to a central node, 

advanced WSNs function as distributed processing systems. 

From a user's standpoint, a WSN must provide a number of 

services, such as reporting events of environmental pollution, 

reporting the formation of traffic jams in a city, identifying a 

person's urgent health problem, managing the air 

conditioning and lighting in a building, etcetera. There is no 

need for the end-user to receive real-time data from all 

sensors in the network, but only information that is relevant. 

Service-oriented WSNs use this approach - the nodes run 

software services that read and process large amounts of 

sensor data, as well as user commands, and send small 

amounts of relevant data back to the user, thus utilizing the 

radio channel efficiently. Service frameworks such as the 

Tiny Task Network (Titan) define tasks (services) that have a 

number of input and output pipes (Lombriser 2007). The 

tasks are assigned by a scheduler to the available network 

nodes according to the node location, available sensors and 

actuators, node processor load and radio link quality, and the 

tasks' pipes are linked according to a service graph. More 

tasks can run on the same node, exchanging data through 

local pipes, or pipes can be connected between nodes. Tasks 

could also be moved between nodes in order to increase 

efficiency or in the event of a node or link failure. This 

functionality is transparent to the tasks. 

2. WSN MONITORING REQUIREMENTS 

From a software developer's standpoint, obtaining the lowest 

possible power consumption and the highest data link 

reliability is of significant importance. The engineer needs to 

be able to monitor the performance of the system when 

developing and testing software for WSN nodes. Indicators 

such as processor and memory load, wakeup frequency, 

duration of high-power states, amount of data sent and 

received over the radio, are important in developing and 

optimizing WSN software. These parameters need to be 

known for all network nodes. Higher-level, service-specific 

parameters, as well as lower-level parameters such as radio 

link quality, are also important for the scheduling algorithms 

in service-oriented networks and for self-healing or adaptive 

routing algorithms. Raw sensor data also needs to be 

monitored when debugging data processing software or when 

configuring the network after installation. Also, some simple 

applications only require obtaining periodic sensor readings 

on a central computer. Network administrators and users may 

also be interested in monitoring the health of the WSN nodes 

(such as the remaining battery charge), sensor data or 

performance metrics. 

WSNs whose nodes are in inaccessible locations or spread 

over a large area clearly require software provisions to allow 

remote monitoring, without the need for physical access to 

the nodes. Even when WSNs occupy a small area and their 

nodes are easily accessible, connecting a dedicated 

debugging interface to the nodes can be cumbersome and 

expensive when the nodes are in large numbers. 

When using a WSN or when developing software, the user 

must also be able to control the network. Setting application-

specific software parameters, controlling actuators directly, 

enabling and disabling services, upgrading the software 

running on the nodes are examples where control of the WSN 

is necessary. 

WSN nodes are built by multiple vendors and may vary in 

size, power consumption, microprocessor architecture or 

sensor interfaces (Fig. 2). Many real-time operating systems 

and network protocol stacks can run on WSN nodes, such as 

TinyOS (Hill 2000), Contiki (Dunkels 2004), Sensinode 

NanoStack, etc.  

 

Fig. 2. Different WSN nodes: a) Atmel AVR RAVEN, b) 

Berkeley Mica mote, c) Berkeley Spec mote, d) Tmote Sky 

It is desirable to monitor and control WSNs built using 

different technologies through a unified interface. In creating 

and managing heterogeneous WSNs it is useful to collect 

data from their homogeneous subnetworks and send data and 

commands under a common interface. 

3. SYSTEM ARCHITECTURE 

We developed a method for monitoring and controlling a 

variety of WSNs remotely over the Internet, based on the 

successful MonALISA framework (Monitoring Agents using 

a Large Integrated Services Architecture) (Newman 2003, 

Legrand 2004). Our method uses an abstraction layer to 

provide remote monitoring and control to essentially any kind 

of WSN. 



 

MonALISA is a joint development of CERN, Caltech and 

UPB, typically used in monitoring large-scale systems such 

as computer clusters. It can be used to monitor and control 

any kind of system, including WSNs, as long as the 

appropriate interfacing software is available. 

In short, MonALISA employs repositories to which data can 

be sent remotely using a portable software module named 

ApMon (Application Monitor) and to which users can 

connect with graphical client programs to view the data 

remotely. The client software can also access control services 

that run next to the data repositories using a secure, 

authenticated protocol. The connections can be established 

over the Internet, allowing user access to the WSN from any 

location, or over a local area network. Because multiple 

ApMon instances can run independently from the data 

repository, a WSN composed of multiple islands, in different 

locations, can be transparently managed as one single entity. 

WSNs are typically accessed through one or more devices 

generically called gateways or routers. These are typically 

connected to large computers such as PCs, along with 

specific drivers. Together with the driver, the gateway allows 

user programs to access the WSN through standard Internet 

protocols such as IPv6, or through special interface programs.  

 

Fig. 3. WSN monitoring and control architecture 

A monitoring service („monalisa-wsn”) runs on the computer 

with the WSN gateway, calling WSN-specific programs that 

report incoming data. These programs call the WSN drivers 

and perform WSN-specific data formatting, while presenting 

a unified interface to the monitoring service, effectively 

forming an abstraction layer. The monitoring service then 

uses ApMon to upload the data into a MonALISA repository 

running on the same computer or on a remote server. Users 

can then connect to the repository through a graphical client 

program and retrieve the data and analyze it. Using 

asymmetric key authentication, the user can connect to a 

MonALISA WSN control module that runs next to the data 

repository. A control service („monalisa-wsn-ctl”) runs next 

to the WSN gateway and connects to the MonALISA control 

module, enabling the user to send data and commands to the 

WSN nodes. Fig. 3 shows a schematic diagram of the WSN 

monitoring and control system. 

Data in MonALISA is organized as parameter-value pairs 

pertaining to a „host” or „node”. Hosts are grouped into 

clusters, which are grouped into farms (Fig. 5). This stems 

from its main usage as a grid monitoring framework. Farms, 

clusters, hosts and parameters are identified by their name 

and presented to the user in a hierarchical interface. The 

application that uploads data is free to define any host name, 

parameter name or parameter value. A convenient way of 

using MonALISA to monitor WSNs is to present a WSN as a 

host-type entity with a list of parameters. The names of the 

parameters include a part which identifies the WSN node in 

case of node-specific parameters. For example, if monitoring 

temperature sensor readings from a WSN containing 4 nodes, 

the parameters may be named „temperature1” to 

„temperature4”. The user can filter parameters by name in 

order to concentrate on data of immediate concern. 

The parameters are sampled at defined intervals by the 

monalisa-wsn program by polling the WSN, or they can be 

reported  by the WSN services automatically. In any case, 

users can view parameter values in near-real-time, as well as 

their history. Fig. 4 shows an example of monitoring a sensor 

network composed of two islands located in two different 

locations. Each island is connected to a PC via a gateway 

device and each PC is running WSN-specific drivers and 

polling adapters. One island is using Sensinode NanoSensor 

hardware, which is readily capable of measuring temperature 

and light, and the other is using Atmel Raven hardware 

which only measures temperature readily. Numerous other 

types of sensors can be added to both platforms. 

Fig. 5 shows the MonALISA graphical client main window, 

with our WSN selected and its monitored parameters listed. 

Parameters numbered starting with 1 are the Raven 

subnetwork, and parameters numbered starting from 5 are the 

Sensinode subnetwork. Fig. 6 shows the recent history, up to 

the current values, for some of the monitored parameters. 

 

Fig. 4. Monitoring WSN islands installed in different 

geographical locations 

 



 

 

Fig. 5. MonALISA graphical user interface showing 

monitored WSN parameters. 

 

Fig. 6. Data aggregation example from geographically 

distinct areas monitored by two WSN islands. 

Although all WSN nodes can run an infinite variety of 

custom-designed real-time operating systems and embedded 

applications, a readily-available solution is often preferred. 

For instance, the Sensinode NanoSensors can run the 

Sensinode NanoStack, which is a 6LoWPAN implementation 

(IPv6 over low-power wireless personal area networks). For 

debugging purposes and simple applications, it can also run a 

simpler version that uses MAC addressing instead of IPv6. 

The Atmel Raven comes pre-programmed with a ZigBee-

based network stack that uses 16-bit node IDs for addressing. 

The nodes have to explicitly associate with a coordinator 

(gateway), unlike Sensinode NanoSensors which can be 

detected by broadcast queries. The Raven can be 

programmed with the Contiki operating system, which 

implements 6LoWPAN, allowing IP addressing. 

Above the network protocol, each case uses a different 

application protocol for polling data from the sensors. 

NanoSensors use two command-line programs called „nPing” 

and „SSI-Browser” to detect sensor nodes and obtain sensor 

values respectively. The Raven nodes running the default 

software use a graphical program that connects to a „wireless 

services” back-end. The protocols used are known. Contiki 

uses a web interface accessible directly from a web browser 

over IPv6, but can also be configured to use a protocol with 

lower overhead. 

Each case needs an adaptation program that is called from the 

main monitoring service and returns parameter-value pairs in 

a consistent, WSN-independent format. This abstraction layer 

has been implemented and tested for the technologies listed 

above. A version for the Titan framework can be developed, 

which would allow monitoring performance parameters and 

custom service data. Fig. 7 details the software architecture 

of our solution. 

The adaptation program can choose to be executed 

periodically by monalisa-wsn and return a data point each 

time, or to provide data points on the standard output 

periodically. The first option is used when polling the WSN 

and the second is used when the WSN itself pushes the data. 

When polling the WSN, each node from a list is queried for 

certain data such as sensor readings, performance metrics or 

debugging information. The nodes are identified by their 

address, which can have a wide variety of formats, depending 

on the hardware and software used. A technology-specific 

detection program, „detect”, is used to build that list, which 

monalisa-wsn then uses transparently. The list can also be 

built dynamically when nodes announce their presence to the 

gateway, as is the case with the Raven platform. In this case 

the corresponding „detect” runs permanently and updates the 

list when needed. 

 

Fig. 7. Detailed software architecture 



 

The monalisa-wsn-control program and the MonALISA 

control module provide remote control capabilities to the 

WSN. A WSN-specific adaptation program is also needed. 

User access to the control module is restricted using public 

key authentication. 

A generic control interface is provided, where global WSN 

parameters, as well as node-specific parameters can be set. 

Their values can be typically read back through the 

monitoring interface. The parameter names, their data types 

and acceptable ranges are specified in an XML file. An 

example XML section is listed below, illustrating the 

framework capabilities: 

<wsn_control> 

<global> 

<param name="report_interval" type="int" unit="s"> 

<constraint type="le" value="3600"/> 

<constraint type="gt" value="2"/> 

</param> 

</global> 

<node type="raven"> 

<param name="node_name" type="string"/> 

<param name="output0" type="bool"/> 

<param name="pkt_forwarding" type="bool"/> 

<param name="temp_alarm_enable" type="bool"/> 

<param name="temp_alarm_low" type="int" unit="*C"/> 

<param name="temp_alarm_high" type="int" unit="*C"/> 

</node> 

</wsn_control> 

 

In this example, a global parameter named „report_interval” 

sets the polling period for data monitoring, in seconds, 

limited between 2 and 3600. Each Raven node can have a 

user-friendly name assigned, possibly suggesting its location 

or designated function. It's open-collector actuator control 

output can be enabled or disabled. It can be configured to 

forward data packets from farther nodes to the gateway. A 

temperature alarm service can be started on selected nodes, 

which in this example would sound the buzzer fitted to the 

node in case the measured temperature exceeds the settable 

high or low thresholds. 

Where a parameter-based control interface is not sufficient, a 

command-line interface is provided, which is directly linked 

to the WSN-specific adaptation software without further 

processing by the control framework. This can be used to 

upgrade the software running on the nodes, for instance, by 

sending a .hex memory image file to the adaptation program. 

In order to provide increased uptime, a supervisor program 

can watch that the various components of the framework are 

running correctly. It can for instance restart programs that 

have crashed or locked, such as the WSN driver (Sensinode 

for example uses a stand-alone process as a driver, to which 

the other programs connect through sockets), the node 

detection program or the main monalisa-wsn program. 

It is important that the WSN monitoring service be able to 

run on a large variety of computer systems. Some WSNs for 

example are not connected to a PC, but use an embedded 

system such as an ATNGW100 for remote access. ApMon 

and monalisa-wsn are written in Perl, which is a portable 

scripting language. Perl can run on a large variety of 

computers, including embedded systems. The WSN drivers 

are usually written in C and can be compiled for mostly any 

system if their source code is available. The abstraction layer 

is written in Perl, Python and Unix shell, making it also 

highly portable. 

The MonALISA graphical client (Fig. 5, Fig. 6) is written in 

Java, therefore it is capable of running on any modern PC 

operating system. 

4. CONCLUSIONS 

The capability to monitor and control WSN nodes and WSNs 

as a whole, without physical access to the nodes, from any  

remote location, is important when developing WSN 

software and when administering or using the WSN. 

We developed a framework for monitoring and controlling 

WSNs through a uniform interface, independent of their 

hardware or software technologies. The framework allows 

monitoring of low- and high-level parameters and 

performance indicators for each WSN node. The framework 

allows parameter-based control of each WSN node, as well as 

console-based control for complex tasks. The framework also 

allows managing isolated WSN islands as a single entity. 

The framework consists of WSN-independent programs and 

an abstraction layer composed of WSN-specific adaptation 

programs. These programs are written in a portable fashion, 

allowing them to be compiled and run on PC-class systems as 

well as embedded, resource-limited systems. 
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