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Exploiting: Recap
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CNSS

Why Do Exploiting?
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money
fame
money
challenge
money
politics

fun
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career
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Exploiting for Ethical People/Hackers

penetration testing
security consulting
security auditing

prepare for defense

knowledge base

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms 4/40



CNSS Attack Objectives
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> gain control (root access)
> leak information (privacy leaks, passwords)

> cripple infrastructure (denial of service, shut down)
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CNSS Runtime Application Attacks
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exploit applications while running

alter application behavior

exploiting vulnerabilities and misconfigurations
focus is controlling the system (root account)

an intermediary step is gaining shell access to user
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privilege escalation
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CNS‘(}J Steps in Runtime Application Attacks

CTF crunch

> goal is alter the application control flow

> either use existing functionality (in some new way) or inject
new functionality

> rewrite/rewire configuration/code to create a new execution
path

> it starts with a buffer overflow and an overwrite of data
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CNS‘(}J Control Flow Attacks
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> buffer overflow overwrites a code pointer
> find a suitable address to point new code pointer to
> execute new path

> code pointer may be: return address (on stack), function
pointer
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CNSS Buffer Overflow
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> write beyond buffer limits

> stack-based overflow: overwrite variable, return address or
function pointer

> heap overflow: corrupt dynamically allocated memory
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CNSS Shellcode
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> sequence of machine level instructions
> stored in memory at a convenient address

> executed when requested by jumping at the start address
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Using the Local Stack

place shellcode in local buffer on stack

rewrite return address to point to beginning of the buffer on
the stack

may need NOPs if exact address is not known

unable to be done if stack is non-executable
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Shellcode Attack Vector

find vulnerability: buffer overflow

determine offset from buffer to code pointer
determine address of buffer storing the shellcode
build shellcode

create payload: injected shellcode + padding + return address
overwrite in payload

trigger attack: send data as argument, standard input or
environment variable; jump to shellcode address

attack is executed by executing shellcode
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CNSS Protection Mechanism
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» (from Jonathan Katz, CMSC 414, Computer and Network
Security)
> prevent existence
> safe programming/secure coding
> input validation
> static/dynamic analysis
> prevent exploitation

> ASCII armored address space

stack guard/stack protection

non executable stack/data execution prevention
address space layout randomization (ASLR)

vyvyy
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Preventing Existence
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CNSS Safe Programming
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string management

integer management

buffer management

bounds checking

safe typing, data conversions

code auditing
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CNS@ Input Validation
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P sanitizing input
> all are printable characters in case of string functions
> proper data type, proper sign

> may incur overhead
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CNSS Static Analysis
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> analyze source code without running the program
> coverity, cppcheck, splint, clang static analyzer

> may also be done on binary files: Veracode, CodeSonar
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CNSS

Dynamic Analysis
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> run program and find vulnerabilities
> fuzz testing: send random data as input
> slows program, may find more problems

> valgrind, purify, dmalloc
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Preventing Exploitation
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CNS‘C‘;‘ At a Glance
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> code integrity protection
> randomize address space

> stack guard
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c(T)NS"C‘)' ASCII Armored Address Space
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> place code, data and libraries at addresses starting with 0x00
> disables attacks that require the NUL byte to be absent

> certain attacks may work even if the NUL byte is present
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CNSS Code Integrity
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> do not modify code, do no execute writable zone

> stack and other zones of memory that are writable are marked
non-executable

P any jump to the stack or heap would result in access violation

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 22/40



CNS‘C\J‘ W xor X
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> page/segment is either writable or executable
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CNSS
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NX Bit

> page is marked as non-executable
> CPU bit, set by OS
» may be bypassed using mprotect ()
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CNSS Bypassing DEP
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> jump to existing executable code
> return-to-libc (call system)
> use return oriented programming

> for testing purposes, disable using -z execstack as
argument to 1d

> use mprotect to update page permissions

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 25/40



CNSS DEP Bypass Demo
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> call system("/bin/sh")

> use mprotect () to force writable executable stack
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CNSS Address Space Layout Randomization
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> randomize address space, place code, libraries and stack and
random addresses

> a buffer will use a different address each time the program is
run
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CNSS PIC and PIE
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> Position Independent Code (in libraries)

> Position Independent Executable (in executable files)
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CNSS Bypassing ASLR
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brute forcing (32 bit systems)
use format string or other vulnerabilities to learn stack layout
use huge NOP sled

bug: use ulimit -s unlimited — the stack fills all available
space

vvyyy

> for testing purposes, you may disable it

Disable ASLR

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space
setarch $(uname -m) -R /bin/bash
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CNSD ASLR Bypass Demo
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> use brute force to bypass ASLR
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CNSS Stack Guard/Stack Protection
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> place a value between buffer and frame pointer/return value
> canary value

> in case of buffer overflow, value gets written and an exception
handler is run
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CNSS Canary Values
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P> may contain terminator characters (OXOO, 0x0a, 0x0d, Oxff)

> may be a random string or a XOR function
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CNSS Stack Guard Demo
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> demo
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Bypassing Canaries

does not protect internal variables or buffer from another
buffer

you may use string formatting attacks to find the canary value
and rewrite with itself

in case the process forks, you may trigger multiple forks and
then try guessing one byte at a time

for test purposese, disable using —~fno-stack-protector as
argument to gcc
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CNS‘C\J‘ Outline
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Summary
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CNSS Exploit Protection Mechanisms
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» ASCll-armored address spaces
P code integrity protection, data execution prevention
P address space layout randomization

» stack protection/stack guard, canary value
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CNS‘c‘i Other Runtime Attacks
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> code reuse
> return to libc
> return oriented programming
> data oriented attacks: do not target the alteration of the
control flow, but overwrite data
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CNSS
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Keywords

exploit

buffer overflow
shellcode

input validation

static analysis
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dynamic analysis
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code integrity
DEP

ASLR

PIC, PIE
canary value

stack guard
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References
> The Art of Exploitation, 2nd Edition
» Chapter 0x600. Countermeasures
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CNSS Useful Links
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> http://security.stackexchange.com/questions/20497/
stack-overflows-defeating-canaries-aslr-dep-nx

> http://security.stackexchange.com/questions/18556/
how-do-aslr-and-dep-work

> http://www.phrack.org/issues.html?id=13&issue=67&mode=txt
> http://www.cs.umd.edu/~jkatz/security/s12/lecture22.ppt

> http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/
10-more-defenses.pdf
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