Lecture 6
Exploit Protection Mechanisms

CNST
CTF crunch Computer and Network Security
November 07, 2022

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms




QOutline

Exploiting: Recap

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms



CNSS

Why Do Exploiting?

CTF crunch

money
fame
money
challenge
money
politics

fun

vVvvyVvYVvyVvVvyyvyy

career

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms



CNSS

CTF crunch

Exploiting for Ethical People/Hackers

penetration testing
security consulting
security auditing

prepare for defense

knowledge base

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms 4/40



CNSS Attack Objectives

CTF crunch

> gain control (root access)
> leak information (privacy leaks, passwords)

> cripple infrastructure (denial of service, shut down)

CSE Dep, ACS, UPB Lecture 6, Exploit Protection M




CNSS Runtime Application Attacks

CTF crunch

exploit applications while running

alter application behavior

exploiting vulnerabilities and misconfigurations
focus is controlling the system (root account)

an intermediary step is gaining shell access to user

vVvYVvyVvVvyVvyy

privilege escalation

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 6/40



CNS‘(}J Steps in Runtime Application Attacks

CTF crunch

> goal is alter the application control flow

> either use existing functionality (in some new way) or inject
new functionality

> rewrite/rewire configuration/code to create a new execution
path

> it starts with a buffer overflow and an overwrite of data

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 7/40



CNS‘(}J Control Flow Attacks

CTF crunch

> buffer overflow overwrites a code pointer
> find a suitable address to point new code pointer to
> execute new path

> code pointer may be: return address (on stack), function
pointer

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms



CNSS Buffer Overflow

CTF crunch

> write beyond buffer limits

> stack-based overflow: overwrite variable, return address or
function pointer

> heap overflow: corrupt dynamically allocated memory

CSE Dep, ACS, UPB Lecture 6, Exploit Protection N




CNSS Shellcode

CTF crunch

> sequence of machine level instructions
> stored in memory at a convenient address

> executed when requested by jumping at the start address

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 10/40



FFFFFF

Using the Local Stack

place shellcode in local buffer on stack

rewrite return address to point to beginning of the buffer on
the stack

may need NOPs if exact address is not known

unable to be done if stack is non-executable

CSE Dep, ACS, UPB

ecture 6, Exploit Protection Mechanisms 1/40



FFFFFF

Shellcode Attack Vector

find vulnerability: buffer overflow

determine offset from buffer to code pointer
determine address of buffer storing the shellcode
build shellcode

create payload: injected shellcode + padding + return address
overwrite in payload

trigger attack: send data as argument, standard input or
environment variable; jump to shellcode address

attack is executed by executing shellcode

CSE Dep, ACS, UPB

e 6, Exploit Protection Mechanisms



CNSS Protection Mechanism

CTF crunch

» (from Jonathan Katz, CMSC 414, Computer and Network
Security)
> prevent existence
> safe programming/secure coding
> input validation
> static/dynamic analysis
> prevent exploitation

> ASCII armored address space

stack guard/stack protection

non executable stack/data execution prevention
address space layout randomization (ASLR)

vyvyy

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms



QOutline

Preventing Existence

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms

14/40



CNSS Safe Programming

CTF crunch

string management

integer management

buffer management

bounds checking

safe typing, data conversions

code auditing

vVvVvvyVvYvVvyyy

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 15/40



CNS@ Input Validation

CTF crunch

P sanitizing input
> all are printable characters in case of string functions
> proper data type, proper sign

> may incur overhead

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 16/40



CNSS Static Analysis

CTF crunch

> analyze source code without running the program
> coverity, cppcheck, splint, clang static analyzer

> may also be done on binary files: Veracode, CodeSonar

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms

17/40



CNSS

Dynamic Analysis

CTF crunch

> run program and find vulnerabilities
> fuzz testing: send random data as input
> slows program, may find more problems

> valgrind, purify, dmalloc

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms

18/40



QOutline

Preventing Exploitation

CSE Dep, ACS, UPB

Lecture 6, Exploit Protection Mechanisms

19/40



CNS‘C‘;‘ At a Glance

CTF crunch

> code integrity protection
> randomize address space

> stack guard

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 20/40



c(T)NS"C‘)' ASCII Armored Address Space

FFFFFF

> place code, data and libraries at addresses starting with 0x00
> disables attacks that require the NUL byte to be absent

> certain attacks may work even if the NUL byte is present

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms



CNSS Code Integrity

CTF crunch

> do not modify code, do no execute writable zone

> stack and other zones of memory that are writable are marked
non-executable

P any jump to the stack or heap would result in access violation

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 22/40



CNS‘C\J‘ W xor X

CTF crunch

> page/segment is either writable or executable

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 23/40



CNSS

CTF crunch

NX Bit

> page is marked as non-executable
> CPU bit, set by OS
» may be bypassed using mprotect ()

CSE Dep, ACS, UPB Lecture 6, Exploit Protection N anisms.

24/40



CNSS Bypassing DEP

CTF crunch

> jump to existing executable code
> return-to-libc (call system)
> use return oriented programming

> for testing purposes, disable using -z execstack as
argument to 1d

> use mprotect to update page permissions

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 25/40



CNSS DEP Bypass Demo

CTF crunch

> call system("/bin/sh")

> use mprotect () to force writable executable stack

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 26/40



CNSS Address Space Layout Randomization

CTF crunch

> randomize address space, place code, libraries and stack and
random addresses

> a buffer will use a different address each time the program is
run

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 27/40



CNSS PIC and PIE

CTF crunch

> Position Independent Code (in libraries)

> Position Independent Executable (in executable files)

CSE Dep, ACS, UPB Lecture 6, Exploit Protection M

28/40



CNSS Bypassing ASLR

CTF crunch

brute forcing (32 bit systems)
use format string or other vulnerabilities to learn stack layout
use huge NOP sled

bug: use ulimit -s unlimited — the stack fills all available
space

vvyyy

> for testing purposes, you may disable it

Disable ASLR

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space
setarch $(uname -m) -R /bin/bash

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 29/40



CNSD ASLR Bypass Demo

CTF crunch

> use brute force to bypass ASLR

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 30/40



CNSS Stack Guard/Stack Protection

CTF crunch

> place a value between buffer and frame pointer/return value
> canary value

> in case of buffer overflow, value gets written and an exception
handler is run

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 31/40



CNSS Canary Values

CTF crunch

P> may contain terminator characters (OXOO, 0x0a, 0x0d, Oxff)

> may be a random string or a XOR function

CSE Dep, ACS, UPB Lecture 6, Exploit Protection M




CNSS Stack Guard Demo

CTF crunch

> demo

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 33/40



FFFFFF

Bypassing Canaries

does not protect internal variables or buffer from another
buffer

you may use string formatting attacks to find the canary value
and rewrite with itself

in case the process forks, you may trigger multiple forks and
then try guessing one byte at a time

for test purposese, disable using —~fno-stack-protector as
argument to gcc

CSE Dep, ACS, UPB

ecture 6, Exploit Protection Mechanisms 34/40



CNS‘C\J‘ Outline

CTF crunch

Summary

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 35/40



CNSS Exploit Protection Mechanisms

CTF crunch

» ASCll-armored address spaces
P code integrity protection, data execution prevention
P address space layout randomization

» stack protection/stack guard, canary value

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms

36/40



CNS‘c‘i Other Runtime Attacks

CTF crunch

> code reuse
> return to libc
> return oriented programming
> data oriented attacks: do not target the alteration of the
control flow, but overwrite data

CSE Dep, ACS, UPB ecture 6, Exploit Protection Mechanisms 37/40



CNSS

CTF crunch

Keywords

exploit

buffer overflow
shellcode

input validation

static analysis

vVvYvyvVvYyvyy

dynamic analysis

vVVvVvYvyVvYVvyy

code integrity
DEP

ASLR

PIC, PIE
canary value

stack guard

CSE Dep, ACS, UPB

ecture 6, Exploit Protection Mechanisms



CNSS

CTF crunch

References
> The Art of Exploitation, 2nd Edition
» Chapter 0x600. Countermeasures
CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanism: 39/40



CNSS Useful Links

CTF crunch

> http://security.stackexchange.com/questions/20497/
stack-overflows-defeating-canaries-aslr-dep-nx

> http://security.stackexchange.com/questions/18556/
how-do-aslr-and-dep-work

> http://www.phrack.org/issues.html?id=13&issue=67&mode=txt
> http://www.cs.umd.edu/~jkatz/security/s12/lecture22.ppt

> http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/
10-more-defenses.pdf

CSE Dep, ACS, UPB Mechanisms 40/40



http://security.stackexchange.com/questions/20497/stack-overflows-defeating-canaries-aslr-dep-nx
http://security.stackexchange.com/questions/20497/stack-overflows-defeating-canaries-aslr-dep-nx
http://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work
http://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work
http://www.phrack.org/issues.html?id=13&issue=67&mode=txt
http://www.cs.umd.edu/~jkatz/security/s12/lecture22.ppt
http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/10-more-defenses.pdf
http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/10-more-defenses.pdf

	Exploiting: Recap
	Preventing Existence
	Preventing Exploitation
	Summary

