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CPU cache
A CPU cache[1] is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average

cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, closer to a processor

core, which stores copies of the data from frequently used main memory locations. Most CPUs have different

independent caches, including instruction and data caches, where the data cache is usually organized as a hierarchy of

more cache levels (L1, L2, etc.).

All modern (fast) CPUs (with few specialized exceptions[2]) have multiple levels of CPU caches. The first CPUs that

used a cache had only one level of cache; unlike later level 1 caches, it was not split into L1d (for data) and L1i (for

instructions). Almost all current CPUs with caches have a split L1 cache. They also have L2 caches and, for larger

processors, L3 caches as well. The L2 cache is usually not split and acts as a common repository for the already split L1

cache. Every core of a multi-core processor has a dedicated L2 cache and is usually not shared between the cores. The

L3 cache, and higher-level caches, are shared between the cores and are not split. An L4 cache is currently uncommon,

and is generally on dynamic random-access memory (DRAM), rather than on static random-access memory (SRAM),

on a separate die or chip. That was also the case historically with L1, while bigger chips have allowed integration of it

and generally all cache levels, with the possible exception of the last level. Each extra level of cache tends to be bigger

and be optimized differently.

Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned

above), such as the translation lookaside buffer (TLB) that is part of the memory management unit (MMU) that most

CPUs have.

Caches are generally sized in powers of two: 4, 8, 16 etc. KiB or MiB (for larger non-L1) sizes, although the IBM z13 has

a 96 KiB L1 instruction cache.[3]
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When the processor needs to read from or write to a location in main memory, it first checks whether a copy of that

data is in the cache. If so, the processor immediately reads from or writes to the cache, which is much faster than

reading from or writing to main memory.

Most modern desktop and server CPUs have at least three independent caches: an instruction cache to speed up

executable instruction fetch, a data cache to speed up data fetch and store, and a translation lookaside buffer (TLB)

used to speed up virtual-to-physical address translation for both executable instructions and data. A single TLB could

be provided for access to both instructions and data, or a separate Instruction TLB (ITLB) and data TLB (DTLB) can

be provided.[4] The data cache is usually organized as a hierarchy of more cache levels (L1, L2, etc.; see also multi-level

caches below). However, the TLB cache is part of the memory management unit (MMU) and not directly related to the

CPU caches.

Data is transferred between memory and cache in blocks of fixed size, called cache lines or cache blocks. When a cache

line is copied from memory into the cache, a cache entry is created. The cache entry will include the copied data as well

as the requested memory location (called a tag).

When the processor needs to read or write a location in main memory, it first checks for a corresponding entry in the

cache. The cache checks for the contents of the requested memory location in any cache lines that might contain that

address. If the processor finds that the memory location is in the cache, a cache hit has occurred. However, if the
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processor does not find the memory location in the cache, a cache miss has occurred. In the case of a cache hit, the

processor immediately reads or writes the data in the cache line. For a cache miss, the cache allocates a new entry and

copies data from main memory, then the request is fulfilled from the contents of the cache.

In order to make room for the new entry on a cache miss, the cache may have to evict one of the existing entries. The

heuristic that it uses to choose the entry to evict is called the replacement policy. The fundamental problem with any

replacement policy is that it must predict which existing cache entry is least likely to be used in the future. Predicting

the future is difficult, so there is no perfect method to choose among the variety of replacement policies available. One

popular replacement policy, least-recently used (LRU), replaces the least recently accessed entry.

Marking some memory ranges as non-cacheable can improve performance, by avoiding caching of memory regions

that are rarely re-accessed. This avoids the overhead of loading something into the cache without having any reuse.

Cache entries may also be disabled or locked depending on the context.

If data is written to the cache, at some point it must also be written to main memory; the timing of this write is known

as the write policy. In a write-through cache, every write to the cache causes a write to main memory. Alternatively, in

a write-back or copy-back cache, writes are not immediately mirrored to the main memory, and the cache instead

tracks which locations have been written over, marking them as dirty. The data in these locations is written back to the

main memory only when that data is evicted from the cache. For this reason, a read miss in a write-back cache may

sometimes require two memory accesses to service: one to first write the dirty location to main memory, and then

another to read the new location from memory. Also, a write to a main memory location that is not yet mapped in a

write-back cache may evict an already dirty location, thereby freeing that cache space for the new memory location.

There are intermediate policies as well. The cache may be write-through, but the writes may be held in a store data

queue temporarily, usually so that multiple stores can be processed together (which can reduce bus turnarounds and

improve bus utilization).

Cached data from the main memory may be changed by other entities (e.g. peripherals using direct memory access

(DMA) or another core in a multi-core processor), in which case the copy in the cache may become out-of-date or

stale. Alternatively, when a CPU in a multiprocessor system updates data in the cache, copies of data in caches

associated with other CPUs become stale. Communication protocols between the cache managers that keep the data

consistent are known as cache coherence protocols.

Cache performance measurement has become important in the recent times where the speed gap between the memory

performance and the processor performance is increasing exponentially. The cache was introduced to reduce this

speed gap. Thus knowing how well the cache is able to bridge the gap in the speed of processor and memory becomes

important, especially in high-performance systems. The cache hit rate and the cache miss rate play an important role

in determining this performance. To improve the cache performance, reducing the miss rate becomes one of the

necessary steps among other steps. Decreasing the access time to the cache also gives a boost to its performance.
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The time taken to fetch one cache line from memory (read latency due to a cache miss) matters because the CPU will

run out of things to do while waiting for the cache line. When a CPU reaches this state, it is called a stall. As CPUs

become faster compared to main memory, stalls due to cache misses displace more potential computation; modern

CPUs can execute hundreds of instructions in the time taken to fetch a single cache line from main memory.

Various techniques have been employed to keep the CPU busy during this time, including out-of-order execution in

which the CPU (Pentium Pro and later Intel designs, for example) attempts to execute independent instructions after

the instruction that is waiting for the cache miss data. Another technology, used by many processors, is simultaneous

multithreading (SMT), or — in Intel's terminology — hyper-threading (HT), which allows an alternate thread to use the

CPU core while the first thread waits for required CPU resources to become available.

Cache row entries usually have the following structure:

tag data block flag bits

The data block (cache line) contains the actual data fetched from the main memory. The tag contains (part of) the

address of the actual data fetched from the main memory. The flag bits are discussed below.

The "size" of the cache is the amount of main memory data it can hold. This size can be calculated as the number of

bytes stored in each data block times the number of blocks stored in the cache. (The tag, flag and error correction code

bits are not included in the size,[5] although they do affect the physical area of a cache.)

An effective memory address which goes along with the cache line (memory block) is split (MSB to LSB) into the tag,

the index and the block offset.[6][7]

tag index block offset

The index describes which cache row (which cache line) that the data has been put in. The index length is 

bits for r cache rows.

The block offset specifies the desired data within the stored data block within the cache row. Typically the effective

address is in bytes, so the block offset length is  bits, where b is the number of bytes per data block. The tag

contains the most significant bits of the address, which are checked against the current row (the row has been

retrieved by index) to see if it is the one we need or another, irrelevant memory location that happened to have the

same index bits as the one we want. The tag length in bits is as follows:

tag_length = address_length - index_length - block_offset_length

Some authors refer to the block offset as simply the "offset"[8] or the "displacement".[9][10]

The original Pentium 4 processor had a four-way set associative L1 data cache of 8 KiB in size, with 64-byte cache

blocks. Hence, there are 8 KiB / 64 = 128 cache blocks. The number of sets is equal to the number of cache blocks

divided by the number of ways of associativity, what leads to 128 / 4 = 32 sets, and hence 25 = 32 different indices.

There are 26 = 64 possible offsets. Since the CPU address is 32 bits wide, this implies 32 - 5 - 6 = 21 bits for the tag

field.

The original Pentium 4 processor also had an eight-way set associative L2 integrated cache 256 KiB in size, with 128-

byte cache blocks. This implies 32 - 8 - 7 = 17 bits for the tag field.[8]

Cache entry structure
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An instruction cache requires only one flag bit per cache row entry: a valid bit. The valid bit indicates whether or not a

cache block has been loaded with valid data.

On power-up, the hardware sets all the valid bits in all the caches to "invalid". Some systems also set a valid bit to

"invalid" at other times, such as when multi-master bus snooping hardware in the cache of one processor hears an

address broadcast from some other processor, and realizes that certain data blocks in the local cache are now stale and

should be marked invalid.

A data cache typically requires two flag bits per cache line – a valid bit and a dirty bit. Having a dirty bit set indicates

that the associated cache line has been changed since it was read from main memory ("dirty"), meaning that the

processor has written data to that line and the new value has not propagated all the way to main memory.

The replacement policy decides

where in the cache a copy of a

particular entry of main memory

will go. If the replacement policy is

free to choose any entry in the

cache to hold the copy, the cache is

called fully associative. At the other

extreme, if each entry in main

memory can go in just one place in

the cache, the cache is direct
mapped. Many caches implement a

compromise in which each entry in

main memory can go to any one of

N places in the cache, and are

described as N-way set

associative.[11] For example, the level-1 data cache in an AMD Athlon is two-way set associative, which means that any

particular location in main memory can be cached in either of two locations in the level-1 data cache.

Choosing the right value of associativity involves a trade-off. If there are ten places to which the replacement policy

could have mapped a memory location, then to check if that location is in the cache, ten cache entries must be

searched. Checking more places takes more power and chip area, and potentially more time. On the other hand, caches

with more associativity suffer fewer misses (see conflict misses, below), so that the CPU wastes less time reading from

the slow main memory. The general guideline is that doubling the associativity, from direct mapped to two-way, or

from two-way to four-way, has about the same effect on raising the hit rate as doubling the cache size. However,

increasing associativity more than four does not improve hit rate as much,[12] and are generally done for other reasons

(see virtual aliasing, below). Some CPUs can dynamically reduce the associativity of their caches in low-power states,

which acts as a power-saving measure.[13]

In order of worse but simple to better but complex:

Direct mapped cache – good best-case time, but flaky in worst case
Two-way set associative cache
Two-way skewed associative cache[14]

Four-way set associative cache
Eight-way set associative cache, a common choice for later implementations
12-way set associative cache, similar to eight-way

Flag bits

Associativity

An illustration of different ways in which memory locations can be cached
by particular cache locations
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Fully associative cache – the best miss rates, but practical only for a small number of entries

In this cache organization, each location in main memory can go in only one entry in the cache. Therefore, a direct-

mapped cache can also be called a "one-way set associative" cache. It does not have a replacement policy as such, since

there is no choice of which cache entry's contents to evict. This means that if two locations map to the same entry, they

may continually knock each other out. Although simpler, a direct-mapped cache needs to be much larger than an

associative one to give comparable performance, and it is more unpredictable. Let x be block number in cache, y be

block number of memory, and n be number of blocks in cache, then mapping is done with the help of the equation

x = y mod n.

If each location in main memory can be cached in either of two locations in the cache, one logical question is: which
one of the two? The simplest and most commonly used scheme, shown in the right-hand diagram above, is to use the

least significant bits of the memory location's index as the index for the cache memory, and to have two entries for

each index. One benefit of this scheme is that the tags stored in the cache do not have to include that part of the main

memory address which is implied by the cache memory's index. Since the cache tags have fewer bits, they require

fewer transistors, take less space on the processor circuit board or on the microprocessor chip, and can be read and

compared faster. Also LRU is especially simple since only one bit needs to be stored for each pair.

One of the advantages of a direct mapped cache is that it allows simple and fast speculation. Once the address has

been computed, the one cache index which might have a copy of that location in memory is known. That cache entry

can be read, and the processor can continue to work with that data before it finishes checking that the tag actually

matches the requested address.

The idea of having the processor use the cached data before the tag match completes can be applied to associative

caches as well. A subset of the tag, called a hint, can be used to pick just one of the possible cache entries mapping to

the requested address. The entry selected by the hint can then be used in parallel with checking the full tag. The hint

technique works best when used in the context of address translation, as explained below.

Other schemes have been suggested, such as the skewed cache,[14] where the index for way 0 is direct, as above, but

the index for way 1 is formed with a hash function. A good hash function has the property that addresses which conflict

with the direct mapping tend not to conflict when mapped with the hash function, and so it is less likely that a

program will suffer from an unexpectedly large number of conflict misses due to a pathological access pattern. The

downside is extra latency from computing the hash function.[15] Additionally, when it comes time to load a new line

and evict an old line, it may be difficult to determine which existing line was least recently used, because the new line

conflicts with data at different indexes in each way; LRU tracking for non-skewed caches is usually done on a per-set

basis. Nevertheless, skewed-associative caches have major advantages over conventional set-associative ones.[16]

A true set-associative cache tests all the possible ways simultaneously, using something like a content addressable

memory. A pseudo-associative cache tests each possible way one at a time. A hash-rehash cache and a column-

associative cache are examples of a pseudo-associative cache.

Direct-mapped cache

Two-way set associative cache

Speculative execution

Two-way skewed associative cache

Pseudo-associative cache
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In the common case of finding a hit in the first way tested, a pseudo-associative cache is as fast as a direct-mapped

cache, but it has a much lower conflict miss rate than a direct-mapped cache, closer to the miss rate of a fully

associative cache. [15]

A cache miss is a failed attempt to read or write a piece of data in the cache, which results in a main memory access

with much longer latency. There are three kinds of cache misses: instruction read miss, data read miss, and data write

miss.

Cache read misses from an instruction cache generally cause the largest delay, because the processor, or at least the

thread of execution, has to wait (stall) until the instruction is fetched from main memory. Cache read misses from a

data cache usually cause a smaller delay, because instructions not dependent on the cache read can be issued and

continue execution until the data is returned from main memory, and the dependent instructions can resume

execution. Cache write misses to a data cache generally cause the shortest delay, because the write can be queued and

there are few limitations on the execution of subsequent instructions; the processor can continue until the queue is

full. There is a more detailed introduction to the types of misses here.

Most general purpose CPUs implement some form of virtual memory. To summarize, either each program running on

the machine sees its own simplified address space, which contains code and data for that program only, or all

programs run in a common virtual address space. A program executes by calculating, comparing, reading and writing

to addresses of its virtual address space, rather than addresses of physical address space, making programs simpler

and thus easier to write.

Virtual memory requires the processor to translate virtual addresses generated by the program into physical addresses

in main memory. The portion of the processor that does this translation is known as the memory management unit

(MMU). The fast path through the MMU can perform those translations stored in the translation lookaside buffer

(TLB), which is a cache of mappings from the operating system's page table, segment table, or both.

For the purposes of the present discussion, there are three important features of address translation:

Latency: The physical address is available from the MMU some time, perhaps a few cycles, after the virtual
address is available from the address generator.
Aliasing: Multiple virtual addresses can map to a single physical address. Most processors guarantee that all
updates to that single physical address will happen in program order. To deliver on that guarantee, the processor
must ensure that only one copy of a physical address resides in the cache at any given time.
Granularity: The virtual address space is broken up into pages. For instance, a 4 GiB virtual address space might
be cut up into 1,048,576 pages of 4 KiB size, each of which can be independently mapped. There may be multiple
page sizes supported; see virtual memory for elaboration.

Some early virtual memory systems were very slow because they required an access to the page table (held in main

memory) before every programmed access to main memory.[NB 1] With no caches, this effectively cut the speed of

memory access in half. The first hardware cache used in a computer system was not actually a data or instruction

cache, but rather a TLB.[18]

Caches can be divided into four types, based on whether the index or tag correspond to physical or virtual addresses:

Physically indexed, physically tagged (PIPT) caches use the physical address for both the index and the tag.
While this is simple and avoids problems with aliasing, it is also slow, as the physical address must be looked up
(which could involve a TLB miss and access to main memory) before that address can be looked up in the cache.
Virtually indexed, virtually tagged (VIVT) caches use the virtual address for both the index and the tag. This
caching scheme can result in much faster lookups, since the MMU does not need to be consulted first to
determine the physical address for a given virtual address. However, VIVT suffers from aliasing problems, where
several different virtual addresses may refer to the same physical address. The result is that such addresses

Cache miss

Address translation
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would be cached separately despite referring to the same memory, causing coherency problems. Although
solutions to this problem exist [19] they do not work for standard coherence protocols. Another problem is
homonyms, where the same virtual address maps to several different physical addresses. It is not possible to
distinguish these mappings merely by looking at the virtual index itself, though potential solutions include: flushing
the cache after a context switch, forcing address spaces to be non-overlapping, tagging the virtual address with
an address space ID (ASID). Additionally, there is a problem that virtual-to-physical mappings can change, which
would require flushing cache lines, as the VAs would no longer be valid. All these issues are absent if tags use
physical addresses (VIPT).
Virtually indexed, physically tagged (VIPT) caches use the virtual address for the index and the physical address
in the tag. The advantage over PIPT is lower latency, as the cache line can be looked up in parallel with the TLB
translation, however the tag cannot be compared until the physical address is available. The advantage over VIVT
is that since the tag has the physical address, the cache can detect homonyms. Theoretically, VIPT requires more
tags bits because some of the index bits could differ between the virtual and physical addresses (for example bit
12 and above for 4 KiB pages) and would have to be included both in the virtual index and in the physical tag. In
practice this is not an issue because, in order to avoid coherency problems, VIPT caches are designed to have no
such index bits; this limits the size of VIPT caches to the page size times the number of sets.
Physically indexed, virtually tagged (PIVT) caches are often claimed in literature to be useless and non-
existing.[20] However, the MIPS R6000 uses this cache type as the sole known implementation.[21] The R6000 is
implemented in emitter-coupled logic, which is an extremely fast technology not suitable for large memories such
as a TLB. The R6000 solves the issue by putting the TLB memory into a reserved part of the second-level cache
having a tiny, high-speed TLB "slice" on chip. The cache is indexed by the physical address obtained from the
TLB slice. However, since the TLB slice only translates those virtual address bits that are necessary to index the
cache and does not use any tags, false cache hits may occur, which is solved by tagging with the virtual address.

The speed of this recurrence (the load latency) is crucial to CPU performance, and so most modern level-1 caches are

virtually indexed, which at least allows the MMU's TLB lookup to proceed in parallel with fetching the data from the

cache RAM.

But virtual indexing is not the best choice for all cache levels. The cost of dealing with virtual aliases grows with cache

size, and as a result most level-2 and larger caches are physically indexed.

Caches have historically used both virtual and physical addresses for the cache tags, although virtual tagging is now

uncommon. If the TLB lookup can finish before the cache RAM lookup, then the physical address is available in time

for tag compare, and there is no need for virtual tagging. Large caches, then, tend to be physically tagged, and only

small, very low latency caches are virtually tagged. In recent general-purpose CPUs, virtual tagging has been

superseded by vhints, as described below.

A cache that relies on virtual indexing and tagging becomes inconsistent after the same virtual address is mapped into

different physical addresses (homonym), which can be solved by using physical address for tagging, or by storing the

address space identifier in the cache line. However, the latter approach does not help against the synonym problem, in

which several cache lines end up storing data for the same physical address. Writing to such locations may update only

one location in the cache, leaving the others with inconsistent data. This issue may be solved by using non-overlapping

memory layouts for different address spaces, or otherwise the cache (or a part of it) must be flushed when the mapping

changes.[22]

The great advantage of virtual tags is that, for associative caches, they allow the tag match to proceed before the virtual

to physical translation is done. However, coherence probes and evictions present a physical address for action. The

hardware must have some means of converting the physical addresses into a cache index, generally by storing physical

tags as well as virtual tags. For comparison, a physically tagged cache does not need to keep virtual tags, which is

simpler. When a virtual to physical mapping is deleted from the TLB, cache entries with those virtual addresses will

have to be flushed somehow. Alternatively, if cache entries are allowed on pages not mapped by the TLB, then those

entries will have to be flushed when the access rights on those pages are changed in the page table.

Homonym and synonym problems

Virtual tags and vhints
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It is also possible for the operating system to ensure that no virtual aliases are simultaneously resident in the cache.

The operating system makes this guarantee by enforcing page coloring, which is described below. Some early RISC

processors (SPARC, RS/6000) took this approach. It has not been used recently, as the hardware cost of detecting and

evicting virtual aliases has fallen and the software complexity and performance penalty of perfect page coloring has

risen.

It can be useful to distinguish the two functions of tags in an associative cache: they are used to determine which way

of the entry set to select, and they are used to determine if the cache hit or missed. The second function must always be

correct, but it is permissible for the first function to guess, and get the wrong answer occasionally.

Some processors (e.g. early SPARCs) have caches with both virtual and physical tags. The virtual tags are used for way

selection, and the physical tags are used for determining hit or miss. This kind of cache enjoys the latency advantage of

a virtually tagged cache, and the simple software interface of a physically tagged cache. It bears the added cost of

duplicated tags, however. Also, during miss processing, the alternate ways of the cache line indexed have to be probed

for virtual aliases and any matches evicted.

The extra area (and some latency) can be mitigated by keeping virtual hints with each cache entry instead of virtual

tags. These hints are a subset or hash of the virtual tag, and are used for selecting the way of the cache from which to

get data and a physical tag. Like a virtually tagged cache, there may be a virtual hint match but physical tag mismatch,

in which case the cache entry with the matching hint must be evicted so that cache accesses after the cache fill at this

address will have just one hint match. Since virtual hints have fewer bits than virtual tags distinguishing them from

one another, a virtually hinted cache suffers more conflict misses than a virtually tagged cache.

Perhaps the ultimate reduction of virtual hints can be found in the Pentium 4 (Willamette and Northwood cores). In

these processors the virtual hint is effectively two bits, and the cache is four-way set associative. Effectively, the

hardware maintains a simple permutation from virtual address to cache index, so that no content-addressable

memory (CAM) is necessary to select the right one of the four ways fetched.

Large physically indexed caches (usually secondary caches) run into a problem: the operating system rather than the

application controls which pages collide with one another in the cache. Differences in page allocation from one

program run to the next lead to differences in the cache collision patterns, which can lead to very large differences in

program performance. These differences can make it very difficult to get a consistent and repeatable timing for a

benchmark run.

To understand the problem, consider a CPU with a 1 MiB physically indexed direct-mapped level-2 cache and 4 KiB

virtual memory pages. Sequential physical pages map to sequential locations in the cache until after 256 pages the

pattern wraps around. We can label each physical page with a color of 0–255 to denote where in the cache it can go.

Locations within physical pages with different colors cannot conflict in the cache.

Programmers attempting to make maximum use of the cache may arrange their programs' access patterns so that only

1 MiB of data need be cached at any given time, thus avoiding capacity misses. But they should also ensure that the

access patterns do not have conflict misses. One way to think about this problem is to divide up the virtual pages the

program uses and assign them virtual colors in the same way as physical colors were assigned to physical pages before.

Programmers can then arrange the access patterns of their code so that no two pages with the same virtual color are in

use at the same time. There is a wide literature on such optimizations (e.g. loop nest optimization), largely coming

from the High Performance Computing (HPC) community.

The snag is that while all the pages in use at any given moment may have different virtual colors, some may have the

same physical colors. In fact, if the operating system assigns physical pages to virtual pages randomly and uniformly, it

is extremely likely that some pages will have the same physical color, and then locations from those pages will collide

Page coloring
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in the cache (this is the birthday paradox).

The solution is to have the operating system attempt to assign different physical color pages to different virtual colors,

a technique called page coloring. Although the actual mapping from virtual to physical color is irrelevant to system

performance, odd mappings are difficult to keep track of and have little benefit, so most approaches to page coloring

simply try to keep physical and virtual page colors the same.

If the operating system can guarantee that each physical page maps to only one virtual color, then there are no virtual

aliases, and the processor can use virtually indexed caches with no need for extra virtual alias probes during miss

handling. Alternatively, the OS can flush a page from the cache whenever it changes from one virtual color to another.

As mentioned above, this approach was used for some early SPARC and RS/6000 designs.

Modern processors have multiple interacting on-chip caches.

The operation of a particular cache can be completely

specified by the cache size, the cache block size, the number

of blocks in a set, the cache set replacement policy, and the

cache write policy (write-through or write-back).[8]

While all of the cache blocks in a particular cache are the

same size and have the same associativity, typically the

"lower-level" caches (called Level 1 cache) have a smaller

number of blocks, smaller block size, and fewer blocks in a

set, but have very short access times. "Higher-level" caches (i.e. Level 2 and above) have progressively larger numbers

of blocks, larger block size, more blocks in a set, and relatively longer access times, but are still much faster than main

memory.

Cache entry replacement policy is determined by a cache algorithm selected to be implemented by the processor

designers. In some cases, multiple algorithms are provided for different kinds of work loads.

Pipelined CPUs access memory from multiple points in the pipeline: instruction fetch, virtual-to-physical address

translation, and data fetch (see classic RISC pipeline). The natural design is to use different physical caches for each of

these points, so that no one physical resource has to be scheduled to service two points in the pipeline. Thus the

pipeline naturally ends up with at least three separate caches (instruction, TLB, and data), each specialized to its

particular role.

A victim cache is a cache used to hold blocks evicted from a CPU cache upon replacement. The victim cache lies

between the main cache and its refill path, and only holds blocks that were evicted from the main cache. The victim

cache is usually fully associative, and is intended to reduce the number of conflict misses. Many commonly used

programs do not require an associative mapping for all the accesses. In fact, only a small fraction of the memory

accesses of the program require high associativity. The victim cache exploits this property by providing high

associativity to only these accesses. It was introduced by Norman Jouppi from DEC in 1990.[23]

Intel's Crystalwell[24] variant of its Haswell processors, equipped with Intel's Iris Pro GT3e embedded graphics and

128 MB of eDRAM, introduced an on-package Level 4 cache which serves as a victim cache to the processors's Level 3

cache.[25] In the Skylake processors the Level 4 cache no longer works as a victim cache.[26]

Cache hierarchy in a modern processor

Memory hierarchy of an AMD Bulldozer server

Specialized caches

Victim cache
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One of the more extreme examples of cache specialization is the trace cache (also known as execution trace cache)

found in the Intel Pentium 4 microprocessors. A trace cache is a mechanism for increasing the instruction fetch

bandwidth and decreasing power consumption (in the case of the Pentium 4) by storing traces of instructions that

have already been fetched and decoded.[27]

A trace cache stores instructions either after they have been decoded, or as they are retired. Generally, instructions are

added to trace caches in groups representing either individual basic blocks or dynamic instruction traces. The

Pentium 4's trace cache stores micro-operations resulting from decoding x86 instructions, providing also the

functionality of a micro-operation cache. Having this, the next time an instruction is needed, it does not have to be

decoded into micro-ops again.[28]:63–68

Write Coalescing Cache[29] is a special cache that is part of L2 cache in AMD's Bulldozer microarchitecture. Stores

from both L1D caches in the module go through the WCC, where they are buffered and coalesced. The WCC's task is

reducing number of writes to the L2 cache.

A micro-operation cache (uop cache, μop cache or UC)[30] is a specialized cache that stores micro-operations of

decoded instructions, as received directly from the instruction decoders or from the instruction cache. When an

instruction needs to be decoded, the uop cache is checked for its decoded form which is re-used if cached; if it is not

available, the instruction is decoded and then cached.

One of the early works describing uop cache as an alternative frontend for the Intel P6 processor family is the 2001

paper "Micro-Operation Cache: A Power Aware Frontend for Variable Instruction Length ISA".[31] Later, Intel

included uop caches in its Sandy Bridge processors and in successive microarchitectures like Ivy Bridge and

Haswell.[28]:121–123[32] AMD implemented a uop cache in their Zen (microarchitecture).[33]

Fetching complete pre-decoded instructions eliminates the need to repeatedly decode variable length complex

instructions into simpler fixed-length micro-operations, and simplifies the process of predicting, fetching, rotating and

aligning fetched instructions. A uop cache effectively offloads the fetch and decode hardware, thus decreasing power

consumption and improving the frontend supply of decoded micro-operations. The uop cache also increases

performance by more consistently delivering decoded micro-operations to the backend and eliminating various

bottlenecks in the CPU's fetch and decode logic.[31][32]

A uop cache has many similarities with a trace cache, although a uop cache is much simpler thus providing better

power efficiency; this makes it better suited for implementations on battery-powered devices. The main disadvantage

of the trace cache, leading to its power inefficiency, is the hardware complexity required for its heuristic deciding on

caching and reusing dynamically created instruction traces.[34]

Another issue is the fundamental tradeoff between cache latency and hit rate. Larger caches have better hit rates but

longer latency. To address this tradeoff, many computers use multiple levels of cache, with small fast caches backed up

by larger, slower caches. Multi-level caches generally operate by checking the fastest, level 1 (L1) cache first; if it hits,

the processor proceeds at high speed. If that smaller cache misses, the next fastest cache (level 2, L2) is checked, and

so on, before accessing external memory.

Trace cache

Write Coalescing Cache (WCC)

Micro-operation (uop or μop) cache

Multi-level caches
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As the latency difference between main memory and the fastest cache has become larger, some processors have begun

to utilize as many as three levels of on-chip cache. Price-sensitive designs used this to pull the entire cache hierarchy

on-chip, but by the 2010s some of the highest-performance designs returned to having large off-chip caches, which is

often implemented in eDRAM and mounted on a multi-chip module, as a fourth cache level.

The benefits of L3 and L4 caches depend on the application's access patterns. Examples of products incorporating L3

and L4 caches include the following:

Alpha 21164 (1995) has 1 to 64 MB off-chip L3 cache.
IBM POWER4 (2001) has off-chip L3 caches of 32 MB per processor, shared among several processors.
Itanium 2 (2003) has a 6 MB unified level 3 (L3) cache on-die; the Itanium 2 (2003) MX 2 module incorporates two
Itanium 2 processors along with a shared 64 MB L4 cache on a multi-chip module that was pin compatible with a
Madison processor.
Intel's Xeon MP product codenamed "Tulsa" (2006) features 16 MB of on-die L3 cache shared between two
processor cores.
AMD Phenom II (2008) has up to 6 MB on-die unified L3 cache.
Intel Core i7 (2008) has an 8 MB on-die unified L3 cache that is inclusive, shared by all cores.
Intel Haswell CPUs with integrated Intel Iris Pro Graphics have 128 MB of eDRAM acting essentially as an L4
cache.[35]

Finally, at the other end of the memory hierarchy, the CPU register file itself can be considered the smallest, fastest

cache in the system, with the special characteristic that it is scheduled in software—typically by a compiler, as it

allocates registers to hold values retrieved from main memory, as an example loop nest optimization. However, with

register renaming most compiler register assignments are reallocated dynamically by hardware at runtime into a

register bank, allowing the CPU to break false data dependencies and thus easing pipeline hazards.

Register files sometimes also have hierarchy: The Cray-1 (circa 1976) had eight address "A" and eight scalar data "S"

registers that were generally usable. There was also a set of 64 address "B" and 64 scalar data "T" registers that took

longer to access, but were faster than main memory. The "B" and "T" registers were provided because the Cray-1 did

not have a data cache. (The Cray-1 did, however, have an instruction cache.)

When considering a chip with multiple cores, there is a question of whether the caches should be shared or local to

each core. Implementing shared cache undoubtedly introduces more wiring and complexity. But then, having one

cache per chip, rather than core, greatly reduces the amount of space needed, and thus one can include a larger cache.

Typically, sharing the L1 cache is undesirable because the resulting increase in latency would make each core run

considerably slower than a single-core chip. However, for the highest-level cache, the last one called before accessing

memory, having a global cache is desirable for several reasons, such as allowing a single core to use the whole cache,

reducing data redundancy by making it possible for different processes or threads to share cached data, and reducing

the complexity of utilized cache coherency protocols.[36] For example, an eight-core chip with three levels may include

an L1 cache for each core, one intermediate L2 cache for each pair of cores, and one L3 cache shared between all cores.

Shared highest-level cache, which is called before accessing memory, is usually referred to as the last level cache
(LLC). Additional techniques are used for increasing the level of parallelism when LLC is shared between multiple

cores, including slicing it into multiple pieces which are addressing certain ranges of memory addresses, and can be

accessed independently.[37]

In a separate cache structure, instructions and data are cached separately, meaning that a cache line is used to cache

either instructions or data, but not both; various benefits have been demonstrated with separate data and instruction

translation lookaside buffers.[38] In a unified structure, this constraint is not present, and cache lines can be used to

Multi-core chips

Separate versus unified
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cache both instructions and data.

Multi-level caches introduce new design decisions. For instance, in some processors, all data in the L1 cache must also

be somewhere in the L2 cache. These caches are called strictly inclusive. Other processors (like the AMD Athlon) have

exclusive caches: data is guaranteed to be in at most one of the L1 and L2 caches, never in both. Still other processors

(like the Intel Pentium II, III, and 4) do not require that data in the L1 cache also reside in the L2 cache, although it

may often do so. There is no universally accepted name for this intermediate policy.[39][40]

The advantage of exclusive caches is that they store more data. This advantage is larger when the exclusive L1 cache is

comparable to the L2 cache, and diminishes if the L2 cache is many times larger than the L1 cache. When the L1

misses and the L2 hits on an access, the hitting cache line in the L2 is exchanged with a line in the L1. This exchange is

quite a bit more work than just copying a line from L2 to L1, which is what an inclusive cache does.[40]

One advantage of strictly inclusive caches is that when external devices or other processors in a multiprocessor system

wish to remove a cache line from the processor, they need only have the processor check the L2 cache. In cache

hierarchies which do not enforce inclusion, the L1 cache must be checked as well. As a drawback, there is a correlation

between the associativities of L1 and L2 caches: if the L2 cache does not have at least as many ways as all L1 caches

together, the effective associativity of the L1 caches is restricted. Another disadvantage of inclusive cache is that

whenever there is an eviction in L2 cache, the (possibly) corresponding lines in L1 also have to get evicted in order to

maintain inclusiveness. This is quite a bit of work, and would result in a higher L1 miss rate.[40]

Another advantage of inclusive caches is that the larger cache can use larger cache lines, which reduces the size of the

secondary cache tags. (Exclusive caches require both caches to have the same size cache lines, so that cache lines can

be swapped on a L1 miss, L2 hit.) If the secondary cache is an order of magnitude larger than the primary, and the

cache data is an order of magnitude larger than the cache tags, this tag area saved can be comparable to the

incremental area needed to store the L1 cache data in the L2.[41]

To illustrate both specialization and multi-level caching, here is the cache hierarchy of the K8 core in the AMD Athlon

64 CPU.[42]

Cache hierarchy of the K8 core in the AMD Athlon 64 CPU.

Exclusive versus inclusive

Example: the K8
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The K8 has four specialized caches: an instruction cache, an instruction TLB, a data TLB, and a data cache. Each of

these caches is specialized:

The instruction cache keeps copies of 64-byte lines of memory, and fetches 16 bytes each cycle. Each byte in this
cache is stored in ten bits rather than eight, with the extra bits marking the boundaries of instructions (this is an
example of predecoding). The cache has only parity protection rather than ECC, because parity is smaller and
any damaged data can be replaced by fresh data fetched from memory (which always has an up-to-date copy of
instructions).
The instruction TLB keeps copies of page table entries (PTEs). Each cycle's instruction fetch has its virtual
address translated through this TLB into a physical address. Each entry is either four or eight bytes in memory.
Because the K8 has a variable page size, each of the TLBs is split into two sections, one to keep PTEs that map
4 KB pages, and one to keep PTEs that map 4 MB or 2 MB pages. The split allows the fully associative match
circuitry in each section to be simpler. The operating system maps different sections of the virtual address space
with different size PTEs.
The data TLB has two copies which keep identical entries. The two copies allow two data accesses per cycle to
translate virtual addresses to physical addresses. Like the instruction TLB, this TLB is split into two kinds of
entries.
The data cache keeps copies of 64-byte lines of memory. It is split into 8 banks (each storing 8 KB of data), and
can fetch two 8-byte data each cycle so long as those data are in different banks. There are two copies of the
tags, because each 64-byte line is spread among all eight banks. Each tag copy handles one of the two accesses
per cycle.

The K8 also has multiple-level caches. There are second-level instruction and data TLBs, which store only PTEs

mapping 4 KB. Both instruction and data caches, and the various TLBs, can fill from the large unified L2 cache. This

cache is exclusive to both the L1 instruction and data caches, which means that any 8-byte line can only be in one of

the L1 instruction cache, the L1 data cache, or the L2 cache. It is, however, possible for a line in the data cache to have

a PTE which is also in one of the TLBs—the operating system is responsible for keeping the TLBs coherent by flushing

portions of them when the page tables in memory are updated.

The K8 also caches information that is never stored in memory—prediction information. These caches are not shown

in the above diagram. As is usual for this class of CPU, the K8 has fairly complex branch prediction, with tables that

help predict whether branches are taken and other tables which predict the targets of branches and jumps. Some of

this information is associated with instructions, in both the level 1 instruction cache and the unified secondary cache.

The K8 uses an interesting trick to store prediction information with instructions in the secondary cache. Lines in the

secondary cache are protected from accidental data corruption (e.g. by an alpha particle strike) by either ECC or

parity, depending on whether those lines were evicted from the data or instruction primary caches. Since the parity

code takes fewer bits than the ECC code, lines from the instruction cache have a few spare bits. These bits are used to

cache branch prediction information associated with those instructions. The net result is that the branch predictor has

a larger effective history table, and so has better accuracy.

Other processors have other kinds of predictors (e.g. the store-to-load bypass predictor in the DEC Alpha 21264), and

various specialized predictors are likely to flourish in future processors.

These predictors are caches in that they store information that is costly to compute. Some of the terminology used

when discussing predictors is the same as that for caches (one speaks of a hit in a branch predictor), but predictors are

not generally thought of as part of the cache hierarchy.

The K8 keeps the instruction and data caches coherent in hardware, which means that a store into an instruction

closely following the store instruction will change that following instruction. Other processors, like those in the Alpha

and MIPS family, have relied on software to keep the instruction cache coherent. Stores are not guaranteed to show up

in the instruction stream until a program calls an operating system facility to ensure coherency.

More hierarchies

Tag RAM
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In computer engineering, a tag RAM is used to specify which of the possible memory locations is currently stored in a

CPU cache.[43][44] For a simple, direct-mapped design fast SRAM can be used. Higher associative caches usually

employ content-addressable memory.

Cache reads are the most common CPU operation that takes more than a single cycle. Program execution time tends

to be very sensitive to the latency of a level-1 data cache hit. A great deal of design effort, and often power and silicon

area are expended making the caches as fast as possible.

The simplest cache is a virtually indexed direct-mapped cache. The virtual address is calculated with an adder, the

relevant portion of the address extracted and used to index an SRAM, which returns the loaded data. The data is byte

aligned in a byte shifter, and from there is bypassed to the next operation. There is no need for any tag checking in the

inner loop – in fact, the tags need not even be read. Later in the pipeline, but before the load instruction is retired, the

tag for the loaded data must be read, and checked against the virtual address to make sure there was a cache hit. On a

miss, the cache is updated with the requested cache line and the pipeline is restarted.

An associative cache is more complicated, because some form of tag must be read to determine which entry of the

cache to select. An N-way set-associative level-1 cache usually reads all N possible tags and N data in parallel, and then

chooses the data associated with the matching tag. Level-2 caches sometimes save power by reading the tags first, so

that only one data element is read from the data SRAM.

The diagram to the right is intended to

clarify the manner in which the various

fields of the address are used. Address bit 31

is most significant, bit 0 is least significant.

The diagram shows the SRAMs, indexing,

and multiplexing for a 4 KB, 2-way set-

associative, virtually indexed and virtually

tagged cache with 64 byte (B) lines, a 32-bit

read width and 32-bit virtual address.

Because the cache is 4 KB and has 64 B

lines, there are just 64 lines in the cache,

and we read two at a time from a Tag SRAM

which has 32 rows, each with a pair of 21 bit

tags. Although any function of virtual

address bits 31 through 6 could be used to

index the tag and data SRAMs, it is simplest

to use the least significant bits.

Similarly, because the cache is 4 KB and has a 4 B read path, and reads two ways for each access, the Data SRAM is 512

rows by 8 bytes wide.

A more modern cache might be 16 KB, 4-way set-associative, virtually indexed, virtually hinted, and physically tagged,

with 32 B lines, 32-bit read width and 36-bit physical addresses. The read path recurrence for such a cache looks very

similar to the path above. Instead of tags, vhints are read, and matched against a subset of the virtual address. Later on

in the pipeline, the virtual address is translated into a physical address by the TLB, and the physical tag is read (just

one, as the vhint supplies which way of the cache to read). Finally the physical address is compared to the physical tag

to determine if a hit has occurred.

Implementation

Read path for a 2-way associative cache
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Some SPARC designs have improved the speed of their L1 caches by a few gate delays by collapsing the virtual address

adder into the SRAM decoders. See Sum addressed decoder.

The early history of cache technology is closely tied to the invention and use of virtual memory. Because of scarcity and

cost of semi-conductor memories, early mainframe computers in the 1960s used a complex hierarchy of physical

memory, mapped onto a flat virtual memory space used by programs. The memory technologies would span semi-

conductor, magnetic core, drum and disc. Virtual memory seen and used by programs would be flat and caching would

be used to fetch data and instructions into the fastest memory ahead of processor access. Extensive studies were done

to optimize the cache sizes. Optimal values were found to depend greatly on the programming language used with

Algol needing the smallest and Fortran and Cobol needing the largest cache sizes.

In the early days of microcomputer technology, memory access was only slightly slower than register access. But since

the 1980s[45] the performance gap between processor and memory has been growing. Microprocessors have advanced

much faster than memory, especially in terms of their operating frequency, so memory became a performance

bottleneck. While it was technically possible to have all the main memory as fast as the CPU, a more economically

viable path has been taken: use plenty of low-speed memory, but also introduce a small high-speed cache memory to

alleviate the performance gap. This provided an order of magnitude more capacity—for the same price—with only a

slightly reduced combined performance.

The first documented uses of a TLB were on the GE 645[46] and the IBM 360/67,[47] both of which used an associative

memory as a TLB.

The first documented use of a data cache was on the IBM System/360 Model 85.[48]

The 68010, released in 1982, has a "loop mode" which can be considered a tiny and special-case instruction cache that

accelerates loops that consist of only two instructions. The 68020, released in 1984, replaced that with a typical

instruction cache of 256 bytes, being the first 68k series processor to feature true on-chip cache memory.

The 68030, released in 1987, is basically a 68020 core with an additional 256-byte data cache, a process shrink, and

added burst mode for the caches. The 68040, released in 1990, has split instruction and data caches of four kilobytes

each. The 68060, released in 1994, has the following: 8 KB data cache (four-way associative), 8 KB instruction cache

(four-way associative), 96-byte FIFO instruction buffer, 256-entry branch cache, and 64-entry address translation

cache MMU buffer (four-way associative).

As the x86 microprocessors reached clock rates of 20 MHz and above in the 386, small amounts of fast cache memory

began to be featured in systems to improve performance. This was because the DRAM used for main memory had

significant latency, up to 120 ns, as well as refresh cycles. The cache was constructed from more expensive, but

significantly faster, SRAM memory cells, which at the time had latencies around 10 ns. The early caches were external

to the processor and typically located on the motherboard in the form of eight or nine DIP devices placed in sockets to

enable the cache as an optional extra or upgrade feature.

Some versions of the Intel 386 processor could support 16 to 64 KB of external cache.
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With the 486 processor, an 8 KB cache was integrated directly into the CPU die. This cache was termed Level 1 or L1

cache to differentiate it from the slower on-motherboard, or Level 2 (L2) cache. These on-motherboard caches were

much larger, with the most common size being 256 KB. The popularity of on-motherboard cache continued through

the Pentium MMX era but was made obsolete by the introduction of SDRAM and the growing disparity between bus

clock rates and CPU clock rates, which caused on-motherboard cache to be only slightly faster than main memory.

The next development in cache implementation in the x86 microprocessors began with the Pentium Pro, which

brought the secondary cache onto the same package as the microprocessor, clocked at the same frequency as the

microprocessor.

On-motherboard caches enjoyed prolonged popularity thanks to the AMD K6-2 and AMD K6-III processors that still

used the venerable Socket 7, which was previously used by Intel with on-motherboard caches. K6-III included 256 KB

on-die L2 cache and took advantage of the on-board cache as a third level cache, named L3 (motherboards with up to

2 MB of on-board cache were produced). After the Socket 7 became obsolete, on-motherboard cache disappeared from

the x86 systems.

The three-level caches were used again first with the introduction of multiple processor cores, where the L3 cache was

added to the CPU die. It became common for the total cache sizes to be increasingly larger in newer processor

generations, and recently (as of 2011) it is not uncommon to find Level 3 cache sizes of tens of megabytes.[49]

Intel introduced a Level 4 on-package cache with the Haswell microarchitecture. Crystalwell[24] Haswell CPUs,

equipped with the GT3e variant of Intel's integrated Iris Pro graphics, effectively feature 128 MB of embedded DRAM

(eDRAM) on the same package. This L4 cache is shared dynamically between the on-die GPU and CPU, and serves as a

victim cache to the CPU's L3 cache.[25]

Early cache designs focused entirely on the direct cost of cache and RAM and average execution speed. More recent

cache designs also consider energy efficiency,[50] fault tolerance, and other goals.[51] Researchers have also explored

use of emerging memory technologies such as eDRAM (embedded DRAM) and NVRAM (non-volatile RAM) for

designing caches.[52]

There are several tools available to computer architects to help explore tradeoffs between the cache cycle time, energy,

and area. These tools include the open-source CACTI cache simulator[53] and the open-source SimpleScalar

instruction set simulator. Modeling of 2D and 3D SRAM, eDRAM, STT-RAM, ReRAM and PCM caches can be done

using the DESTINY tool.[54]

A multi-ported cache is a cache which can serve more than one request at a time. When accessing a traditional cache

we normally use a single memory address, whereas in a multi-ported cache we may request N addresses at a time –

where N is the number of ports that connected through the processor and the cache. The benefit of this is that a

pipelined processor may access memory from different phases in its pipeline. Another benefit is that it allows the

concept of super-scalar processors through different cache levels.

Cache (computing)
Cache prefetching
Cache control instructions
Cache coherency
Cache algorithms
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Memory hierarchy
Sum addressed decoder
Micro-operation

1. The very first paging machine, the Ferranti Atlas[17][18] had no page tables in main memory; there was an
associative memory with one entry for every 512 word page frame of core.

Dinero (Cache simulator by University of Wisconsin System)
Instruction unit
Locality of reference
Memoization, briefly defined in List of computer term etymologies
Memory hierarchy
No-write allocation
Scratchpad RAM
Write buffer
Cache Hierarchy
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