Type Systems and Functional Programming

Minnea Muraru

mihnea.muraru@upb.ro

Fall 2023

Part I

Introduction

Contents

Objectives

Functional programming

Contents

Objectives

Functional programming

Grading

- Lab: 60, ≥ 30
- Exam: 40, ≥ 20
- Final grade ≥ 50

Course objectives

- Study the characteristics of functional programming, such as lazy evaluation and type systems of different strengths
- Learn advanced mechanisms of the Haskell language, which are impossible or difficult to simulate in other languages
- Apply this apparatus to model practical problems

Course objectives

- Study the characteristics of functional programming, such as lazy evaluation and type systems of different strengths
- Learn advanced mechanisms of the Haskell language, which are impossible or difficult to simulate in other languages
- Apply this apparatus to model practical problems, e.g. program synthesis, lazy search, probability spaces

Main lab outcome

An evaluator for a functional language, equipped with a type synthesizer

Contents

Objectives

Functional programming

Functional programming features

- Mathematical functions, as value transformers

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state

Functional flow

Stateless computation

Output dependent on input exlcusively:

t_{0}

Stateless computation

Output dependent on input exlcusively:

t_{1}

Stateless computation

Output dependent on input exlcusively:

t_{2}

Stateful computation

Output dependent on input and time:

Stateful computation

Output dependent on input and time:

Stateful computation

Output dependent on input and time:

Functional flow

Pure

Functional flow

Impure

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion
- Higher-order functions

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion
- Higher-order functions
- Lazy evaluation

Why functional programming?

- Simple evaluation model; equational reasoning

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)
- Massive parallelization

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)
- Massive parallelization
- Type systems and logic, inextricably linked

Why functional programming?

- Simple evaluation model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)
- Massive parallelization
- Type systems and logic, inextricably linked
- Automatic program verification and synthesis

Part II

Untyped Lambda Calculus

Contents

Introduction
Lambda expressions

Reduction

Normal forms

Evaluation order

Contents

Introduction
Lambda expressions

Reduction

Normal forms

Evaluation order

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function
- Computation: evaluation of function applications, through textual substitution

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function
- Computation: evaluation of function applications, through textual substitution
- Evaluate = obtain a value (a function)!

Untyped lambda calculus

- Model of computation - Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function
- Computation: evaluation of function applications, through textual substitution
- Evaluate = obtain a value (a function)!
- No side effects or state

Applications

- Theoretical basis of numerous languages:
- LISP
- ML
- Scheme
- F\#
- Clean
- Clojure
- Scala
- Haskell
- Erlang

Applications

- Theoretical basis of numerous languages:
- LISP
- ML
- Scheme
- F\#
- Clean
- Clojure
- Scala
- Haskell
- Erlang
- Formal program verification, due to its simple execution model

Contents

Introduction

Lambda expressions

Reduction

Normal forms

Evaluation order

λ-expressions

Definition

Definition 4.1 (λ-expression).

- Variable: a variable x is a λ-expression

λ-expressions

Definition

Definition 4.1 (λ-expression).

- Variable: a variable x is a λ-expression
- Function: if x is a variable and E is a λ-expression, then λx. E is a λ-expression, which stands for an anonymous, unary function, with the formal parameter x and the body E

λ-expressions

Definition

Definition 4.1 (λ-expression).

- Variable: a variable x is a λ-expression
- Function: if x is a variable and E is a λ-expression, then λx. E is a λ-expression, which stands for an anonymous, unary function, with the formal parameter x and the body E
- Application: if E and A are λ-expressions, then ($E A$) is a λ-expression, which stands for the application of the expression E onto the actual argument A.

λ-expressions

Examples

Example 4.2 (λ-expressions).

- $x \rightarrow$ variable x

λ-expressions

Examples

Example 4.2 (λ-expressions).

- $x \rightarrow$ variable x
- $\lambda x . x$: the identity function

λ-expressions

Examples

Example 4.2 (λ-expressions).

- $x \rightarrow$ variable x
- $\lambda x . x$: the identity function
- $\lambda x . \lambda y . x$: a function with another function as body!

λ-expressions

Examples

Example 4.2 (λ-expressions).

- $x \rightarrow$ variable x
- $\lambda x . x$: the identity function
- $\lambda x . \lambda y . x$: a function with another function as body!
- $(\lambda x . x y)$: the application of the identity function onto the actual argument y

λ-expressions

Examples

Example 4.2 (λ-expressions).

- $x \rightarrow$ variable x
- $\lambda x . x$: the identity function
- $\lambda x . \lambda y . x$: a function with another function as body!
- $(\lambda x . x y)$: the application of the identity function onto the actual argument y
- $(\lambda x .(x x) \lambda x . x)$

Intuition on application evaluation

$$
\left(\begin{array}{lll}
\lambda x . & x & y
\end{array}\right)
$$

Intuition on application evaluation

$$
\left(\begin{array}{ll}
\lambda x . x & y
\end{array}\right)
$$

Intuition on application evaluation

$$
\left(\begin{array}{lll}
\lambda x . & x & y
\end{array}\right)
$$

Intuition on application evaluation

$$
\left(\begin{array}{ll}
\lambda x . x & y
\end{array}\right)
$$

Intuition on application evaluation

$\left(\begin{array}{lll}\lambda x & x & y\end{array}\right)$

Intuition on application evaluation

Intuition on application evaluation

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

- $E=\lambda x . F$ or

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

- $E=\lambda x . F$ or
- $E=\ldots \lambda x_{n} \cdot F \ldots$ or

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

- $E=\lambda x . F$ or
- $E=\ldots \lambda x_{n} . F \ldots$ or
- $E=\ldots \lambda x . F \ldots$ and x_{n} appears in F.

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

- $E=\lambda x$. F or
- $E=\ldots \lambda x_{n} . F \ldots$ or
- $E=\ldots \lambda x . F \ldots$ and x_{n} appears in F.

Definition 4.4 (Free occurrence).
A variable occurrence is free in an expression iff it is not bound in that expression.

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_{n} of a variable x is bound in the expression E iff:

- $E=\lambda x$. F or
- $E=\ldots \lambda x_{n} \cdot F \ldots$ or
- $E=\ldots \lambda x . F \ldots$ and x_{n} appears in F.

Definition 4.4 (Free occurrence).
A variable occurrence is free in an expression iff it is not bound in that expression.

Bound/ free occurrence w.r.t. a given expression!

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

- x_{1}, x_{2} bound in E

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

- x_{1}, x_{2} bound in E
- x_{3} free in E

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

- x_{1}, x_{2} bound in E
- x_{3} free in E
- x_{2} free in F!

Variable occurrences

Examples

Example 4.6 (Bound and free variables).
In the expression $E=\left(\lambda x . \lambda z .\left(\begin{array}{l}z\end{array}\right)\left(\begin{array}{ll}z y)) \text {, we emphasize }\end{array}\right.\right.$ the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

Variable occurrences

Examples

Example 4.6 (Bound and free variables).
In the expression $E=\left(\lambda x . \lambda z .\left(\begin{array}{l}z\end{array}\right)\left(\begin{array}{ll}z y)) \text {, we emphasize }\end{array}\right.\right.$ the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E

Variable occurrences

Examples

Example 4.6 (Bound and free variables).
In the expression $E=\left(\lambda x . \lambda z .\left(\begin{array}{l}z\end{array}\right)\left(\begin{array}{ll}z y)) \text {, we emphasize }\end{array}\right.\right.$ the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=\left(\lambda x . \lambda z .\left(\begin{array}{l}z\end{array}\right)\left(\begin{array}{l}z y)) \text {, we emphasize }\end{array}\right.\right.$ the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=(\lambda x . \lambda z .(z x)(z y))$, we emphasize the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F
- x_{2} free in F

Variables

Definitions

Definition 4.7 (Bound variable).

A variable is bound in an expression iff all its occurrences are bound in that expression.

Variables

Definitions

Definition 4.7 (Bound variable).
A variable is bound in an expression iff all its occurrences are bound in that expression.

Definition 4.8 (Free variable).

A variable is free in an expression iff it is not bound in that expression i.e., iff at least one of its occurrences is free in that expression.

Variables

Definitions

Definition 4.7 (Bound variable).
A variable is bound in an expression iff all its occurrences are bound in that expression.

Definition 4.8 (Free variable).

A variable is free in an expression iff it is not bound in that expression i.e., iff at least one of its occurrences is free in that expression.

Bound/ free variable w.r.t. a given expression!

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

- x_{1}, x_{2} bound in E
- x_{3} free in E
- x_{2} free in F!

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E=(\lambda x . x \quad x)$, we emphasize the occurrences of x :

$$
E=(\lambda x_{1} \cdot \underbrace{x_{2}}_{F} x_{3}) .
$$

- x_{1}, x_{2} bound in E
- x_{3} free in E
- x_{2} free in F !
- x free in E and F

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=(\lambda x . \lambda z .(z x)(z y))$, we emphasize the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F
- x_{2} free in F

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=(\lambda x . \lambda z .(z x)(z y))$, we emphasize the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F
- x_{2} free in F
- x bound in E, but free in F

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=(\lambda x . \lambda z .(z x)(z y))$, we emphasize the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F
- x_{2} free in F
- x bound in E, but free in F
- y free in E

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E=(\lambda x . \lambda z .(z x)(z y))$, we emphasize the occurrences of x, y, z :

$$
E=(\lambda x_{1} \cdot \overbrace{\lambda z_{1} \cdot\left(z_{2} x_{2}\right)}^{F}\left(z_{3} y_{1}\right)) .
$$

- $x_{1}, x_{2}, z_{1}, z_{2}$ bound in E
- y_{1}, z_{3} free in E
- z_{1}, z_{2} bound in F
- x_{2} free in F
- x bound in E, but free in F
- y free in E
- z free in E, but bound in F

Free and bound variables

Free variables

- $F V(x)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=F V(E) \backslash\{x\}$
- $F V\left(\left(E_{1} E_{2}\right)\right)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=F V(E) \backslash\{x\}$
- $F V\left(\left(E_{1} E_{2}\right)\right)=F V\left(E_{1}\right) \cup F V\left(E_{2}\right)$

Bound variables

- $B V(x)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=F V(E) \backslash\{x\}$
- $F V\left(\left(E_{1} E_{2}\right)\right)=F V\left(E_{1}\right) \cup F V\left(E_{2}\right)$

Bound variables

- $B V(x)=\emptyset$
- $B V(\lambda x . E)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=F V(E) \backslash\{x\}$
- $F V\left(\left(E_{1} E_{2}\right)\right)=F V\left(E_{1}\right) \cup F V\left(E_{2}\right)$

Bound variables

- $B V(x)=\emptyset$
- $B V(\lambda x . E)=B V(E) \cup\{x\}$
- $B V\left(\left(E_{1} E_{2}\right)\right)=$

Free and bound variables

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . E)=F V(E) \backslash\{x\}$
- $F V\left(\left(E_{1} E_{2}\right)\right)=F V\left(E_{1}\right) \cup F V\left(E_{2}\right)$

Bound variables

- $B V(x)=\emptyset$
- $B V(\lambda x . E)=B V(E) \cup\{x\}$
- $B V\left(\left(E_{1} E_{2}\right)\right)=B V\left(E_{1}\right) \backslash F V\left(E_{2}\right) \cup B V\left(E_{2}\right) \backslash F V\left(E_{1}\right)$

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.
Example 4.10 (Closed expressions).

- ($\lambda x . x \quad \lambda x . \lambda y . x)$

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.
Example 4.10 (Closed expressions).

- $(\lambda x . x \quad \lambda x . \lambda y . x)$: closed
- $(\lambda x \cdot x a)$

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.

Example 4.10 (Closed expressions).

- $(\lambda x . x \quad \lambda x . \lambda y . x)$: closed
- $(\lambda x \cdot x$ a) : open, since a is free

Remarks:

- Free variables may stand for other λ-expressions, as in λx.(($+x$) 1).
- Before evaluation, an expression must be brought to the closed form.
- The substitution process must terminate.

Contents

Introduction

Lambda expressions

Reduction

Normal forms

Evaluation order

β-reduction

Definitions

Definition 5.1 (β-reduction).

The evaluation of the application ($\lambda x . E A$), by substituting every free occurrence of the formal argument, x, in the function body, E, with the actual argument, A :
$(\lambda x . E A) \rightarrow_{\beta} E_{[A / x]}$.

β-reduction

Definitions

Definition 5.1 (β-reduction).

The evaluation of the application ($\lambda x . E A$), by substituting every free occurrence of the formal argument, x, in the function body, E, with the actual argument, A :
$(\lambda x . E A) \rightarrow{ }_{\beta} E_{[A / X]}$.

Definition 5.2 (β-redex).
The application ($\lambda \times . E A$).

β-reduction

Examples

Example 5.3 (β-reduction).

- $(\lambda x \cdot x y)$

β-reduction

Examples

Example 5.3 (β-reduction).

- $(\lambda x . x \quad y) \rightarrow{ }_{\beta} X_{[y / x]}$

β-reduction

Examples

Example 5.3 (β-reduction).

- $(\lambda x . x y) \rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y)$

β-reduction

Examples

Example 5.3 (β-reduction).

- $(\lambda x . x y) \rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y) \rightarrow_{\beta} \lambda x . x_{[y / x]}$

β-reduction

Examples

Example 5.3 (β-reduction).

- $\left(\lambda x . x\right.$ y) $\rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x \quad y) \rightarrow_{\beta} \lambda x \cdot x_{[y / x]} \rightarrow \lambda x . x$
- ($\lambda x . \lambda y . x y)$

β-reduction

Examples

Example 5.3 (β-reduction).

- $\left(\lambda x . x\right.$ y) $\rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y) \rightarrow_{\beta} \lambda x . x_{[y / x]} \rightarrow \lambda x . x$
- $(\lambda x . \lambda y . x \quad y) \rightarrow_{\beta} \lambda y . x_{[y / x]}$

β-reduction

Examples

Example 5.3 (β-reduction).

- $\left(\lambda x . x\right.$ y) $\rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y) \rightarrow_{\beta} \lambda x \cdot x_{[y / x]} \rightarrow \lambda x . x$
- $(\lambda x . \lambda y \cdot x \quad y) \rightarrow_{\beta} \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . y$

β-reduction

Examples

Example 5.3 (β-reduction).

- $\left(\lambda x . x\right.$ y) $\rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y) \rightarrow_{\beta} \lambda x \cdot x_{[y / x]} \rightarrow \lambda x . x$
- $(\lambda x . \lambda y \cdot x \quad y) \rightarrow_{\beta} \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . y$

β-reduction

Examples

Example 5.3 (β-reduction).

- $(\lambda x . x y) \rightarrow_{\beta} x_{[y / x]} \rightarrow y$
- $(\lambda x . \lambda x . x y) \rightarrow_{\beta} \lambda x . x_{[y / x]} \rightarrow \lambda x . x$
- $(\lambda x . \lambda y . x \quad y) \rightarrow_{\beta} \lambda y . x_{[y / x]} \rightarrow \lambda y . y$

Wrong! The free variable y becomes bound, changing its meaning!

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).

 ($\lambda x . \lambda y . x y$)
β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).
 $(\lambda x . \lambda y . x y) \rightarrow(\lambda x . \lambda z . x y)$

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).
 $(\lambda x . \lambda y . x y) \rightarrow(\lambda x . \lambda z . x y) \rightarrow_{\beta} \lambda z . x_{[y / x]}$

β-reduction

Collisions

- Problem: within the expression ($\lambda x . E A$):
- $F V(A) \cap B V(E)=\emptyset \Rightarrow$ correct reduction always
- $F V(A) \cap B V(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).

$(\lambda x . \lambda y . x y) \rightarrow(\lambda x . \lambda z . x y) \rightarrow_{\beta} \lambda z . x_{[y / x]} \rightarrow \lambda z . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow_{\alpha} \lambda y . E_{[y / x]}$. Two conditions must be met.
Example 5.6 (α-conversion).

- $\lambda x . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

$-\lambda x . y \rightarrow_{\alpha} \lambda y \cdot y_{[y / x]}$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y . y_{[y / x]} \rightarrow \lambda y . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow_{\alpha} \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y . y_{[y / x]} \rightarrow \lambda y . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow \alpha \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x \cdot \lambda y \cdot x \rightarrow_{\alpha} \lambda y \cdot \lambda y \cdot x_{[y / x]}$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
$-\lambda x . \lambda y . x \rightarrow_{\alpha} \lambda y . \lambda y . x_{[y / x]} \rightarrow \lambda y . \lambda y . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow \alpha \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x \rightarrow_{\alpha} \lambda y . \lambda y . x_{[y / x]} \rightarrow \lambda y . \lambda y . y$

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow \alpha \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x \rightarrow_{\alpha} \lambda y . \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . \lambda y . y:$ Wrong!

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow \alpha \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x \rightarrow_{\alpha} \lambda y . \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . \lambda y \cdot y:$ Wrong!

Conditions:

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x \rightarrow{ }_{\alpha} \lambda y . \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . \lambda y . y:$ Wrong!

Conditions:

- y is not free in E

α-conversion

Definition

Definition 5.5 (α-conversion).

Systematic relabeling of bound variables in a function: $\lambda x . E \rightarrow \alpha \lambda y . E_{[y / x]}$. Two conditions must be met.

Example 5.6 (α-conversion).

- $\lambda x . y \rightarrow_{\alpha} \lambda y \cdot y_{[y / x]} \rightarrow \lambda y . y:$ Wrong!
- $\lambda x . \lambda y . x \rightarrow{ }_{\alpha} \lambda y . \lambda y \cdot x_{[y / x]} \rightarrow \lambda y . \lambda y . y:$ Wrong!

Conditions:

- y is not free in E
- a free occurrence in E stays free in $E_{[y / x]}$

α-conversion

Examples

Example 5.7 (α-conversion).
 - $\lambda x .\left(\begin{array}{ll}x & y)\end{array} \rightarrow_{\alpha} \lambda z .\left(\begin{array}{l}z\end{array}\right)\right.$

α-conversion

Examples

Example 5.7 (α-conversion).

- $\lambda x .\left(\begin{array}{ll}x & y\end{array}\right) \rightarrow_{\alpha} \lambda z .\left(\begin{array}{l}z\end{array}\right):$ Correct!
- $\lambda x . \lambda x .\left(\begin{array}{ll}x & y) \\ \rightarrow_{\alpha} & \lambda y . \lambda x .(x y)\end{array}\right.$

α-conversion

Examples

Example 5.7 (α-conversion).

- $\lambda x .\left(\begin{array}{ll}x & y\end{array}\right) \rightarrow_{\alpha} \lambda z .\left(\begin{array}{l}z\end{array}\right):$ Correct!
- $\lambda x . \lambda x .(x y) \rightarrow_{\alpha} \lambda y . \lambda x .(x y):$ Wrong! y is free in $\lambda x .(x y)$.
- $\lambda x . \lambda y .(y x) \rightarrow_{\alpha} \lambda y . \lambda y .(y y)$

α-conversion

Examples

Example 5.7 (α-conversion).

- $\lambda x .\left(\begin{array}{ll}x & y\end{array}\right) \rightarrow_{\alpha} \lambda z .\left(\begin{array}{l}z\end{array}\right):$ Correct!
- $\lambda x . \lambda x .(x y) \rightarrow_{\alpha} \lambda y . \lambda x .(x y)$: Wrong! y is free in $\lambda x .(x y)$.
- $\lambda x . \lambda y .(y x) \rightarrow_{\alpha} \lambda y . \lambda y .(y \quad y):$ Wrong!

The free occurrence of x in λy. $(y x)$ becomes bound, after substitution, in λy. $(y y)$.

- $\lambda x . \lambda y .(y y) \rightarrow_{\alpha} \lambda y . \lambda y .(y y)$

α-conversion

Examples

Example 5.7 (α-conversion).

- $\lambda x .\left(\begin{array}{ll}x & y\end{array}\right) \rightarrow_{\alpha} \lambda z .\left(\begin{array}{l}z\end{array}\right):$ Correct!
- $\lambda x . \lambda x .\binom{x}{y} \rightarrow_{\alpha} \lambda y . \lambda x .(x y):$ Wrong! y is free in $\lambda x .(x y)$.
- $\lambda x . \lambda y .(y x) \rightarrow_{\alpha} \lambda y . \lambda y .(y \quad y):$ Wrong!

The free occurrence of x in λy. $(y x)$ becomes bound, after substitution, in λy. $(y y)$.

- $\lambda x . \lambda y$.(y y) $\rightarrow_{\alpha} \lambda y . \lambda y .(y$ y) : Correct!

Reduction

Definitions

Definition 5.8 (Reduction step).

A sequence made of a possible α-conversion, followed by a β-reduction, such that the second produces no collisions: $E_{1} \rightarrow E_{2} \equiv E_{1} \rightarrow_{\alpha} E_{3} \rightarrow_{\beta} E_{2}$.

Reduction

Definitions

Definition 5.8 (Reduction step).
A sequence made of a possible α-conversion, followed by a β-reduction, such that the second produces no collisions: $E_{1} \rightarrow E_{2} \equiv E_{1} \rightarrow_{\alpha} E_{3} \rightarrow_{\beta} E_{2}$.

Definition 5.9 (Reduction sequence).
A string of zero or more reduction steps: $E_{1} \rightarrow^{*} E_{2}$. It is an element of the reflexive transitive closure of relation \rightarrow.

Reduction

Examples

Example 5.10 (Reduction).

- (($\lambda x . \lambda y .(y x) y) \lambda x \cdot x)$

Reduction

Examples

Example 5.10 (Reduction).

$$
\begin{aligned}
- & \left(\left(\lambda x \cdot \lambda y \cdot\left(\begin{array}{ll}
y & x
\end{array}\right) y\right) \lambda x \cdot x\right) \\
& \rightarrow\left(\lambda z \cdot\left(\begin{array}{ll}
z & y
\end{array}\right) \lambda x \cdot x\right)
\end{aligned}
$$

Reduction

Examples

Example 5.10 (Reduction).

$$
\begin{aligned}
- & \left(\left(\lambda x \cdot \lambda y .\left(\begin{array}{ll}
y & x
\end{array}\right) y\right) \lambda x \cdot x\right) \\
& \rightarrow\left(\lambda z \cdot\left(\begin{array}{ll}
z & y
\end{array}\right) \lambda x \cdot x\right) \\
& \rightarrow(\lambda x \cdot x \quad y)
\end{aligned}
$$

Reduction

Examples

Example 5.10 (Reduction).

$$
\begin{aligned}
& \left(\left(\lambda x \cdot \lambda y .\left(\begin{array}{ll}
y & x
\end{array}\right) y\right) \lambda x \cdot x\right) \\
& \rightarrow\left(\lambda z .\left(\begin{array}{ll}
z & y
\end{array}\right) \lambda x \cdot x\right) \\
& \rightarrow(\lambda x \cdot x \quad y) \\
& \rightarrow y
\end{aligned}
$$

Reduction

Examples

Example 5.10 (Reduction).

$$
\begin{aligned}
& \text { - ((} \lambda x . \lambda y .(y x) y) \lambda x . x) \\
& \rightarrow(\lambda z .(z y) \lambda x . x) \\
& \rightarrow(\lambda x . x y) \\
& \rightarrow y \\
& \text { - ((} \lambda x . \lambda y .(y x) y) \lambda x \cdot x) \rightarrow^{*} y
\end{aligned}
$$

Reduction

Properties

- Reduction step = reduction sequence:

$$
E_{1} \rightarrow E_{2} \Rightarrow E_{1} \rightarrow^{*} E_{2}
$$

- Reflexivity:

$$
E \rightarrow{ }^{*} E
$$

- Transitivity:

$$
E_{1} \rightarrow^{*} E_{2} \wedge E_{2} \rightarrow^{*} E_{3} \Rightarrow E_{1} \rightarrow^{*} E_{3}
$$

Contents

Introduction

Lambda expressions

Reduction

Normal forms

Evaluation order

Questions

1. When does the computation terminate?

Does it always?

Questions

1. When does the computation terminate?

Does it always?
2. Does the answer depend on the reduction sequence?

Questions

1. When does the computation terminate?

Does it always?
2. Does the answer depend on the reduction sequence?
3. If the computation terminates for distinct reduction sequences, do we always get the same result?

Questions

1. When does the computation terminate?

Does it always?
2. Does the answer depend on the reduction sequence?
3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Normal forms

Definition 6.1 (Normal form).

The form of an expression that cannot be reduced i.e., that contains no β-redexes.

Normal forms

Definition 6.1 (Normal form).
The form of an expression that cannot be reduced i.e., that contains no β-redexes.

Definition 6.2 (Functional normal form, FNF). λx. E, even if E contains β-redexes.

Normal forms

Definition 6.1 (Normal form).
The form of an expression that cannot be reduced i.e., that contains no β-redexes.

Definition 6.2 (Functional normal form, FNF). λx. E, even if E contains β-redexes.

Example 6.3 (Normal forms).
$\left(\lambda x . \lambda y .\left(\begin{array}{ll}x & y) \\ \lambda x . x)\end{array} \rightarrow_{\mathrm{FNF}} \lambda y .(\lambda x . x y) \rightarrow_{\mathrm{NF}} \lambda y . y\right.\right.$

Normal forms

Definition 6.1 (Normal form).
The form of an expression that cannot be reduced i.e., that contains no β-redexes.

Definition 6.2 (Functional normal form, FNF). λx. E, even if E contains β-redexes.

Example 6.3 (Normal forms).
$\left(\lambda x . \lambda y .\left(\begin{array}{ll}x & y) \\ \lambda x . x)\end{array} \rightarrow_{\mathrm{FNF}} \lambda y .(\lambda x . x y) \rightarrow_{\mathrm{NF}} \lambda y . y\right.\right.$
FNF is used in programming, where the function body is evaluated only when the function is effectively applied.

Reduction termination (reducibility)

Example 6.4.
$\Omega \equiv\left(\lambda x .\left(\begin{array}{ll}x & x) \\ & \left.\lambda .\left(\begin{array}{ll}x & x\end{array}\right)\right)\end{array}\right.\right.$

Reduction termination (reducibility)

Example 6.4.
$\Omega \equiv\left(\lambda x .\left(\begin{array}{ll}x & x) \\ x & \left..\left(\begin{array}{ll}x & x\end{array}\right)\right) \rightarrow\left(\lambda x .\left(\begin{array}{ll}x & x\end{array}\right) \lambda x .(x \quad x)\right)\end{array}\right.\right.$

Reduction termination (reducibility)

Example 6.4.

Ω does not have a terminating reduction sequence.

Reduction termination (reducibility)

> Example 6.4.
> $\Omega \equiv\left(\lambda x .\left(\begin{array}{ll}x & x) \\ & x .(x \quad x)) \rightarrow\left(\lambda x .\left(\begin{array}{ll}x & x\end{array}\right) \lambda x .\left(\begin{array}{ll}x & x\end{array}\right)\right)^{*} \ldots \\ \hline\end{array}\right.\right.$ Ω does not have a terminating reduction sequence.

Definition 6.5 (Reducible expression).

An expression that has a terminating reduction sequence.

Reduction termination (reducibility)

> Example 6.4.
> $\Omega \equiv\left(\lambda x .\left(\begin{array}{ll}x & x) \\ & \left.\lambda .\left(\begin{array}{ll}x & x\end{array}\right)\right) \rightarrow\left(\lambda x .\left(\begin{array}{ll}x & x\end{array}\right) \lambda x .\left(\begin{array}{ll}x & x\end{array}\right)\right) \rightarrow^{*} \ldots \\ \hline\end{array}\right.\right.$
> Ω does not have a terminating reduction sequence.

Definition 6.5 (Reducible expression).
An expression that has a terminating reduction sequence.
Ω is irreducible.

Questions

1. When does the computation terminate?

Does it always?
2. Does the answer depend on the reduction sequence?
3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?
3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Reduction sequences

Example 6.6 (Reduction sequences).

$$
E=(\lambda x . y \Omega)
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{array}{ll}
& E=(\lambda x . y \Omega) \\
\bullet \rightarrow &
\end{array}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{aligned}
& E=(\lambda x . y \Omega) \\
\bullet & \xrightarrow{1} y \\
& \stackrel{2}{\rightarrow} E \xrightarrow{1} y
\end{aligned}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{aligned}
& E=(\lambda x . y \Omega) \\
& \xrightarrow{1} y \\
- & \xrightarrow{2} E \xrightarrow{1} y \\
- & \xrightarrow{2} E \xrightarrow{2} E \xrightarrow{1} y
\end{aligned}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{aligned}
& E=(\lambda x . y \Omega) \\
> & \xrightarrow{1} y \\
> & \xrightarrow{2} E \xrightarrow{1} y \\
& \stackrel{2}{\rightarrow} E \xrightarrow{2} E \xrightarrow{1} y \\
> & \ldots
\end{aligned}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{aligned}
& \qquad E=(\lambda x . y \Omega) \\
& \triangleright \xrightarrow{1} y \\
&> \xrightarrow{2} E \xrightarrow{1} y \\
&> \stackrel{2}{\rightarrow} E \xrightarrow{2} E \xrightarrow{1} y \\
&> \ldots
\end{aligned}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\begin{aligned}
& E=(\lambda x . y \Omega) \\
& \text { - }{ }^{1} y \\
& \rightarrow \stackrel{2}{\rightarrow} E \xrightarrow{1} y \\
& \rightarrow{\xrightarrow{2^{n} 1}}^{*} y, n \geq 0 \\
& \stackrel{2}{\rightarrow} E \xrightarrow{2} E \xrightarrow{1} y \\
& \stackrel{2^{\infty}}{ }{ }^{*} \ldots
\end{aligned}
$$

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\left.\begin{array}{rl}
& E=(\lambda x . y \Omega) \\
& \stackrel{1}{\rightarrow} y \\
\bullet & \\
\stackrel{2}{\rightarrow} E \xrightarrow{1} y & \\
\bullet & \xrightarrow{2} E \xrightarrow{2} E \xrightarrow{2^{n_{1}}} y
\end{array}\right)
$$

- E has a nonterminating reduction sequence, but still has a normal form, $y . E$ is reducible, Ω is not.

Reduction sequences

Example 6.6 (Reduction sequences).

$$
\left.\begin{array}{rl}
& E=(\lambda x . y \Omega) \\
& \stackrel{1}{\rightarrow} y \\
\bullet & \\
\stackrel{2}{\rightarrow} E \xrightarrow{1} y & \\
\bullet & \xrightarrow{2} E \xrightarrow{2} E \xrightarrow{2^{n_{1}}} y
\end{array}\right)
$$

- E has a nonterminating reduction sequence, but still has a normal form, $y . E$ is reducible, Ω is not.
- The length of terminating reduction sequences is unbounded.

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?
3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?

- YES

3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Normal form uniqueness

Results

Theorem 6.7 (Church-Rosser / diamond).

 If $E \rightarrow{ }^{*} E_{1}$ and $E \rightarrow{ }^{*} E_{2}$, then there is an E_{3} such that $E_{1} \rightarrow^{*} E_{3}$ and $E_{2} \rightarrow^{*} E_{3}$.

Normal form uniqueness

Results

Theorem 6.7 (Church-Rosser / diamond).

If $E \rightarrow{ }^{*} E_{1}$ and $E \rightarrow{ }^{*} E_{2}$, then there is an E_{3} such that $E_{1} \rightarrow{ }^{*} E_{3}$ and $E_{2} \rightarrow{ }^{*} E_{3}$.

Corollary 6.8 (Normal form uniqueness).

If an expression is reducible, its normal form is unique. It corresponds to the value of that expression.

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
(\lambda x \cdot \lambda y \cdot(x y)(\lambda x \cdot x y))
$$

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
\begin{aligned}
& (\lambda x \cdot \lambda y \cdot(x y)(\lambda x \cdot x y)) \\
& \bullet \rightarrow \lambda z \cdot((\lambda x . x y) z) \rightarrow \lambda z \cdot(y z)
\end{aligned}
$$

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
\begin{aligned}
& \left(\lambda x . \lambda y .\left(\begin{array}{ll}
x & y
\end{array}\right)(\lambda x . x y)\right) \\
\mapsto & \rightarrow \lambda z .((\lambda x . x y) z) \rightarrow \lambda z .\left(\begin{array}{ll}
y & z
\end{array}\right) \\
\mapsto & \rightarrow(\lambda x . \lambda y .(x y) y) \rightarrow \lambda w .(y w)
\end{aligned}
$$

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
\begin{aligned}
& \text { (} \lambda x . \lambda y .(x y)(\lambda x . x y)) \\
& -\rightarrow \lambda z .\left((\lambda x . x \text { y) } z) \rightarrow \lambda z .(y z) \rightarrow_{\alpha} \lambda a .(y a)\right. \\
& \rightarrow(\lambda x . \lambda y .(x y) y) \rightarrow \lambda w .(y w) \rightarrow_{\alpha} \lambda a .(y a)
\end{aligned}
$$

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
\begin{aligned}
& \text { (} \lambda x . \lambda y .(x y)(\lambda x . x y)) \\
& -\rightarrow \lambda z .\left(\left(\lambda x . x \text { y) z) } \rightarrow \lambda z .\left(\begin{array}{l}
y \\
z)
\end{array} \rightarrow_{\alpha} \lambda a .(y \text { a) }\right.\right.\right. \\
& \rightarrow\left(\lambda x . \lambda y .\left(\begin{array}{ll}
x & y)
\end{array}\right) \rightarrow \lambda w .(y w) \rightarrow_{\alpha} \lambda a .(y a)\right.
\end{aligned}
$$

- Normal form: class of expressions, equivalent under systematic relabeling

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$
\begin{aligned}
& \text { (} \lambda x . \lambda y \cdot(x y)(\lambda x . x y)) \\
& \text { - } \rightarrow \lambda z .\left((\lambda x . x \text { y) } z) \rightarrow \lambda z .(y z) \rightarrow_{\alpha} \lambda a .(y \text { a) }\right. \\
& \rightarrow(\lambda x . \lambda y .(x y) y) \rightarrow \lambda w .(y w) \rightarrow \alpha \lambda a .(y a)
\end{aligned}
$$

- Normal form: class of expressions, equivalent under systematic relabeling
- Value: distinguished member of this class

Structural equivalence

Definition 6.10 (Structural equivalence).

Two expressions are structurally equivalent iff they both reduce to the same expression.

Example 6.11 (Structural equivalence). $\lambda z .((\lambda x . x y) z)$ and $(\lambda x . \lambda y .(x y) y)$ in Example 6.9.

Computational equivalence

Definition 6.12 (Computational equivalence).
Two expressions are computationally equivalent iff they the behave in the same way when applied onto the same arguments.

Example 6.13 (Computational equivalence).

$$
\begin{aligned}
& E_{1}=\lambda y . \lambda x .\left(\begin{array}{ll}
y & x
\end{array}\right) \\
& E_{2}=\lambda x . x
\end{aligned}
$$

- (($\left.\left.E_{1} a\right) b\right) \rightarrow^{*}(a b)$
- $\left(\left(E_{2} a\right) b\right) \rightarrow^{*}(a b)$

Computational equivalence

Definition 6.12 (Computational equivalence).

Two expressions are computationally equivalent iff they the behave in the same way when applied onto the same arguments.

Example 6.13 (Computational equivalence).

$$
\begin{aligned}
& E_{1}=\lambda y . \lambda x .\left(\begin{array}{ll}
y & x
\end{array}\right) \\
& E_{2}=\lambda x . x
\end{aligned}
$$

- $\left(\left(E_{1} a\right) b\right) \rightarrow^{*}(a b)$
- $\left(\left(E_{2} a\right) b\right) \rightarrow^{*}(a b)$
- $E_{1} \not 力^{*} E_{2}$ and $E_{2} \nrightarrow^{*} E_{1}$ (not structurally equivalent)

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?

- YES

3. If the computation terminates for distinct reduction sequences, do we always get the same result?
4. If the result is unique, how do we safely obtain it?

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?

- YES

3. If the computation terminates for distinct reduction sequences, do we always get the same result?

- YES

4. If the result is unique, how do we safely obtain it?

Reduction order

Definitions and examples

Definition 6.14 (Left-to-right reduction step). The reduction of the outermost leftmost β-redex.

Example 6.15 (Left-to-right reduction).
$((\lambda x . x \lambda x . y)(\lambda x .(x x) \lambda x .(x x))) \rightarrow(\lambda x . y \Omega) \rightarrow y$

Reduction order

Definitions and examples

Definition 6.14 (Left-to-right reduction step). The reduction of the outermost leftmost β-redex.

Example 6.15 (Left-to-right reduction). $((\lambda x . x \lambda x . y)(\lambda x .(x \quad x) \lambda x .(x x))) \rightarrow(\lambda x . y \Omega) \rightarrow y$

Definition 6.16 (Right-to-left reduction step).
The reduction of the innermost rightmost β-redex.
Example 6.17 (Right-to-left reduction). $((\lambda x . x \lambda x . y)(\lambda x .(x x) \lambda x .(x x))) \rightarrow(\lambda x . y \Omega) \rightarrow \ldots$

Reduction order

Which one is better?

Theorem 6.18 (Normalization).
If an expression is reducible, its left-to-right reduction terminates.

The theorem does not guarantee the termination for any expression, but only for reducible ones!

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?

- YES

3. If the computation terminates for distinct reduction sequences, do we always get the same result?

- YES

4. If the result is unique, how do we safely obtain it?

Questions

1. When does the computation terminate?

Does it always?

- NO

2. Does the answer depend on the reduction sequence?

- YES

3. If the computation terminates for distinct reduction sequences, do we always get the same result?

- YES

4. If the result is unique, how do we safely obtain it?

- Left-to-right reduction

Contents

Introduction

Lambda expressions

Reduction

Normal forms

Evaluation order

Evaluation order

Definition 7.1 (Applicative-order evaluation).
 Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.

Evaluation order

Definition 7.1 (Applicative-order evaluation).
Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.
Definition 7.2 (Strict function).
A function that uses applicative-order evaluation.

Evaluation order

Definition 7.1 (Applicative-order evaluation).
Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.
Definition 7.2 (Strict function).
A function that uses applicative-order evaluation.
Definition 7.3 (Normal-order evaluation).
Corresponds to left-to-right reduction. Function arguments are evaluated when needed.

Evaluation order

Definition 7.1 (Applicative-order evaluation).
Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.
Definition 7.2 (Strict function).
A function that uses applicative-order evaluation.
Definition 7.3 (Normal-order evaluation).
Corresponds to left-to-right reduction. Function arguments are evaluated when needed.
Definition 7.4 (Non-strict function).
A function that uses normal-order evaluation.

In practice I

Applicative-order evaluation employed in most programming languages, due to efficiency - one-time evaluation of arguments: C, Java, Scheme, PHP, etc.

Example 7.5 (Applicative-order evaluation in Scheme).

$$
\begin{aligned}
& \left(\left(\lambda(x)(+x \text { x) }) \frac{(+23))}{}\right.\right. \\
& \rightarrow((\lambda(x)(+x \mathrm{x})) 5) \\
& \rightarrow(+55) \\
& \rightarrow 10
\end{aligned}
$$

In practice II

Lazy evaluation (a kind of normal-order evaluation) in Haskell: on-demand evaluation of arguments, allowing for interesting constructions

Example 7.6 (Lazy evaluation in Haskell).
$((\backslash x \rightarrow x+x)(2+3))$
$\rightarrow \underline{(2+3)}+\underline{(2+3)}$
$\rightarrow \underline{5+5}$
$\rightarrow 10$
Need for non-strict functions, even in applicative languages: if, and, or, etc.

Summary

- Lambda calculus: model of computation, underpinned by functions and textual substitution
- Bound/free variables and variable occurrences w.r.t. an expression
- β-reduction, α-conversion, reduction step, reduction sequence, reduction order, normal forms
- Left-to-right reduction (normal-order evaluation): always terminates for reducible expressions
- Right-to-left reduction (applicative-order evaluation): more efficient but no guarantee on termination even for reducible expressions!

Part III

Lambda Calculus as a Programming Language

Contents

The λ_{0} language

Abstract data types (ADTs)

Implementation

Recursion

Language specification

Contents

The λ_{0} language

Abstract data types (ADTs)

Implementation

Recursion

Language specification

Purpose

- Proving the expressive power of lambda calculus

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- Machine code: λ-expressions - the λ_{0} language

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- Machine code: λ-expressions - the λ_{0} language
- Instead of
- bits
- bit operations,
we have

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- Machine code: λ-expressions - the λ_{0} language
- Instead of
- bits
- bit operations,
we have
- structured strings of symbols

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- Machine code: λ-expressions - the λ_{0} language
- Instead of
- bits
- bit operations,
we have
- structured strings of symbols
- reduction - textual substitution

λ_{0} features

- Instructions:

λ_{0} features

- Instructions:
- λ-expressions

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\text {def }} \lambda x . \lambda y . x$

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\text {def }} \lambda x . \lambda y . x$
- Values represented as functions

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\text {def }} \lambda x . \lambda y . x$
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\text {def }} \lambda x . \lambda y . x$
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation
- Normal-order evaluation

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\operatorname{def}} \lambda x . \lambda y . x$
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation
- Normal-order evaluation
- Functional normal form (see Definition 6.2)

λ_{0} features

- Instructions:
- λ-expressions
- top-level variable bindings: variable $\equiv_{\text {def }}$ expression e.g., true $\equiv_{\text {def }} \lambda x . \lambda y . x$
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation
- Normal-order evaluation
- Functional normal form (see Definition 6.2)
- No predefined types!

Shorthands

$-\lambda x_{1} \cdot \lambda x_{2} \cdot \lambda \ldots \lambda x_{n} \cdot E \rightarrow \lambda x_{1} x_{2} \ldots x_{n} \cdot E$

- $\left(\left(\ldots\left(\left(E A_{1}\right) A_{2}\right) \ldots\right) A_{n}\right) \rightarrow\left(E A_{1} A_{2} \ldots A_{n}\right)$

Purpose of types

- Way of expressing the programmer's intent

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types: 1, "Hello", \#t, etc.

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types: 1, "Hello", \#t, etc.
- Optimization of specific operations

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types: 1, "Hello", \#t, etc.
- Optimization of specific operations
- Error prevention

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types: 1, "Hello", \#t, etc.
- Optimization of specific operations
- Error prevention
- Formal verification

No types

How are objects represented?

- A number, list or tree potentially designated by the same value e.g.,

$$
\text { number } 3 \rightarrow \lambda x . \lambda y . x \leftarrow \operatorname{list}(()()())
$$

No types

How are objects represented?

- A number, list or tree potentially designated by the same value e.g.,

$$
\text { number } 3 \rightarrow \lambda x . \lambda y . x \leftarrow \operatorname{list}(()()())
$$

- Both values and operators represented by functions - context-dependent meaning
number $3 \rightarrow \lambda x . \lambda y . x \leftarrow$ operator car

No types

How are objects represented?

- A number, list or tree potentially designated by the same value e.g.,

$$
\text { number } 3 \rightarrow \lambda x . \lambda y . x \leftarrow \operatorname{list}(()()())
$$

- Both values and operators represented by functions - context-dependent meaning
number $3 \rightarrow \lambda x . \lambda y . x \leftarrow$ operator car
- Value applicable onto another value, as an operator!

No types

How are objects represented?

- A number, list or tree potentially designated by the same value e.g.,

$$
\text { number } 3 \rightarrow \lambda x . \lambda y . x \leftarrow \operatorname{list}(()()())
$$

- Both values and operators represented by functions - context-dependent meaning
number $3 \rightarrow \lambda x . \lambda y . x \leftarrow$ operator car
- Value applicable onto another value, as an operator!

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness
- Every operator applicable onto every value

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer
- Erroneus constructs accepted without warning, but computation ended with

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer
- Erroneus constructs accepted without warning, but computation ended with
- values with no meaning or

No types

How is correctness affected?

- Inability of the λ machine to
- interpret the meaning of expressions
- ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer
- Erroneus constructs accepted without warning, but computation ended with
- values with no meaning or
- expressions that are neither values, nor reducible e.g., ($\left.\begin{array}{ll}x & x\end{array}\right)$

No types
Consequences

- Enhanced representational flexibility

No types
Consequences

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient

No types

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient
- Increased error-proneness

No types

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient
- Increased error-proneness
- Program instability

No types

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient
- Increased error-proneness
- Program instability
- Difficulty of verification and maintenance

So...

- How do we employ the λ_{0} language in everyday programming?

So...

- How do we employ the λ_{0} language in everyday programming?
- How do we represent usual values - numbers, booleans, lists, etc. - and their corresponding operators?

Contents

The λ_{0} language

Abstract data types (ADTs)

Implementation

Recursion

Language specification

Definition

Definition 9.1 (Abstract data type, ADT). Mathematical model of a set of values and their corresponding operations.

Definition

Definition 9.1 (Abstract data type, ADT). Mathematical model of a set of values and their corresponding operations.

Example 9.2 (ADTs).

Natural, Bool, List, Set, Stack, Tree, ... λ-expression!

Definition

Definition 9.1 (Abstract data type, ADT).
Mathematical model of a set of values and their corresponding operations.

Example 9.2 (ADTs).
Natural, Bool, List, Set, Stack, Tree, ... λ-expression!
Components:

- base constructors: how are values built
- operators: what can be done with these values
- axioms: how

The Natural ADT

Base constructors and operators

- Base constructors:
- Operators:

The Natural ADT

Base constructors and operators

- Base constructors:
- zero : \rightarrow Natural
- Operators:

The Natural ADT

Base constructors and operators

- Base constructors:
- zero : \rightarrow Natural
- succ : Natural \rightarrow Natural
- Operators:

The Natural ADT

Base constructors and operators

- Base constructors:
- zero : \rightarrow Natural
- succ : Natural \rightarrow Natural
- Operators:
- zero? : Natural \rightarrow Bool

The Natural ADT

Base constructors and operators

- Base constructors:
- zero : \rightarrow Natural
- succ : Natural \rightarrow Natural
- Operators:
- zero?: Natural \rightarrow Bool
- pred : Natural $\backslash\{$ zero $\} \rightarrow$ Natural

The Natural ADT

Base constructors and operators

- Base constructors:
- zero : \rightarrow Natural
- succ : Natural \rightarrow Natural
- Operators:
- zero?: Natural \rightarrow Bool
- pred : Natural $\backslash\{$ zero $\} \rightarrow$ Natural
- add : Natural ${ }^{2} \rightarrow$ Natural

The Natural ADT

Axioms

- zero?
- pred
- add

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- pred
- add

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- $($ zero? $($ succ $n))=F$
- pred
- add

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- $($ zero? $($ succ $n))=F$
- pred
- $($ pred $($ succ $n))=n$
- add

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- $($ zero? $($ succ $n))=F$
- pred
- $($ pred $($ succ $n))=n$
- add
- $($ add zero $n)=n$

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- $($ zero? $($ succ $n))=F$
- pred
- $($ pred $($ succ $n))=n$
- add
- $($ add zero $n)=n$
- $(\operatorname{add}(\operatorname{succ} m) n)=(\operatorname{succ}(\operatorname{add} m n))$

Providing axioms

- One axiom for each (operator, base constructor) pair

Providing axioms

- One axiom for each (operator, base constructor) pair
- More - useless

Providing axioms

- One axiom for each (operator, base constructor) pair
- More - useless
- Less - insufficient for completely specifying the operators

From ADTs to functional programming

Exemple

- Axiome:
- $\operatorname{add}(z e r o, n)=n$
- $\operatorname{add}(\operatorname{succ}(m), n)=\operatorname{succ}(\operatorname{add}(m, n))$
- Scheme:

```
1 (define add
2 (lambda (m n)
3 (if (zero? m) n
4
                                (+ 1 (add (- m 1) n)))))
```

- Haskell:

1 add $0 \mathrm{n}=\mathrm{n}$
2 add (m + 1) $n=1+(a d d m n)$

From ADTs to functional programming

 Discussion- Proving ADT correctness
- structural induction

From ADTs to functional programming
 Discussion

- Proving ADT correctness
- structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!

From ADTs to functional programming

Discussion

- Proving ADT correctness
- structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!
- Functional programming
- reflection of mathematical specifications

From ADTs to functional programming

Discussion

- Proving ADT correctness
- structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!
- Functional programming
- reflection of mathematical specifications
- Recursion
- natural instrument, inherited from axioms

From ADTs to functional programming

Discussion

- Proving ADT correctness
- structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!
- Functional programming
- reflection of mathematical specifications
- Recursion
- natural instrument, inherited from axioms
- Applying formal methods on the recursive code, taking advantage of the lack of side effects

Contents

The λ_{0} language
 Abstract data types (ADTs)

Implementation

Recursion

Language specification

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- Operators:

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T : \rightarrow Bool
- Operators:

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T: Bool
- F : \rightarrow Bool
- Operators:

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T: Bool
- F : \rightarrow Bool
- Operators:
- not : Bool \rightarrow Bool

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T: Bool
- F : \rightarrow Bool
- Operators:
- not: Bool \rightarrow Bool
- and : Bool ${ }^{2} \rightarrow$ Bool

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T: Bool
- F : \rightarrow Bool
- Operators:
- not: Bool \rightarrow Bool
- and : Bool ${ }^{2} \rightarrow$ Bool
- or : Bool ${ }^{2} \rightarrow$ Bool

The Bool ADT

Base contrsuctors and operators

- Base constructors:
- T: Bool
- F : \rightarrow Bool
- Operators:
- not: Bool \rightarrow Bool
- and : Bool ${ }^{2} \rightarrow$ Bool
- or : Bool ${ }^{2} \rightarrow$ Bool
- if : Bool $\times T \times T \rightarrow T$

The Bool ADT

Axioms

- not
- and
- or
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- and
- or
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $(\operatorname{not} F)=T$
- and
- or
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $($ not $F)=T$
- and
- $($ and $T a)=a$
- or
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $($ not $F)=T$
- and
- $($ and $T a)=a$
- $($ and $F a)=F$
- or
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $($ not $F)=T$
- and
- $($ and $T a)=a$
- $($ and $F a)=F$
- or

$$
\text { - }(\text { or } T a)=T
$$

- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $($ not $F)=T$
- and
- $($ and $T a)=a$
- $($ and $F a)=F$
- or
- $\left(\begin{array}{c}\text { or }\end{array} \mathrm{a}\right)=T$
- $(\operatorname{or} F a)=a$
- if

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $($ not $F)=T$
- and
- $($ and $T a)=a$
- $($ and $F a)=F$
- or
- $\left(\begin{array}{c}\text { or }\end{array} \mathrm{a}\right)=T$
- $($ or $F a)=a$
- if
- (if T ab) $=a$

The Bool ADT

Axioms

- not
- $(\operatorname{not} T)=F$
- $(\operatorname{not} F)=T$
- and
- $($ and $T a)=a$
- $($ and $F a)=F$
- or
- $\left(\begin{array}{c}\text { or }\end{array} \mathrm{a}\right)=T$
- $($ or $F a)=a$
- if
- (if T a b) $=a$
- (if $F a b)=b$

The Bool ADT

Base constructor implementation

- Intuition: selecting one of the two values, true or false
- $T \equiv_{\operatorname{def}} \lambda x y . x$
- $F \equiv_{\operatorname{def}} \lambda x y . y$
- Selector-like behavior:
- $(T$ a $b) \rightarrow(\lambda x y . x$ a $b) \rightarrow a$
- $(F$ a $b) \rightarrow(\lambda x y . y$ a $b) \rightarrow b$

The Bool ADT

Operator implementation

- not $\equiv_{\text {def }}$
- $($ not $T)$
- (not F)

$$
\begin{aligned}
& \rightarrow F \\
& \rightarrow T
\end{aligned}
$$

- and $\equiv_{\text {def }}$
- (and T a)
$\rightarrow a$
- (and F a)

$$
\rightarrow F
$$

- \quad Or $\equiv_{\text {def }}$
- (or T a)
- (or F a)
$\rightarrow T$
$\rightarrow a$
- if $\equiv_{\text {def }}$
- (if T a b)
$\rightarrow a$
- (if $F a b$)

The Bool ADT

Operator implementation

- not $\equiv_{\operatorname{def}} \lambda x .(x F T)$
- $(\operatorname{not} T) \rightarrow(\lambda x .(x F T) T) \rightarrow(T F T) \rightarrow F$
- $(\operatorname{not} F) \rightarrow(\lambda x .(x F T) F) \rightarrow(F F T) \rightarrow T$
- and $\equiv_{\text {def }}$
- (and T a)
$\rightarrow a$
- (and F a)
$\rightarrow F$
- \quad or $\equiv_{\text {def }}$
- (or T a)
$\rightarrow T$
- (or F a)
$\rightarrow a$
- if $\equiv_{\text {def }}$
- (if T a b)
$\rightarrow a$
- (if $F a b$)
$\rightarrow b$

The Bool ADT

Operator implementation

- not $\equiv_{\operatorname{def}} \lambda x .(x F T)$
- $(\operatorname{not} T) \rightarrow(\lambda x .(x F T) T) \rightarrow(T F T) \rightarrow F$
- $($ not $F) \rightarrow(\lambda x .(x F T) F) \rightarrow(F F T) \rightarrow T$
- and $\equiv_{\text {def }} \lambda x y .\left(\begin{array}{lll}x & y & F\end{array}\right)$
- (and T a) $\rightarrow(\lambda x y .(x$ y $F) T$ a) $\rightarrow(T$ a $F) \rightarrow a$
- (and F a) $\rightarrow\left(\lambda x y .\left(\begin{array}{ll}x & y \\ F\end{array}\right) F a\right) \rightarrow(F$ a $F) \rightarrow F$
- \quad or $\equiv_{\text {def }}$
- (or Ta)
$\rightarrow T$
- (or F a)
$\rightarrow a$
- if $\equiv_{\text {def }}$
- (if T a b)
$\rightarrow a$
- (if $F a b$)
$\rightarrow b$

The Bool ADT

Operator implementation

- not $\equiv_{\text {def }} \lambda x .(x F T)$
- $(\operatorname{not} T) \rightarrow(\lambda x .(x F T) T) \rightarrow(T F T) \rightarrow F$
- $(\operatorname{not} F) \rightarrow(\lambda x .(x F T) F) \rightarrow(F F T) \rightarrow T$
- and $\equiv_{\text {def }} \lambda x y .\left(\begin{array}{lll}x & y & F\end{array}\right)$
- (and T a) $\rightarrow(\lambda x y .(x$ y $F) T$ a $) \rightarrow(T$ a $F) \rightarrow a$
- (and F a) $\rightarrow(\lambda x y .(x$ y $F) F$ a $) \rightarrow(F$ a $F) \rightarrow F$
- or $\equiv_{\text {def }} \lambda x y .(x$ T y)
- (or T a) $\rightarrow\left(\lambda x y .\left(x T\right.\right.$ y) T a) $\rightarrow\left(\begin{array}{l}T \\ T\end{array}\right.$ a) $\rightarrow T$
- $\left(\begin{array}{rl} & F \\ a\end{array}\right) \rightarrow(\lambda x y .(x T y) F a) \rightarrow(F T a) \rightarrow a$
- if $\equiv_{\text {def }}$
- (if T a b)
$\rightarrow a$
- (if $F a b$)

The Bool ADT

Operator implementation

- not $\equiv_{\operatorname{def}} \lambda x .(x F T)$
- $(\operatorname{not} T) \rightarrow(\lambda x .(x F T) T) \rightarrow(T F T) \rightarrow F$
- $(\operatorname{not} F) \rightarrow(\lambda x .(x F T) F) \rightarrow(F F T) \rightarrow T$
- and $\equiv_{\text {def }} \lambda x y .(x \quad y \quad F)$
- (and T a) $\rightarrow(\lambda x y .(x y F) T a) \rightarrow(T$ a $F) \rightarrow a$
- (and $F a) \rightarrow(\lambda x y .(x$ y $F) F a) \rightarrow(F$ a $F) \rightarrow F$
- or $\equiv_{\text {def }} \lambda x y .(x$ T y)
- (or T a) $\rightarrow(\lambda x y .(x T y) T a) \rightarrow(T T a) \rightarrow T$
- (or $F a) \rightarrow(\lambda x y .(x T y) F a) \rightarrow(F T a) \rightarrow a$
- if $\equiv_{\text {def }} \lambda c t e .\binom{c}{t}$ non-strict!
- (if T a $b) \rightarrow(\lambda c t e .(c t e) T$ a $b) \rightarrow(T a b) \rightarrow a$
- (if $F a b) \rightarrow(\lambda c t e .(c t e) F a b) \rightarrow(F a b) \rightarrow b$

The Pair ADT

Specification

- Base constructors:
- Operators:
- Axioms:

The Pair ADT

Specification

- Base constructors:
- pair : $A \times B \rightarrow$ Pair
- Operators:
- Axioms:

The Pair ADT

Specification

- Base constructors:
- pair : $A \times B \rightarrow$ Pair
- Operators:
- fst : Pair $\rightarrow A$
- Axioms:

The Pair ADT

Specification

- Base constructors:
- pair : $A \times B \rightarrow$ Pair
- Operators:
- fst : Pair $\rightarrow A$
- snd : Pair $\rightarrow B$
- Axioms:

The Pair ADT

Specification

- Base constructors:
- pair : $A \times B \rightarrow$ Pair
- Operators:
- fst : Pair $\rightarrow A$
- snd : Pair $\rightarrow B$
- Axioms:
- $(f s t($ pair a b) $)=a$

The Pair ADT

Specification

- Base constructors:
- pair : $A \times B \rightarrow$ Pair
- Operators:
- fst : Pair $\rightarrow A$
- snd : Pair $\rightarrow B$
- Axioms:
- $(f s t($ pair a b) $)=a$
- (snd $($ pair a b) $)=b$

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- pair $\equiv_{\text {def }}$
- (pair a b)
- $f s t \equiv_{\text {def }}$
- (fst (pair a b))

$$
\rightarrow a
$$

- \quad snd $\equiv_{\text {def }}$
- (snd (pair a b))
$\rightarrow b$

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- pair $\equiv_{\text {def }} \lambda x y s .\left(\begin{array}{lll}s & x & y\end{array}\right)$
- (pair a b) $\rightarrow(\lambda x y s .(s \times y) a b) \rightarrow \lambda s .(s a b)$
- $f s t \equiv_{\text {def }}$
- (fst (pair a b))

$$
\rightarrow a
$$

- $s n d \equiv_{\text {def }}$
- (snd (pair a b))

$$
\rightarrow b
$$

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- pair $\equiv_{\text {def }} \lambda x y s .\left(\begin{array}{lll}s & x & y\end{array}\right)$
- (pair a b) $\rightarrow(\lambda x y s .(s \times y) a b) \rightarrow \lambda s .(s a b)$
- $f s t \equiv_{\operatorname{def}} \lambda p .(p T)$
- $($ fst $($ pair a b) $) \rightarrow(\lambda p .(p T) \lambda s .(s$ a b) $) \rightarrow$ $(\lambda s .(s a b) T) \rightarrow(T a b) \rightarrow a$
- \quad snd $\equiv_{\text {def }}$
- (snd (pair a b))

$$
\rightarrow b
$$

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- pair $\equiv_{\text {def }} \lambda x y s .\left(\begin{array}{ll}s & x \\ y\end{array}\right)$
- (pair a b) $\rightarrow(\lambda x y s .(s \times y) a b) \rightarrow \lambda s .(s a b)$
- $f s t \equiv_{\operatorname{def}} \lambda p .(p T)$
- $($ fst $($ pair a b) $) \rightarrow(\lambda p .(p T) \lambda s .(s$ a $b)) \rightarrow$ $(\lambda s .(s a b) T) \rightarrow(T a b) \rightarrow a$
- $s n d \equiv_{\text {def }} \lambda p .(p F)$
- (snd (pair a b)) $\rightarrow(\lambda p .(p F) \lambda s .(s$ a b) $) \rightarrow$ $(\lambda s .(s a b) F) \rightarrow(F a b) \rightarrow b$

The List ADT

Base constructors and operators

- Base constructors:
- Operators:

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- Operators:

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- cons : A \times List \rightarrow List
- Operators:

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- cons : A \times List \rightarrow List
- Operators:
- car : List $\backslash\{$ null $\} \rightarrow A$

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- cons : A \times List \rightarrow List
- Operators:
- car : List $\backslash\{$ null $\} \rightarrow A$
- cdr : List $\backslash\{$ null $\} \rightarrow$ List

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- cons : A \times List \rightarrow List
- Operators:
- car : List $\backslash\{$ null $\} \rightarrow A$
- cdr : List $\backslash\{$ null $\} \rightarrow$ List
- null? : List \rightarrow Bool

The List ADT

Base constructors and operators

- Base constructors:
- null : \rightarrow List
- cons : A \times List \rightarrow List
- Operators:
- car : List $\backslash\{$ null $\} \rightarrow A$
- cdr : List $\backslash\{$ null $\} \rightarrow$ List
- null? : List \rightarrow Bool
- append : List ${ }^{2} \rightarrow$ List

The List ADT

Axioms

- car
- cdr
- null?
- append

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- null?
- append

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- $(c d r($ cons e $L))=L$
- null?
- append

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- $(c d r($ cons e $L))=L$
- null?
- $($ null? null $)=T$
- append

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- $(c d r($ cons e $L))=L$
- null?
- $($ null? null $)=T$
- $($ null? $($ cons e $L))=F$
- append

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- $(c d r($ cons e $L))=L$
- null?
- $($ null? null $)=T$
- $($ null? $($ cons e $L))=F$
- append
- $($ append null $B)=B$

The List ADT

Axioms

- car
- $(\operatorname{car}($ cons e L) $)=e$
- cdr
- $(c d r($ cons e $L))=L$
- null?
- $($ null? null $)=T$
- $($ null? $($ cons e $L))=F$
- append
- (append null $B)=B$
- (append (cons e A)B) $=($ cons e (append $A B)$)

The List ADT

Implementation

- Intuition:
- null $\equiv_{\text {def }}$
- cons $\equiv_{\text {def }}$
- car $\equiv_{\text {def }}$
- $c d r \equiv_{\text {def }}$
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }}$
- cons $\equiv_{\text {def }}$
- car $\equiv_{\text {def }}$
- $c d r \equiv_{\text {def }}$
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$
- car $\equiv_{\text {def }}$
- $c d r \equiv_{\text {def }}$
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }}$
- $c d r \equiv_{\text {def }}$
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }} f s t$
- $c d r \equiv_{\text {def }}$
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }} f s t$
- $c d r \equiv_{\text {def }}$ snd
- null? $\equiv_{\text {def }}$
- (null? null)
- (null? (cons e L))

$$
\rightarrow F
$$

- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }} f s t$
- $c d r \equiv_{\text {def }}$ snd
- null? $\equiv_{\operatorname{def}} \lambda L .(L \lambda x y . F)$
- $($ null? null $) \rightarrow(\lambda L .(L \lambda x y . F) \lambda x . T) \rightarrow(\lambda x . T \ldots) \rightarrow T$
- (null? $($ cons e $L)) \rightarrow(\lambda L .(L \lambda x y . F) ~ \lambda s .(s$ e $L)) \rightarrow$ $(\lambda s .(s$ e L) $\lambda x y . F) \rightarrow(\lambda x y . F$ e $L) \rightarrow F$
- append $\equiv_{\text {def }}$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }} f s t$
- $c d r \equiv_{\text {def }}$ snd
- null? $\equiv_{\operatorname{def}} \lambda L .(L \lambda x y . F)$
- $($ null? null $) \rightarrow(\lambda L .(L \lambda x y . F) \lambda x . T) \rightarrow(\lambda x . T \ldots) \rightarrow T$
- (null? $($ cons e L) $) \rightarrow(\lambda L .(L \lambda x y . F) ~ \lambda s .(s$ e $L)) \rightarrow$ $(\lambda s .(s$ e L) $\lambda x y . F) \rightarrow(\lambda x y . F$ e $L) \rightarrow F$
- append $\equiv_{\text {def }}$
$\lambda A B$. if (null? $A) B(\operatorname{cons}(\operatorname{car} A)(\operatorname{append}(c d r A) B))$

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- null $\equiv_{\text {def }} \lambda x . T$
- cons $\equiv_{\text {def }}$ pair
- car $\equiv_{\text {def }} f s t$
- $c d r \equiv_{\text {def }}$ snd
- null? $\equiv_{\operatorname{def}} \lambda L .(L \lambda x y . F)$
- $($ null? null $) \rightarrow(\lambda L .(L \lambda x y . F) \lambda x . T) \rightarrow(\lambda x . T \ldots) \rightarrow T$
- (null? $($ cons e L) $) \rightarrow(\lambda L .(L \lambda x y . F) ~ \lambda s .(s$ e $L)) \rightarrow$ $(\lambda s .(s$ e L) $\lambda x y . F) \rightarrow(\lambda x y . F$ e $L) \rightarrow F$
- append $\equiv_{\text {def }}$ $\lambda A B .($ if $(n u l l ? A) B(\operatorname{cons}(\operatorname{car} A)(\operatorname{append}(c d r A) B)))$

The Natural ADT

Axioms

- zero?
- $($ zero? zero $)=T$
- $($ zero? $($ succ $n))=F$
- pred
- $($ pred $($ succ $n))=n$
- add
- $($ add zero $n)=n$
- $($ add $($ succ $m) n)=(\operatorname{succ}($ add $m n))$

The Natural ADT

Implementation

- Intuition:
- zero $\equiv_{\text {def }}$
- $\operatorname{SUCC} \equiv_{\text {def }}$
- zero? $\equiv_{\text {def }}$
- pred $\equiv_{\text {def }}$
- $\operatorname{add} \equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$
- $\operatorname{SUCC} \equiv_{\text {def }}$
- zero? $\equiv_{\text {def }}$
- pred $\equiv_{\text {def }}$
- $\operatorname{add} \equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$ null
- $\operatorname{sUCC} \equiv_{\text {def }}$
- zero? $\equiv_{\text {def }}$
- pred $\equiv_{\text {def }}$
- $\operatorname{add} \equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$ null
- succ $\equiv_{\operatorname{def}} \lambda n$.(cons null n)
- zero? $\equiv_{\text {def }}$
- pred $\equiv_{\text {def }}$
- $\operatorname{add} \equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$ null
- succ $\equiv_{\operatorname{def}} \lambda n$.(cons null n)
- zero? $\equiv_{\text {def }} n u l l ?$
- pred $\equiv_{\text {def }}$
- \quad add $\equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$ null
- succ $\equiv_{\operatorname{def}} \lambda n$.(cons null n)
- zero? $\equiv_{\text {def }} n u l l ?$
- pred $\equiv_{\mathrm{def}} c d r$
- $\operatorname{add} \equiv_{\text {def }}$

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero $\equiv_{\text {def }}$ null
- succ $\equiv_{\operatorname{def}} \lambda n$.(cons null n)
- zero? $\equiv_{\text {def }} n u l l ?$
- pred $\equiv_{\text {def }} c d r$
- add $\equiv_{\text {def }}$ append

Contents

The λ_{0} language
Abstract data types (ADTs)
Implementation

Recursion

Language specification

Functions

- Several possible definitions of the identity function:

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$
- $i d(n)=n+2-2$

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$
- $i d(n)=n+2-2$
-...

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$
- $i d(n)=n+2-2$
- ...
- Infinitely many textual representations for the same function

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$
- $i d(n)=n+2-2$
- ...
- Infinitely many textual representations for the same function
- Then... what is a function?

Functions

- Several possible definitions of the identity function:
- $i d(n)=n$
- $i d(n)=n+1-1$
- $i d(n)=n+2-2$
- ...
- Infinitely many textual representations for the same function
- Then... what is a function? A relation between inputs and outputs, independent of any textual representation e.g.,

$$
i d=\{(0,0),(1,1),(2,2), \ldots\}
$$

Perspectives on recursion

- Textual: a function that refers itself, using its name

Perspectives on recursion

- Textual: a function that refers itself, using its name
- Constructivist: recursive functions as values of an ADT, with specific ways of building them

Perspectives on recursion

- Textual: a function that refers itself, using its name
- Constructivist: recursive functions as values of an ADT, with specific ways of building them
- Semantic: the mathematical object designated by a recursive function

Implementing length

Problem

- Length of a list: length $\equiv_{\text {def }} \lambda L .($ if (null? L) zero $($ succ $($ length $(c d r L))))$

Implementing length

Problem

- Length of a list: length $\equiv_{\text {def }} \lambda L .($ if $($ null? $L)$ zero $(s u c c(l e n g t h(c d r ~ L))))$
- What do we replace the underlined area with, to avoid textual recursion?

Implementing length

Problem

- Length of a list:
length $\equiv_{\text {def }} \lambda L .($ if (null? L) zero $($ succ $($ length $(c d r L))))$
- What do we replace the underlined area with, to avoid textual recursion?
- Rewrite the definition as a fixed-point equation

Length $\equiv_{\text {def }} \lambda f$. $($ if (null? L) zero $(\operatorname{succ}(f(c d r L))))$
(Length length) \rightarrow length

Implementing length

Problem

- Length of a list:
length $\equiv_{\text {def }} \lambda L .($ if (null? L) zero $($ succ $($ length $(c d r L))))$
- What do we replace the underlined area with, to avoid textual recursion?
- Rewrite the definition as a fixed-point equation

Length $\equiv_{\text {def }} \lambda f L .($ if (null? L) zero $(s u c c(f(c d r L))))$
(Length length) \rightarrow length

- How do we compute the fixed point? (see code archive)

Contents

The λ_{0} language

Abstract data types (ADTs)

Implementation

Recursion

Language specification

Axiomatization benefits

- Disambiguation
- Proof of properties
- Implementation skeleton

Syntax

- Variable:

$$
\text { Var }::=\text { any symbol distinct from } \lambda, .,(,)
$$

Syntax

- Variable:

$$
\text { Var }::=\text { any symbol distinct from } \lambda, .,(,)
$$

- Expression:

$$
\begin{aligned}
\text { Expr }::= & \text { Var } \\
\mid & \lambda \text { Var.Expr } \\
\mid & (\text { Expr Expr })
\end{aligned}
$$

Syntax

- Variable:

$$
\text { Var }::=\text { any symbol distinct from } \lambda, .,(,)
$$

- Expression:

$$
\begin{aligned}
\text { Expr }::= & \text { Var } \\
\mid & \lambda \text { Var.Expr } \\
& (\text { Expr Expr })
\end{aligned}
$$

- Value:

$$
\text { Val }::=\lambda \text { Var.Expr }
$$

Evaluation rules

Rule name:

$$
\frac{\text { precondition }_{1}, \ldots, \text { precondition }_{n}}{\text { conclusion }}
$$

Semantics for normal-order evaluation

Evaluation

- Reduce:
$\left(\lambda x . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}$

Semantics for normal-order evaluation

Evaluation

- Reduce:

$$
\left(\lambda x . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Eval:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

Semantics for normal-order evaluation

Substitution

- $x_{[e / X]}=$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=y$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=\lambda x . e$
- $\langle\lambda y . e\rangle_{\left[e^{\prime} / x\right]}=$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=\lambda x . e$
$-\langle\lambda y \cdot e\rangle_{\left[e^{\prime} / x\right]}=\lambda y \cdot e_{\left[e^{\prime} / x\right]}$

Semantics for normal-order evaluation

Substitution

- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=\lambda x . e$
$-\langle\lambda y \cdot e\rangle_{\left[e^{\prime} / x\right]}=\lambda y . e_{\left[e^{\prime} / x\right]}, \quad y \neq x$

Semantics for normal-order evaluation

 Substitution- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=\lambda x . e$
$-\langle\lambda y . e\rangle_{\left[e^{\prime} / x\right]}=\lambda y \cdot e_{\left[e^{\prime} / x\right]}, \quad y \neq x \wedge y \notin F V\left(e^{\prime}\right)$
$-\langle\lambda y . e\rangle_{\left[e^{\prime} / x\right]}=\lambda z . e_{[z / y]\left[e^{\prime} / x\right]}$, $y \neq x \wedge y \in F V\left(e^{\prime}\right) \wedge z \notin F V(e) \cup F V\left(e^{\prime}\right)$
- $\left(e^{\prime} e^{\prime \prime}\right)_{[e / X]}=$

Semantics for normal-order evaluation

 Substitution- $x_{[e / x]}=e$
- $y_{[e / x]}=y, \quad y \neq x$
$-\langle\lambda x . e\rangle_{\left[e^{\prime} / x\right]}=\lambda x . e$
$-\langle\lambda y . e\rangle_{\left[e^{\prime} / x\right]}=\lambda y \cdot e_{\left[e^{\prime} / x\right]}, \quad y \neq x \wedge y \notin F V\left(e^{\prime}\right)$
$-\langle\lambda y . e\rangle_{\left[e^{\prime} / x\right]}=\lambda z . e_{[z / y]\left[e^{\prime} / x\right]}$, $y \neq x \wedge y \in F V\left(e^{\prime}\right) \wedge z \notin F V(e) \cup F V\left(e^{\prime}\right)$
- $\left(e^{\prime} e^{\prime \prime}\right)_{[e / x]}=\left(e_{[e / x]}^{\prime} e_{[e / x]}^{\prime \prime}\right)$

Semantics for normal-order evaluation

Free variables

- $F V(x)=\{x\}$
- $F V(\lambda x . e)=F V(e) \backslash\{x\}$
- $F V\left(\left(e^{\prime} e^{\prime \prime}\right)\right)=F V\left(e^{\prime}\right) \cup F V\left(e^{\prime \prime}\right)$

Semantics for normal-order evaluation

Example

Example 12.1 (Evaluation rules).

$$
((\lambda x \cdot \lambda y \cdot y a) b)
$$

Semantics for normal-order evaluation

Example

Example 12.1 (Evaluation rules).

$$
((\lambda x . \lambda y . y \quad a) b)
$$

($\lambda x . \lambda y . y$ a) $\rightarrow \lambda y . y \quad$ (Reduce)

Semantics for normal-order evaluation

Example

Example 12.1 (Evaluation rules).

$$
((\lambda x . \lambda y . y \quad a) b)
$$

$$
\frac{(\lambda x . \lambda y . y a) \rightarrow \lambda y . y \quad(\text { Reduce })}{((\lambda x . \lambda y \cdot y \text { a) } b) \rightarrow(\lambda y . y b)}
$$

(Eval)

Semantics for normal-order evaluation

Example

Example 12.1 (Evaluation rules).

$$
((\lambda x . \lambda y . y \quad a) b)
$$

$$
\frac{(\lambda x . \lambda y . y \quad a) \rightarrow \lambda y . y \quad(\text { Reduce })}{((\lambda x . \lambda y . y \text { a) } b) \rightarrow(\lambda y . y b)}
$$

(Eval)
$(\lambda y . y b) \rightarrow b \quad$ (Reduce)

Semantics for applicative-order evaluation

Evaluation

- Reduce $(v \in V a l)$:

$$
(\lambda x . e v) \rightarrow e_{[v / x]}
$$

Semantics for applicative-order evaluation

Evaluation

- Reduce ($v \in$ Val):

$$
(\lambda x . e v) \rightarrow e_{[v / x]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

Semantics for applicative-order evaluation

Evaluation

- Reduce ($v \in$ Val):

$$
(\lambda x . e v) \rightarrow e_{[v / x]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

- $E v a I_{2}(e \notin V a l):$

$$
\frac{e \rightarrow e^{\prime}}{\left(\lambda x \cdot e^{\prime \prime} e\right) \rightarrow\left(\lambda x \cdot e^{\prime \prime} e^{\prime}\right)}
$$

Formal proof

Proposition 12.2 (Free and bound variables).
$\forall e \in \operatorname{Expr} \bullet B V(e) \cap F V(e)=\emptyset$

Formal proof

Proposition 12.2 (Free and bound variables).

$$
\forall e \in E x p r \bullet B V(e) \cap F V(e)=\emptyset
$$

Proof.

Structural induction, according to the different forms of λ-expressions (see the lecture notes).

Summary

- Practical usage of the untyped lambda calculus, as a programming language
- Formal specifications, for different evaluation semantics

Part IV

Typed Lambda Calculus

Contents

Introduction
Simply Typed Lambda Calculus (STLC, System F_{1})
Extending STLC
Polymorphic Lambda Calculus (PSTLC, System F)
Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Contents

Introduction
Simply Typed Lambda Calculus (STLC, System F_{1})
Extending STLC
Polymorphic Lambda Calculus (PSTLC, System F)
Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)
- No canonical representation for the values of a given type e.g., both a tree and a set having the same representation

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)
- No canonical representation for the values of a given type e.g., both a tree and a set having the same representation
- Impossibility of translating certain expressions into certain typed languages e.g., ($x \quad x$), Ω, Fix

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)
- No canonical representation for the values of a given type e.g., both a tree and a set having the same representation
- Impossibility of translating certain expressions into certain typed languages e.g., (x x), Ω, Fix
- Potential irreducibility of expressions - inconsistent representation of equivalent values
$\lambda x .($ Fix $x) \rightarrow \lambda x .(x($ Fix $x)) \rightarrow \lambda x .(x(x($ Fix $x))) \rightarrow \ldots$

Solution

- Restricted ways of constructing expressions, depending on the types of their parts

Solution

- Restricted ways of constructing expressions, depending on the types of their parts
- Sacrificed expressivity in change for soundness

Desired properties

Definition 13.1 (Progress).
A well-typed expression is either a value or is subject to at least one reduction step.

Desired properties

Definition 13.1 (Progress).

A well-typed expression is either a value or is subject to at least one reduction step.

Definition 13.2 (Preservation).
The result obtained by reducing a well-typed expression is well-typed. Usually, the type is the same.

Desired properties

Definition 13.1 (Progress).

A well-typed expression is either a value or is subject to at least one reduction step.

Definition 13.2 (Preservation).

The result obtained by reducing a well-typed expression is well-typed. Usually, the type is the same.

Definition 13.3 (Strong normalization).
The evaluation of a well-typed expression terminates.

Contents

Introduction

Simply Typed Lambda Calculus (STLC, System F_{1})

Extending STLC

Polymorphic Lambda Calculus (PSTLC, System F)

Type reconstruction

Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.
Definition 14.2 (Simple type).
A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.
Definition 14.2 (Simple type).
A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Notation:

- e: τ : "expression e has type τ "

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.
Definition 14.2 (Simple type).
A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Notation:

- $e: \tau$: "expression e has type τ "
- $v \in \tau$: " v is a value of type τ "

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.
Definition 14.2 (Simple type).
A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Notation:

- $e: \tau$: "expression e has type τ "
- $v \in \tau$: " v is a value of type τ "
- $\boldsymbol{e} \in \tau \Rightarrow e: \tau$

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.
Definition 14.2 (Simple type).
A type built from existing types e.g., $\sigma \rightarrow \tau$, where σ and τ are types.

Notation:

- $e: \tau$: "expression e has type τ "
- $v \in \tau$: " v is a value of type τ "
- $e \in \tau \Rightarrow e: \tau$
- $\boldsymbol{e}: \tau \nRightarrow \boldsymbol{e} \in \tau$

Typed λ-expressions

Definition 14.3 (λ_{t}-expression).

- Base value: a base value $b \in \tau_{b}$ is a λ_{t}-expression.

Typed λ-expressions

Definition 14.3 (λ_{t}-expression).

- Base value: a base value $b \in \tau_{b}$ is a λ_{t}-expression.
- Typed variable: an (explicitly) typed variable $x: \tau$ is a λ_{t}-expression.

Typed λ-expressions

Definition 14.3 (λ_{t}-expression).

- Base value: a base value $b \in \tau_{b}$ is a λ_{t}-expression.
- Typed variable: an (explicitly) typed variable $x: \tau$ is a λ_{t}-expression.
- Function: if $x: \sigma$ is a typed variable and $e: \tau$ is a λ_{t}-expression, then $\lambda x: \sigma . e: \sigma \rightarrow \tau$ is a λ_{t}-expression, which stands for

Typed λ-expressions

Definition 14.3 (λ_{t}-expression).

- Base value: a base value $b \in \tau_{b}$ is a λ_{t}-expression.
- Typed variable: an (explicitly) typed variable $x: \tau$ is a λ_{t}-expression.
- Function: if $x: \sigma$ is a typed variable and $e: \tau$ is a λ_{t}-expression, then $\lambda x: \sigma . e: \sigma \rightarrow \tau$ is a λ_{t}-expression, which stands for
- Application: if $f: \sigma \rightarrow \tau$ and $a: \sigma$ are λ_{t}-expressions, then $(f a): \tau$ is a λ_{t}-expression, which stands for \ldots.

Relation to untyped lambda calculus

Similarities

- β-reduction
- α-conversion
- normal forms
- Church-Rosser theorem

Relation to untyped lambda calculus

Similarities

- β-reduction
- α-conversion
- normal forms
- Church-Rosser theorem

Differences

- $(x: \tau x: \tau)$ invalid

Relation to untyped lambda calculus

Similarities

- β-reduction
- α-conversion
- normal forms
- Church-Rosser theorem

Differences

- $(x: \tau x: \tau)$ invalid
- some fixed-point combinators are invalid
- Variables:

$$
\text { Var }::=\ldots
$$

Syntax

Expressions

- Variables:
Var
- Expressions:

$$
\begin{array}{rll}
\text { Expr } & ::= & \text { Val } \\
& \mid & \text { Var } \\
& \mid & (\text { Expr Expr })
\end{array}
$$

Syntax

Expressions

- Variables:
Var
- Expressions:

$$
\begin{array}{rll}
\text { Expr } & ::= & \text { Val } \\
\mid & \text { Var } \\
& & (\text { Expr Expr })
\end{array}
$$

- Values:

$$
\begin{aligned}
\text { Val }::= & \text { BaseVal } \\
\mid & \lambda \text { Var:Type.Expr }
\end{aligned}
$$

Syntax

Types

- Types:

$$
\begin{aligned}
\text { Type }::= & \text { BaseType } \\
\mid & (\text { Type } \rightarrow \text { Type })
\end{aligned}
$$

Syntax

- Types:

$$
\begin{array}{rll}
\text { Type } & ::= & \text { BaseType } \\
& \mid & (\text { Type } \rightarrow \text { Type })
\end{array}
$$

- Typing contexts:

TypingContext ::= \emptyset
TypingContext, Var : Type

Syntax

- Types:

$$
\begin{array}{rll}
\text { Type } & ::= & \text { BaseType } \\
& \text { | } & (\text { Type } \rightarrow \text { Type })
\end{array}
$$

- Typing contexts:
- include variable-type associations i.e., typing hypotheses

TypingContext ::= \emptyset
TypingContext, Var : Type

Semantics for normal-order evaluation

Evaluation

- Reduce:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow \boldsymbol{e}_{\left[e^{\prime} / x\right]}
$$

Semantics for normal-order evaluation

Evaluation

- Reduce:

$$
\left(\lambda x: \tau . e \quad e^{\prime}\right) \rightarrow e_{\left[e^{e} / x\right]}
$$

- Eval:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

Semantics for normal-order evaluation

Evaluation

- Reduce:

$$
\left(\lambda x: \tau . e \quad e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Eval:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

The type annotations are ignored, since typing precedes evaluation.

Semantics

Typing

- TBaseVal:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

Semantics

Typing

- TBaseVal:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

Semantics

Typing

- TBaseVal:

$$
\frac{V \in \tau_{b}}{\Gamma \vdash V: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- TAbs:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

Semantics

Typing

- TBaseVal:

$$
\frac{V \in \tau_{b}}{\Gamma \vdash V: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- TAbs:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

- TApp:

$$
\frac{\Gamma \vdash e:\left(\tau^{\prime} \rightarrow \tau\right) \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e e^{\prime}\right): \tau}
$$

Typing example

Example 14.4 (Typing).

$$
\lambda x: \tau_{1} \cdot \lambda y: \tau_{2} \cdot x:\left(\tau_{1} \rightarrow\left(\tau_{2} \rightarrow \tau_{1}\right)\right)
$$

Blackboard!

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming language to organize, build and handle the types accepted in the language.

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming language to organize, build and handle the types accepted in the language.

Definition 14.6 (Soundness).

The type system of a language is sound if any well-typed expression in the language has the progress and preservation properties.

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming language to organize, build and handle the types accepted in the language.

Definition 14.6 (Soundness).

The type system of a language is sound if any well-typed expression in the language has the progress and preservation properties.
Proposition 14.7.
STLC is sound and possesses the strong normalization property.

Contents

Introduction

Simply Typed Lambda Calculus (STLC, System F_{1})

Extending STLC

Polymorphic Lambda Calculus (PSTLC, System F)
Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Ways of extending STLC

1. Particular base types

Ways of extending STLC

\author{

1. Particular base types
}
2. n-ary type constructors, $n \geq 1$, which build simple types

The product type

Algebraic specification

- Base constructors i.e., canonical values:

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:
- $\mathrm{fst}: \tau * \tau^{\prime} \rightarrow \tau$

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:
- $f s t: \tau * \tau^{\prime} \rightarrow \tau$
- snd : $\tau * \tau^{\prime} \rightarrow \tau^{\prime}$

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:
- $\mathrm{fst}: \tau * \tau^{\prime} \rightarrow \tau$
- snd : $\tau * \tau^{\prime} \rightarrow \tau^{\prime}$
- Axioms (e: $\left.\tau, e^{\prime}: \tau^{\prime}\right)$:

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:
- $\mathrm{fst}: \tau * \tau^{\prime} \rightarrow \tau$
- snd : $\tau * \tau^{\prime} \rightarrow \tau^{\prime}$
- Axioms (e: $\left.\tau, e^{\prime}: \tau^{\prime}\right)$:
- $\left(f s t\left(e, e^{\prime}\right)\right) \rightarrow e$

The product type

Algebraic specification

- Base constructors i.e., canonical values:
- $\tau * \tau^{\prime}::=\left(\tau, \tau^{\prime}\right)$
- Operators:
- $\mathrm{fst}: \tau * \tau^{\prime} \rightarrow \tau$
- snd : $\tau * \tau^{\prime} \rightarrow \tau^{\prime}$
- Axioms (e: $\left.\tau, e^{\prime}: \tau^{\prime}\right)$:
- $\left(f s t\left(e, e^{\prime}\right)\right) \rightarrow e$
- (snd $\left.\left(e, e^{\prime}\right)\right) \rightarrow e^{\prime}$

The product type

Syntax

The product type

Syntax

$\begin{array}{rll}\text { Expr } & ::= & \ldots \\ \mid & & \text { (fst Expr) } \\ \mid & & \text { (snd Expr) } \\ \mid & & \text { (Expr, Expr) }\end{array}$

The product type

Syntax

Expr

$$
::=\quad \ldots
$$

(fst Expr)
(snd Expr)
(Expr, Expr)
BaseVal
ProductVal

The product type

Syntax

Expr

$$
::=\quad \ldots
$$

(fst Expr)
(snd Expr)
(Expr,Expr)
BaseVal
ProductVal
ProductVal ::= (Val, Val)

The product type

Syntax

Expr
(fst Expr)
(snd Expr)
(Expr,Expr)
BaseVal
ProductVal
ProductVal $::=($ Val, Val $)$
Type
(Type* Type)

The product type

Evaluation

- EvalFst:

$$
\left(f s t\left(e, e^{\prime}\right)\right) \rightarrow e
$$

The product type

Evaluation

- EvalFst:

$$
\left(\text { fst }\left(e, e^{\prime}\right)\right) \rightarrow e
$$

- EvalSnd:
$\left(\right.$ snd $\left.\left(e, e^{\prime}\right)\right) \rightarrow e^{\prime}$

The product type

Evaluation

- EvalFst:

$$
\left(f s t\left(e, e^{\prime}\right)\right) \rightarrow e
$$

- EvalSnd:

$$
\left(s n d\left(e, e^{\prime}\right)\right) \rightarrow e^{\prime}
$$

- EvalFstApp:

$$
\frac{e \rightarrow e^{\prime}}{(f s t e) \rightarrow\left(f s t e^{\prime}\right)}
$$

The product type

Evaluation

- EvalFst:

$$
\left(f s t\left(e, e^{\prime}\right)\right) \rightarrow e
$$

- EvalSnd:

$$
\left(s n d\left(e, e^{\prime}\right)\right) \rightarrow e^{\prime}
$$

- EvalFstApp:

$$
\frac{e \rightarrow e^{\prime}}{(f s t e) \rightarrow\left(f s t e^{\prime}\right)}
$$

- EvalSndApp:

$$
\frac{e \rightarrow e^{\prime}}{(\text { snd } e) \rightarrow\left(\text { snd } e^{\prime}\right)}
$$

The product type

Typing

- TProduct:

$$
\frac{\Gamma \vdash e: \tau \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e, e^{\prime}\right):\left(\tau * \tau^{\prime}\right)}
$$

The product type

Typing

- TProduct:

$$
\frac{\Gamma \vdash e: \tau \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e, e^{\prime}\right):\left(\tau * \tau^{\prime}\right)}
$$

- TFst:

$$
\frac{\Gamma \vdash e:\left(\tau * \tau^{\prime}\right)}{\Gamma \vdash(f s t e): \tau}
$$

The product type

Typing

- TProduct:

$$
\frac{\Gamma \vdash e: \tau \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e, e^{\prime}\right):\left(\tau * \tau^{\prime}\right)}
$$

- TFst:

$$
\frac{\Gamma \vdash e:\left(\tau * \tau^{\prime}\right)}{\Gamma \vdash(f s t e): \tau}
$$

- TSnd:

$$
\frac{\Gamma \vdash e:\left(\tau * \tau^{\prime}\right)}{\Gamma \vdash(\text { snd } e): \tau^{\prime}}
$$

The product type

Typing example

Example 15.1 (Typing).

$$
\begin{array}{r}
\Gamma \vdash \lambda x:((\rho * \tau) \rightarrow \sigma) \cdot \lambda y: \rho \cdot \lambda z: \tau .(x(y, z)) \\
\\
:((\rho * \tau) \rightarrow \sigma) \rightarrow \rho \rightarrow \tau \rightarrow \sigma
\end{array}
$$

Blackboard!

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:
- not : Bool \rightarrow Bool

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:
- not: Bool \rightarrow Bool
- and : Bool ${ }^{2} \rightarrow$ Bool

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:
- not: Bool \rightarrow Bool
- and: Bool ${ }^{2} \rightarrow$ Bool
- or : Bool ${ }^{2} \rightarrow$ Bool

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:
- not: Bool \rightarrow Bool
- and: Bool ${ }^{2} \rightarrow$ Bool
- or : Bool ${ }^{2} \rightarrow$ Bool
- if : Bool $\times \tau \times \tau \rightarrow \tau$

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
- Bool ::= True|False
- Operators:
- not: Bool \rightarrow Bool
- and: Bool ${ }^{2} \rightarrow$ Bool
- or : Bool ${ }^{2} \rightarrow$ Bool
- if : Bool $\times \tau \times \tau \rightarrow \tau$
- Axioms: see slide 81

The Bool type

Syntax

The Bool type

Syntax

$$
\begin{aligned}
\text { Expr }::= & \ldots \\
& \mid \\
& (\text { if Expr Expr Expr })
\end{aligned}
$$

The Bool type

Syntax

$$
\begin{array}{rll}
\text { Expr } & ::= & \ldots \\
& \mid & (\text { if Expr Expr Expr })
\end{array}
$$

BaseVal ::= ...
 BoolVal

The Bool type

Syntax

$$
\begin{array}{rll}
\text { Expr } & ::= & \ldots \\
& \mid & \text { (if Expr Expr Expr) }
\end{array}
$$

BaseVal ::= ...
 BoolVal

BoolVal ::= True|False

The Bool type

Syntax

$$
\begin{aligned}
\text { Expr } & ::= \\
& \text { | } \\
& \text { (if Expr Expr Expr) }
\end{aligned}
$$

BaseVal ::= ...
 BoolVal

BoolVal ::= True|False

BaseType

| Bool

The Bool type

Evaluation

- EvallfT:

$$
\text { (if True e és) } \rightarrow e
$$

The Bool type

Evaluation

- EvallfT:

$$
\text { (if True e e } e^{\prime} \text {) } \rightarrow e
$$

- EvallfF:
(if False e e^{\prime}) $\rightarrow e^{\prime}$

The Bool type

Evaluation

- EvallfT:

$$
\text { (if True e e } e^{\prime} \text {) } \rightarrow e
$$

- EvallfF:
(if False e e^{\prime}) $\rightarrow e^{\prime}$
- Evallf:

$$
\frac{e \rightarrow e^{\prime}}{\left(\text { if } e e_{1} e_{2}\right) \rightarrow\left(\text { if } e^{\prime} e_{1} e_{2}\right)}
$$

The Bool type

Typing

- TTrue:

$$
\Gamma \vdash \text { True : Bool }
$$

The Bool type

Typing

- TTrue:

$$
\ulcorner\vdash \text { True : Bool }
$$

- TFalse:

$\ulcorner\vdash$ False: Bool

The Bool type

Typing

- TTrue:

$$
\ulcorner\vdash \text { True : Bool }
$$

- TFalse:

$\ulcorner\vdash$ False: Bool

- TIf:

$$
\frac{\Gamma \vdash e: B o o l ~ \Gamma \vdash e_{1}: \tau \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash\left(\text { if } e e_{1} e_{2}\right): \tau}
$$

The Bool type

Top-level variable bindings

The Bool type

Top-level variable bindings

- not $\equiv \lambda x$: Bool.(if x False True)

The Bool type

Top-level variable bindings

- not $\equiv \lambda x$: Bool.(if x False True)
- and $\equiv \lambda x$: Bool. λ y : Bool.(if x y False)

The Bool type

Top-level variable bindings

- not $\equiv \lambda x$: Bool.(if x False True)
- and $\equiv \lambda x$: Bool. λy : Bool.(if x y False)
- or $\equiv \lambda x:$ Bool. λy : Bool.(if x True y)

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool
- Axioms $(m, n \in \mathbb{N})$:

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool
- Axioms $(m, n \in \mathbb{N})$:
- $(+0 n)=n$

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool
- Axioms $(m, n \in \mathbb{N})$:
- $(+0 n)=n$
- $(+($ succ $m) n)=(\operatorname{succ}(+m n))$

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool
- Axioms $(m, n \in \mathbb{N})$:
- $(+0 n)=n$
- $(+($ succ $m) n)=(\operatorname{succ}(+m n))$
- $($ zero? 0$)=$ True

The \mathbb{N} type

Algebraic specification

- Base constructors i.e., canonical values:
- $\mathbb{N}::=0 \mid(\operatorname{succ} \mathbb{N})$
- Operators:
$-+: \mathbb{N}^{2} \rightarrow \mathbb{N}$
- zero?: $\mathbb{N} \rightarrow$ Bool
- Axioms $(m, n \in \mathbb{N})$:
- $(+0 n)=n$
- $(+($ succ $m) n)=(\operatorname{succ}(+m n))$
- $($ zero? 0$)=$ True
- $($ zero? $($ succ $n))=$ False

The \mathbb{N} type
Operator semantics

- How to avoid defining evaluation and typing rules for each operator of \mathbb{N} ?
- How to avoid defining evaluation and typing rules for each operator of \mathbb{N} ?
- Introduce the primitive recursor for \mathbb{N}, $\operatorname{prec}_{\mathbb{N}}$, which allows for defining any primitive recursive function on natural numbers
- How to avoid defining evaluation and typing rules for each operator of \mathbb{N} ?
- Introduce the primitive recursor for $\mathbb{N}, \operatorname{prec}_{\mathbb{N}}$, which allows for defining any primitive recursive function on natural numbers
- Define the operators using the primitive recursor

The \mathbb{N} type

Syntax

The \mathbb{N} type

Syntax

$$
\begin{array}{rll}
\text { Expr } & ::= & \ldots \\
& \mid & (\text { succ Expr }) \\
& & \left(\text { prec }_{\mathbb{N}} \text { Expr Expr Expr }\right)
\end{array}
$$

The \mathbb{N} type

Syntax

$$
\begin{array}{rlrl}
\text { Expr } & ::= & \ldots \\
\mid & & (\text { succ Expr })^{\mid} & \\
& \quad\left(\text { prec }_{\mathbb{N}} \text { Expr Expr Expr }\right) \\
& & \\
& \text { BaseVal }::= & \ldots \\
& & N \text { Val }
\end{array}
$$

The \mathbb{N} type

Syntax

$$
\begin{array}{rll}
\text { Expr } & ::= & \ldots \\
& \mid & (\text { succ Expr }) \\
& & \left(\text { prec }_{\mathbb{N}} \text { Expr Expr Expr }\right)
\end{array}
$$

BaseVal ::= ...
NVal

NVal $::=0$
(succ NVal)

The \mathbb{N} type

Syntax

$$
\begin{array}{rll}
\text { Expr } & ::= & \ldots \\
& \mid & (\text { succ Expr }) \\
& & \left(\text { prec }_{\mathbb{N}} \text { Expr Expr Expr }\right)
\end{array}
$$

BaseVal ::= ...
NVal

NVal $::=0$
(succ NVal)

BaseType ::= ...

The \mathbb{N} type

Evaluation

- EvalSucc:

$$
\frac{e \rightarrow e^{\prime}}{(\operatorname{succ} e) \rightarrow\left(\operatorname{succ} e^{\prime}\right)}
$$

The \mathbb{N} type

Evaluation

- EvalSucc:

$$
\frac{e \rightarrow e^{\prime}}{(\operatorname{succ} e) \rightarrow\left(\operatorname{succ} e^{\prime}\right)}
$$

- EvalPrec ${ }_{\mathbb{N} O}$:
$\left(p r e c_{\mathbb{N}} e_{0} f 0\right) \rightarrow e_{0}$

The \mathbb{N} type

Evaluation

- EvalSucc:

$$
\frac{e \rightarrow e^{\prime}}{(\operatorname{succ} e) \rightarrow\left(\operatorname{succ} e^{\prime}\right)}
$$

- EvalPrec $\mathbb{N}_{\mathbb{N}}$:

$$
\left(p r e c_{\mathbb{N}} e_{0} f 0\right) \rightarrow e_{0}
$$

- EvalPrec ${ }_{\mathbb{N} 1}(n \in \mathbb{N})$:
$\left(\operatorname{prec}_{\mathbb{N}} e_{0} f(\operatorname{succ} n)\right) \rightarrow\left(f n\left(\operatorname{prec}_{\mathbb{N}} e_{0} f n\right)\right)$

The \mathbb{N} type

Evaluation

- EvalSucc:

$$
\frac{e \rightarrow e^{\prime}}{(\operatorname{succ} e) \rightarrow\left(\operatorname{succ} e^{\prime}\right)}
$$

- EvalPrec $\mathbb{N}_{\mathbb{N}}$:

$$
\left(p r e c_{\mathbb{N}} e_{0} f 0\right) \rightarrow e_{0}
$$

- EvalPrec ${ }_{\mathbb{N} 1}(n \in \mathbb{N})$:

$$
\left(p r e c_{\mathbb{N}} e_{0} f(\operatorname{succ} n)\right) \rightarrow\left(f n\left(p r e c_{\mathbb{N}} e_{0} f n\right)\right)
$$

- EvalPrec $\mathbb{N}_{\mathbb{N} 2}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(p r e c_{\mathbb{N}} e_{0} f e\right) \rightarrow\left(p r e c_{\mathbb{N}} e_{0} f e^{\prime}\right)}
$$

The \mathbb{N} type
Typing

- TZero:

$$
\Gamma \vdash 0: \mathbb{N}
$$

The \mathbb{N} type

Typing

- TZero:

$$
\Gamma \vdash 0: \mathbb{N}
$$

- TSucc:

$$
\frac{\Gamma \vdash e: \mathbb{N}}{\Gamma \vdash(\operatorname{succ} e): \mathbb{N}}
$$

The \mathbb{N} type

Typing

- TZero:

$$
\Gamma \vdash 0: \mathbb{N}
$$

- TSucc:

$$
\frac{\Gamma \vdash e: \mathbb{N}}{\Gamma \vdash(\operatorname{succ} e): \mathbb{N}}
$$

- TPrec $_{\mathbb{N}}$:

$$
\frac{\Gamma \vdash e_{0}: \tau \quad \Gamma \vdash f: \mathbb{N} \rightarrow \tau \rightarrow \tau \quad \Gamma \vdash e: \mathbb{N}}{\Gamma \vdash\left(\operatorname{prec}_{\mathbb{N}} e_{0} f e\right): \tau}
$$

The \mathbb{N} type

Top-level variable bindings

The \mathbb{N} type

Top-level variable bindings

- zero? $\equiv \lambda n: \mathbb{N} .\left(\right.$ prec $_{\mathbb{N}}$ True $\lambda x: \mathbb{N} . \lambda y:$ Bool.False $\left.n\right)$

The \mathbb{N} type

Top-level variable bindings

- zero? $\equiv \lambda n: \mathbb{N} .\left(\right.$ prec $_{\mathbb{N}}$ True $\lambda x: \mathbb{N} . \lambda y:$ Bool.False $\left.n\right)$
$-+\equiv \lambda m: \mathbb{N} . \lambda n: \mathbb{N} .\left(\operatorname{prec}_{\mathbb{N}} n \lambda x: \mathbb{N} . \lambda y: \mathbb{N} .(\right.$ succ $\left.y) m\right)$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- $($ List $\tau) \quad::=\quad[]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau)::=]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau)::=]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : List $\tau) \backslash\{[]\} \rightarrow \tau$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau)::=]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau) \quad:=[]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : List $\tau) \rightarrow \mathbb{N}$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau) \quad:=[]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : (List $\tau) \rightarrow \mathbb{N}$
- Axioms $(h \in \tau, t \in($ List $\tau))$:

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau) \quad:=[]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : (List $\tau) \rightarrow \mathbb{N}$
- Axioms $(h \in \tau, t \in($ List $\tau))$:
- $($ head $($ cons $h t))=h$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau) \quad:=[]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : $($ List $\tau) \rightarrow \mathbb{N}$
- Axioms $(h \in \tau, t \in($ List $\tau))$:
- $($ head $($ cons $h t))=h$
- (tail $($ cons $h t))=t$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau)::=]_{\tau} \quad \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : $($ List $\tau) \rightarrow \mathbb{N}$
- Axioms $(h \in \tau, t \in($ List $\tau))$:
- $($ head $($ cons $h t))=h$
- (tail $($ cons $h t))=t$
- $($ length [] $)=0$

The (List τ) type

Algebraic specification

- Base constructors i.e., canonical values:
- (List $\tau)::=[]_{\tau} \mid \quad($ cons $\tau($ List $\tau))$
- Operators:
- head : (List $\tau) \backslash\{[]\} \rightarrow \tau$
- tail : (List $\tau) \backslash\{[]\} \rightarrow($ List $\tau)$
- length : $($ List $\tau) \rightarrow \mathbb{N}$
- Axioms ($h \in \tau, t \in($ List $\tau)$):
- $($ head $($ cons $h t))=h$
- (tail $($ cons $h t))=t$
- (length []) $=0$
- $($ length $($ cons $h t))=(\operatorname{succ}($ length $t))$

The (List τ) type

Syntax

The (List τ) type

Syntax

$$
\begin{aligned}
\text { Expr }::= & \text {. } \\
\text { | } & (\text { cons Expr Expr }) \\
\text { | } & \left(\text { prec }_{L} \text { Expr Expr Expr }\right)
\end{aligned}
$$

The (List τ) type

Syntax

$$
\begin{array}{rlrl}
\text { Expr } & ::= & & \text {. } \\
\text { | } & (\text { cons Expr Expr }) \\
& & \left(\text { prec }_{L} \text { Expr Expr Expr }\right)
\end{array}
$$

BaseVal ::=
| ListVal

The (List τ) type

Syntax

$$
\begin{aligned}
& \text { Expr ::= ... } \\
& \text { (cons Expr Expr) } \\
& \text { (prec }{ }_{L} \text { Expr Expr Expr) } \\
& \begin{array}{ccl}
\text { BaseVal } & ::= & \ldots \\
& & \\
& \text { ListVal }
\end{array} \\
& \text { ListVal ::= [] } \\
& \text { (cons Value ListVal) }
\end{aligned}
$$

The (List τ) type

Syntax

$$
\begin{aligned}
& \text { Expr ::= ... } \\
& \text { (cons Expr Expr) } \\
& \text { (prec } c_{L} \text { Expr Expr Expr) } \\
& \text { (List Type) }
\end{aligned}
$$

The (List τ) type

Evaluation

- EvalCons:

$$
\begin{gathered}
e \rightarrow e^{\prime} \\
\left(\text { cons } e e^{\prime \prime}\right) \rightarrow\left(\text { cons } e^{\prime} e^{\prime \prime}\right)
\end{gathered}
$$

The (List τ) type

Evaluation

- EvalCons:

$$
\frac{e \rightarrow e^{\prime}}{\left(\text { cons } e e^{\prime \prime}\right) \rightarrow\left(\text { cons } e^{\prime} e^{\prime \prime}\right)}
$$

- EvalPrec ${ }_{L O}$:
$\left(\operatorname{prec}_{L} e_{0} f[]\right) \rightarrow e_{0}$

The (List τ) type

Evaluation

- EvalCons:

$$
\frac{e \rightarrow e^{\prime}}{\left(\text { cons } e e^{\prime \prime}\right) \rightarrow\left(\text { cons } e^{\prime} e^{\prime \prime}\right)}
$$

- EvalPrec ${ }_{L O}$:

$$
\left(\operatorname{prec}_{L} e_{0} f[]\right) \rightarrow e_{0}
$$

- EvalPrec ${ }_{L 1}(v \in$ Value $)$:
$\left(\operatorname{prec}_{L} e_{0} f(\right.$ cons $\left.v e)\right) \rightarrow\left(f v e\left(\operatorname{prec}_{L} e_{0} f e\right)\right)$

The (List τ) type

Evaluation

- EvalCons:

$$
\frac{e \rightarrow e^{\prime}}{\left(\text { cons } e e^{\prime \prime}\right) \rightarrow\left(\text { cons } e^{\prime} e^{\prime \prime}\right)}
$$

- EvalPrec ${ }_{L O}$:

$$
\left(\operatorname{prec}_{L} e_{0} f[]\right) \rightarrow e_{0}
$$

- EvalPrec ${ }_{L 1}(v \in$ Value $)$:
$\left(\operatorname{prec}_{L} e_{0} f(\right.$ cons $\left.v e)\right) \rightarrow\left(f v e\left(\operatorname{prec}_{L} e_{0} f e\right)\right)$
- EvalPrec ${ }_{L 2}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(p r e c_{L} e_{0} f e\right) \rightarrow\left(p r e c_{L} e_{0} f e^{\prime}\right)}
$$

The (List τ) type

Typing

- TEmpty:

$$
\ulcorner\vdash[] \tau:(\text { List } \tau)
$$

The (List τ) type

Typing

- TEmpty:

$$
\ulcorner\vdash[] \tau:(\text { List } \tau)
$$

- TCons:

$$
\frac{\Gamma \vdash e: \tau \quad \Gamma \vdash e^{\prime}:(\text { List } \tau)}{\Gamma \vdash\left(\text { cons } e e^{\prime}\right):(\text { List } \tau)}
$$

The (List τ) type

Typing

- TEmpty:

$$
\ulcorner\vdash[] \tau:(\text { List } \tau)
$$

- TCons:

$$
\frac{\Gamma \vdash e: \tau \quad \Gamma \vdash e^{\prime}:(\text { List } \tau)}{\Gamma \vdash\left(\text { cons } e e^{\prime}\right):(\text { List } \tau)}
$$

- TPrec $_{L}$:

$$
\frac{\Gamma \vdash e_{0}: \tau^{\prime} \quad \Gamma \vdash f: \tau \rightarrow(\text { List } \tau) \rightarrow \tau^{\prime} \rightarrow \tau^{\prime} \quad \Gamma \vdash e:(\text { List } \tau)}{\Gamma \vdash\left(\operatorname{prec}_{L} e_{0} f e\right): \tau^{\prime}}
$$

The (List τ) type

Top-level variable bindings

The (List τ) type

Top-level variable bindings

- empty? $\equiv \lambda I:($ List $\tau) .\left(\right.$ prec $_{L}$ True $\left.f I\right)$, $f \equiv \lambda h: \tau . \lambda t:($ List $\tau) \cdot \lambda r$: Bool.False

The (List τ) type

Top-level variable bindings

- empty? $\equiv \lambda I:($ List $\tau) .\left(\right.$ prec $_{L}$ True $\left.f I\right)$, $f \equiv \lambda h: \tau . \lambda t:($ List $\tau) \cdot \lambda r$: Bool.False
- length $\equiv \lambda I:($ List $\tau) .\left(\right.$ prec $\left._{L} 0 f I\right)$,

$$
f \equiv \lambda h: \tau . \lambda t:(\text { List } \tau) . \lambda r: \mathbb{N} .(\text { succ } r)
$$

General recursion

- Primitive recursion

General recursion

- Primitive recursion
- induces strong normalization

General recursion

- Primitive recursion
- induces strong normalization
- insufficient for capturing effectively computable functions

General recursion

- Primitive recursion
- induces strong normalization
- insufficient for capturing effectively computable functions
- Introduce the operator fix i.e., a fixed-point combinator

General recursion

- Primitive recursion
- induces strong normalization
- insufficient for capturing effectively computable functions
- Introduce the operator fix i.e., a fixed-point combinator
- Gain computation power at the expense of strong normalization
fix
Syntax
fix
Syntax

Expr ::= ...
 (fix Expr)

fix
Evaluation

- EvalFix:

$$
(f i x \lambda x: \tau . e) \rightarrow e_{[(f i x \lambda x: \tau . e) / x]} \quad=(f(f i x f))
$$

fix

Evaluation

- EvalFix:

$$
(f i x \lambda x: \tau . e) \rightarrow e_{[(f i x \lambda x: \tau . e) / x]} \quad=(f(f i x f))
$$

- EvalFix':

$$
\frac{e \rightarrow e^{\prime}}{(f i x \quad e) \rightarrow\left(f i x \quad e^{\prime}\right)}
$$

- TFix:

$$
\frac{\Gamma \vdash e:(\tau \rightarrow \tau)}{\Gamma \vdash(\text { fix } e): \tau}
$$

Example

Example 15.2 (The remainder function).

$$
\begin{aligned}
& \text { remainder }=\lambda m: \mathbb{N} . \lambda n: \mathbb{N} . \\
& \qquad((f i x \quad \lambda f:(\mathbb{N} \rightarrow \mathbb{N}) . \lambda p: \mathbb{N} . \\
& \quad(\text { if } p<n \text { then } p \text { else }(f(p-n)))) m)
\end{aligned}
$$

The evaluation of (remainder 30) does not terminate.

Monomorphism

- Within the types ($\tau * \tau^{\prime}$) and (List τ), τ and τ^{\prime} designate specific types e.g., Bool, \mathbb{N}, (List \mathbb{N}), etc.

Monomorphism

- Within the types ($\tau * \tau^{\prime}$) and (List $\left.\tau\right), \tau$ and τ^{\prime} designate specific types e.g., Bool, \mathbb{N}, (List \mathbb{N}), etc.
- Dedicated operators for each simple type

Monomorphism

- Within the types ($\tau * \tau^{\prime}$) and (List τ), τ and τ^{\prime} designate specific types e.g., Bool, \mathbb{N}, (List \mathbb{N}), etc.
- Dedicated operators for each simple type
- $f s t_{\mathbb{N}, B o o l}, f s t_{B o o l, \mathbb{N}}, \ldots$

Monomorphism

- Within the types ($\tau * \tau^{\prime}$) and (List τ), τ and τ^{\prime} designate specific types e.g., Bool, \mathbb{N}, (List \mathbb{N}), etc.
- Dedicated operators for each simple type
- $f s t_{\mathbb{N}, B o o l}, f s t_{B o o l, \mathbb{N}}, \ldots$
- [] $]_{N},[]_{B o o l}, \ldots$

Monomorphism

- Within the types ($\tau * \tau^{\prime}$) and (List τ), τ and τ^{\prime} designate specific types e.g., Bool, \mathbb{N}, (List $\mathbb{N})$, etc.
- Dedicated operators for each simple type
- fst $_{\mathbb{N}, B o o l}$, fst $_{B o o l, \mathbb{N}}, \ldots$
- [] $]_{\mathbb{N}}[]_{\text {Bool }}, \ldots$
- empty? ${ }_{\mathbb{N}}$, empty $?_{\text {Bool }}, \ldots$

Contents

Introduction

Simply Typed Lambda Calculus (STLC, System F_{1})
Extending STLC

Polymorphic Lambda Calculus (PSTLC, System F)
Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Idea

- Monomorphic identity function for type \mathbb{N} :

$$
i d_{\mathbb{N}} \equiv \lambda x: \mathbb{N} \cdot x:(\mathbb{N} \rightarrow \mathbb{N})
$$

Idea

- Monomorphic identity function for type \mathbb{N} :

$$
i d_{\mathbb{N}} \equiv \lambda x: \mathbb{N} \cdot x:(\mathbb{N} \rightarrow \mathbb{N})
$$

- Polymorphic identity function - type variables:

$$
i d \equiv \lambda X . \lambda x: X . x: \forall X .(X \rightarrow X)
$$

Idea

- Monomorphic identity function for type \mathbb{N} :

$$
i d_{\mathbb{N}} \equiv \lambda x: \mathbb{N} . x:(\mathbb{N} \rightarrow \mathbb{N})
$$

- Polymorphic identity function - type variables:

$$
i d \equiv \lambda X . \lambda x: X . x: \forall X .(X \rightarrow X)
$$

- Type coercion prior to function application:

$$
(i d[\mathbb{N}] 5) \rightarrow\left(i d_{\mathbb{N}} 5\right) \rightarrow 5
$$

Syntax

- Program variables: stand for program values

$$
\text { Var } \quad::=\ldots
$$

Syntax

- Program variables: stand for program values

$$
\text { Var }::=\ldots
$$

- Type variables: stand for types

TypeVar $::=\quad .$.

Syntax

- Expressions:
$\begin{array}{rll}\text { Expr }::= & \text { Value } \\ \mid & \text { Var } \\ \mid & \text { (Expr Expr }) \\ \mid & \text { Expr[Type] }\end{array}$

Syntax

- Expressions:

$$
\begin{array}{rll}
\text { Expr }::= & \text { Value } \\
\mid & \text { Var } \\
\mid & (\text { Expr Expr }) \\
\mid & \text { Expr[Type }]
\end{array}
$$

- Values:

> Value ::= BaseValue
> λ Var: Type.Expr
> λ TypeVar.Expr

Syntax

- Types:

$$
\begin{array}{rll}
\text { Type }::= & \text { BaseType } \\
\mid & \text { TypeVar } \\
\mid & & (\text { Type } \rightarrow \text { Type }) \\
\mid & \forall \text { TypeVar.Type }
\end{array}
$$

Syntax

- Types:

$$
\begin{aligned}
\text { Type }::= & \text { BaseType } \\
\mid & \text { TypeVar } \\
\text { | } & (\text { Type } \rightarrow \text { Type }) \\
\mid & \forall \text { TypeVar.Type }
\end{aligned}
$$

- Typing contexts:

TypingContext ::= Ø
TypingContext, Var : Type
TypingContext, TypeVar

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e \quad e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X . e[\tau] \rightarrow e_{[\tau / X]}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X . e[\tau] \rightarrow e_{[\tau / X]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X . e[\tau] \rightarrow e_{[\tau / X]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

- Eval $_{2}$:

$$
\frac{\boldsymbol{e} \rightarrow \boldsymbol{e}^{\prime}}{\boldsymbol{e}[\tau] \rightarrow \boldsymbol{e}^{\prime}[\tau]}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- TAbs $_{1}$:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- TAbs $_{1}$:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x: \tau \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

- TApp $_{1}$:

$$
\frac{\Gamma \vdash e:\left(\tau^{\prime} \rightarrow \tau\right) \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e e^{\prime}\right): \tau}
$$

Semantics

Typing

- TAbs_{2} - polymorphic expressions have universal types:

$$
\frac{\Gamma, X \vdash e: \tau}{\Gamma \vdash \lambda X . e: \forall X . \tau}
$$

Semantics

Typing

- TAbs_{2} - polymorphic expressions have universal types:

$$
\frac{\Gamma, X \vdash e: \tau}{\Gamma \vdash \lambda X . e: \forall X . \tau}
$$

- TApp_{2} :

$$
\frac{\Gamma \vdash e: \forall X . \tau}{\Gamma \vdash e\left[\tau^{\prime}\right]: \tau_{\left[\tau^{\prime} / X\right]}}
$$

Semantics

Substitution and free variables

- Expr ${ }_{[E x p r / V a r]}$

Semantics

Substitution and free variables

- Expr ${ }_{[E x p r / V a r]}$
- Expr ${ }_{[\text {Type } / \text { TypeVar }]}$

Semantics

Substitution and free variables

- Expr ${ }_{[E x p r / V a r]}$
- Expr ${ }_{[\text {Type } / \text { TypeVar }]}$
- Type ${ }_{\text {[Type/TypeVar] }}$

Semantics

Substitution and free variables

- Expr ${ }_{[E x p r / V a r]}$
- Expr ${ }_{[\text {Type } / \text { TypeVar }]}$
- Type ${ }_{[\text {Type } / \text { TypeVar] }}$
- Free program variables

Semantics

Substitution and free variables

- Expr ${ }_{[E x p r / V a r]}$
- Expr ${ }_{[\text {Type } / \text { TypeVar }]}$
- Type ${ }_{[\text {Type } / \text { TypeVar] }}$
- Free program variables
- Free type variables

Typing example

Example 16.1 (Typing).

$$
\begin{gathered}
\Gamma \vdash \lambda f: \forall X .(X \rightarrow X) . \lambda Y . \lambda x: Y .(f[Y] x) \\
\quad:(\forall X .(X \rightarrow X) \rightarrow \forall Y .(Y \rightarrow Y))
\end{gathered}
$$

Typing example

Example 16.1 (Typing).

$$
\begin{gathered}
\Gamma \vdash \lambda f: \forall X .(X \rightarrow X) \cdot \lambda Y \cdot \lambda x: Y .(f[Y] x) \\
:(\forall X .(X \rightarrow X) \rightarrow \forall Y .(Y \rightarrow Y)) \\
\text { Monomorphic function } \\
\text { with polymorphic argument and result! }
\end{gathered}
$$

Typing example

Example 16.1 (Typing).

$$
\begin{gathered}
\Gamma \vdash \lambda f: \forall X .(X \rightarrow X) \cdot \lambda Y \cdot \lambda x: Y .(f[Y] x) \\
:(\forall X .(X \rightarrow X) \rightarrow \forall Y .(Y \rightarrow Y)) \\
\text { Monomorphic function } \\
\text { with polymorphic argument and result! }
\end{gathered}
$$

Blackboard!

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).
 double \equiv

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

$$
\text { double } \equiv \lambda X . \lambda f:(X \rightarrow X) . \lambda x: X .(f(f x))
$$

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

$$
\begin{aligned}
\text { double } & \equiv \lambda X . \lambda f:(X \rightarrow X) . \lambda x: X .(f(f x)) \\
& : \forall X .((X \rightarrow X) \rightarrow(X \rightarrow X))
\end{aligned}
$$

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

$$
\begin{aligned}
\text { double } & \equiv \lambda X . \lambda f:(X \rightarrow X) . \lambda x: X .(f(f x)) \\
& : \forall X .((X \rightarrow X) \rightarrow(X \rightarrow X))
\end{aligned}
$$

Example 16.3 (Quadrupling a computation).
quadruple \equiv

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

$$
\begin{aligned}
\text { double } & \equiv \lambda X \cdot \lambda f:(X \rightarrow X) \cdot \lambda x: X .(f(f x)) \\
& : \forall X \cdot((X \rightarrow X) \rightarrow(X \rightarrow X))
\end{aligned}
$$

Example 16.3 (Quadrupling a computation).
quadruple $\equiv \lambda X .($ double $[X \rightarrow X]$ double $[X])$

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

$$
\begin{aligned}
\text { double } & \equiv \lambda X . \lambda f:(X \rightarrow X) . \lambda x: X .(f(f x)) \\
& : \forall X .((X \rightarrow X) \rightarrow(X \rightarrow X))
\end{aligned}
$$

Example 16.3 (Quadrupling a computation).

$$
\begin{aligned}
\text { quadruple } & \equiv \lambda X .(\text { double }[X \rightarrow X] \text { double }[X]) \\
& : \forall X .((X \rightarrow X) \rightarrow(X \rightarrow X))
\end{aligned}
$$

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

reflexive \equiv

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

$$
\text { reflexive } \equiv \lambda f: \forall X \cdot(X \rightarrow X) \cdot(f[\forall X \cdot(X \rightarrow X)] f)
$$

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

$$
\begin{aligned}
\text { reflexive } & \equiv \lambda f: \forall X \cdot(X \rightarrow X) \cdot(f[\forall X \cdot(X \rightarrow X)] f) \\
& : \quad(\forall X \cdot(X \rightarrow X) \rightarrow \forall X \cdot(X \rightarrow X))
\end{aligned}
$$

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

$$
\begin{aligned}
\text { reflexive } & \equiv \lambda f: \forall X \cdot(X \rightarrow X) \cdot(f[\forall X \cdot(X \rightarrow X)] f) \\
& : \quad(\forall X \cdot(X \rightarrow X) \rightarrow \forall X \cdot(X \rightarrow X))
\end{aligned}
$$

Example 16.5 (Fixed-point combinator).
Fix \equiv

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

$$
\begin{aligned}
\text { reflexive } & \equiv \lambda f: \forall X \cdot(X \rightarrow X) \cdot(f[\forall X \cdot(X \rightarrow X)] f) \\
& : \quad(\forall X \cdot(X \rightarrow X) \rightarrow \forall X \cdot(X \rightarrow X))
\end{aligned}
$$

Example 16.5 (Fixed-point combinator).

$$
\text { Fix } \equiv \lambda X \cdot \lambda f:(X \rightarrow X) \cdot(f(F i x[X] f))
$$

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

$$
\begin{aligned}
\text { reflexive } & \equiv \lambda f: \forall X \cdot(X \rightarrow X) \cdot(f[\forall X \cdot(X \rightarrow X)] f) \\
& :(\forall X \cdot(X \rightarrow X) \rightarrow \forall X \cdot(X \rightarrow X))
\end{aligned}
$$

Example 16.5 (Fixed-point combinator).

$$
\begin{aligned}
\text { Fix } & \equiv \lambda X \cdot \lambda f:(X \rightarrow X) \cdot(f(F i x[X] f)) \\
& : \forall X \cdot((X \rightarrow X) \rightarrow X)
\end{aligned}
$$

Contents

Introduction

Simply Typed Lambda Calculus (STLC, System F_{1})

Extending STLC

Polymorphic Lambda Calculus (PSTLC, System F)

Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC,
System F_{ω})

Motivation

Contents

Introduction

Simply Typed Lambda Calculus (STLC, System F_{1})

Extending STLC

Polymorphic Lambda Calculus (PSTLC, System F)

Type reconstruction
Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

Problem

- Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$
f \equiv \lambda C . \lambda X . \lambda x:\left(\begin{array}{l}
C
\end{array}\right) . x: \forall C . \forall X .\left(\left(\begin{array}{l}
C
\end{array}\right) \rightarrow\left(\begin{array}{l}
C
\end{array}\right)\right)
$$

Problem

- Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$
f \equiv \lambda C . \lambda X . \lambda x:\left(\begin{array}{l}
C
\end{array}\right) \cdot x: \forall C . \forall X .\left(\left(\begin{array}{l}
C
\end{array}\right) \rightarrow\left(\begin{array}{l}
C
\end{array}\right)\right)
$$

- C stands for a 1-ary type constructor, X stands for a type of program values i.e., a proper type

Problem

- Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$
f \equiv \lambda C . \lambda X \cdot \lambda x:(C \quad X) \cdot x: \forall C \cdot \forall X .\left(\left(\begin{array}{l}
C
\end{array}\right) \rightarrow\left(\begin{array}{l}
C
\end{array}\right)\right)
$$

- C stands for a 1-ary type constructor, X stands for a type of program values i.e., a proper type
- Monomorphic identity function for type (List \mathbb{N}):

$$
f[\text { List }][\mathbb{N}] \rightarrow \lambda x:(\text { List } \mathbb{N}) \cdot x:((\text { List } \mathbb{N}) \rightarrow(\text { List } \mathbb{N}))
$$

Problem

- Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$
f \equiv \lambda C . \lambda X . \lambda x:(C \quad X) \cdot x: \forall C \cdot \forall X .\left(\left(\begin{array}{l}
C
\end{array}\right) \rightarrow\left(\begin{array}{l}
C
\end{array}\right)\right)
$$

- C stands for a 1-ary type constructor, X stands for a type of program values i.e., a proper type
- Monomorphic identity function for type (List \mathbb{N}):

$$
f[\text { List }][\mathbb{N}] \rightarrow \lambda x:(\text { List } \mathbb{N}) \cdot x:((\text { List } \mathbb{N}) \rightarrow(\text { List } \mathbb{N}))
$$

- How do we prevent erroneous situations e.g., $f[\mathbb{N}][\mathbb{N}], f[L i s t][$ List $]$?

Solution

- Two categories of types: proper types, and type constructors i.e., λ TypeVar.Type

Solution

- Two categories of types: proper types, and type constructors i.e., λ TypeVar.Type
- Type not only program variables, but also type variables

Solution

- Two categories of types: proper types, and type constructors i.e., λ TypeVar.Type
- Type not only program variables, but also type variables
- The type of a type: kind

Kinds

Notation

- The kind of a proper type: *

Kinds

Notation

- The kind of a proper type: *
- The kind of a 1-ary type constructor: $(* \Rightarrow *)$

Kinds

Notation

- The kind of a proper type: *
- The kind of a 1-ary type constructor: $(* \Rightarrow *)$
- The kind of an n-ary type constructor, $n \geq 1: k_{1} \Rightarrow k_{2}$

Kinds

Notation

- The kind of a proper type: *
- The kind of a 1-ary type constructor: $(* \Rightarrow *)$
- The kind of an n-ary type constructor, $n \geq 1: k_{1} \Rightarrow k_{2}$
- The kind k of a type $\tau: \tau:: k$

Kinds

Examples

Example 18.1 (Kinds).

- \mathbb{N}

Kinds

Examples

Example 18.1 (Kinds).

- $\mathbb{N}:: *$
- List

Kinds

Examples

Example 18.1 (Kinds).

- \mathbb{N} :: *
- List $::(* \Rightarrow *)$
- $f \equiv \lambda C::(* \Rightarrow *) . \lambda X:: * . \lambda x:\left(\begin{array}{l}C\end{array}\right) \cdot x$

Kinds

Examples

Example 18.1 (Kinds).

- $\mathbb{N}:: *$
- List $::(* \Rightarrow *)$
- $f \equiv \lambda C::(* \Rightarrow *) \cdot \lambda X:: * \cdot \lambda x:(C X) \cdot x$ $f: \forall C::(* \Rightarrow *) . \forall X:: * .((C X) \rightarrow(C X))$

Levels of expressions

Levels of expressions

Expressions

Levels of expressions

0
Expressions

Levels of expressions

0 (0, True)
Expressions

Levels of expressions

$0 \quad(0$, True $) \quad[\mathbb{N}]$
Expressions

Levels of expressions

$0 \quad(0$, True $) \quad[][\mathbb{N}] \quad \lambda x: \mathbb{N} \cdot x$
Expressions

Levels of expressions

$$
\begin{aligned}
0 \quad(0, \text { True }) \quad[[[\mathbb{N}] \quad \lambda x: \mathbb{N} . x \quad & \lambda X:: * . \lambda x: X . x \\
& \\
& \text { Expressions }
\end{aligned}
$$

Levels of expressions

Types

$$
\begin{aligned}
0 \quad(0, \text { True }) \quad[[\mathbb{N}] \quad \lambda x: \mathbb{N} . x \quad & \lambda X:: * . \lambda x: X . x \\
& \\
& \text { Expressions }
\end{aligned}
$$

Levels of expressions

Levels of expressions

Kinds

Levels of expressions

Levels of expressions

Levels of expressions

Levels of expressions

Type equivalence

- Two syntactically distinct types:

$$
\begin{aligned}
& \tau_{1} \equiv((\text { List } \mathbb{N}) \rightarrow(\text { List } \mathbb{N})) \\
& \tau_{2} \equiv(\lambda X:: * \cdot((\text { List X) } \rightarrow(\text { List X) }) \mathbb{N})
\end{aligned}
$$

Type equivalence

- Two syntactically distinct types:

$$
\begin{aligned}
& \tau_{1} \equiv((\text { List } \mathbb{N}) \rightarrow(\text { List } \mathbb{N})) \\
& \tau_{2} \equiv(\lambda X:: * .((\text { List X) } \rightarrow(\text { List X))} \mathbb{N})
\end{aligned}
$$

- Semantically, they denote the same type i.e., they are equivalent: $\tau_{1} \equiv \tau_{2}$

Syntax

- Expressions:
$\begin{array}{rll}\text { Expr }::= & \text { Value } \\ \mid & \text { Var } \\ \mid & \text { (Expr Expr }) \\ \mid & \text { Expr[Type] }\end{array}$

Syntax

- Expressions:

$$
\begin{aligned}
\text { Expr }::= & \text { Value } \\
\mid & \text { Var } \\
\mid & (\text { Expr Expr }) \\
\mid & \text { Expr[Type] }
\end{aligned}
$$

- Values:

Syntax

- Types:

$$
\begin{array}{lll}
\text { Type }::= & \text { BaseType } \\
\mid & \text { TypeVar } \\
& (\text { Type } \rightarrow \text { Type) } \\
\mid & \forall \text { TypeVar :: Kind. Type } \\
: & \lambda \text { TypeVar :: Kind. Type } \\
\mid & \text { (Type Type) }
\end{array}
$$

Syntax

- Types:

$$
\begin{array}{lll}
\text { Type }::= & \text { BaseType } \\
\mid & \text { TypeVar } \\
& (\text { Type } \rightarrow \text { Type) } \\
\mid & \forall \text { TypeVar :: Kind. Type } \\
: & \lambda \text { TypeVar :: Kind. Type } \\
\mid & \text { (Type Type) }
\end{array}
$$

- Typing contexts:

TypingContext ::= \emptyset
TypingContext, Var : Type
TypingContext, TypeVar :: Kind

Syntax

- Kinds:

$$
\begin{array}{ccl}
\text { Kind } & ::= & * \\
& \mid & (\text { Kind } \Rightarrow \text { Kind })
\end{array}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e \quad e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e \quad e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X:: K . e[\tau] \rightarrow e_{[\tau / X]}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X:: K . e[\tau] \rightarrow e_{[\tau / X]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

Semantics

Evaluation

- Reduce ${ }_{1}$:

$$
\left(\lambda x: \tau . e e^{\prime}\right) \rightarrow e_{\left[e^{\prime} / x\right]}
$$

- Reduce 2 :

$$
\lambda X:: K . e[\tau] \rightarrow e_{[\tau / X]}
$$

- Eval ${ }_{1}$:

$$
\frac{e \rightarrow e^{\prime}}{\left(e e^{\prime \prime}\right) \rightarrow\left(e^{\prime} e^{\prime \prime}\right)}
$$

- $E v a I_{2}$:

$$
\frac{e \rightarrow \boldsymbol{e}^{\prime}}{e[\tau] \rightarrow \boldsymbol{e}^{\prime}[\tau]}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- TAbs $_{1}$:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

Semantics

Typing

- TBaseValue:

$$
\frac{v \in \tau_{b}}{\Gamma \vdash v: \tau_{b}}
$$

- TVar:

$$
\frac{x: \tau \in \Gamma}{\Gamma \vdash x: \tau}
$$

- $T_{A b s}$:

$$
\frac{\Gamma, x: \tau \vdash e: \tau^{\prime}}{\Gamma \vdash \lambda x \cdot e:\left(\tau \rightarrow \tau^{\prime}\right)}
$$

- TApp $_{1}$:

$$
\frac{\Gamma \vdash e:\left(\tau^{\prime} \rightarrow \tau\right) \quad \Gamma \vdash e^{\prime}: \tau^{\prime}}{\Gamma \vdash\left(e e^{\prime}\right): \tau}
$$

Semantics

Typing

- TAbs_{2} :

$$
\frac{\Gamma, X:: K \vdash e: \tau}{\Gamma \vdash \lambda X:: K . e: \forall X:: K . \tau}
$$

Semantics

Typing

- TAbs_{2} :

$$
\frac{\Gamma, X:: K \vdash e: \tau}{\Gamma \vdash \lambda X:: K . e: \forall X:: K . \tau}
$$

- TApp_{2} :

$$
\frac{\Gamma \vdash e: \forall X:: K . \tau \quad \Gamma \vdash \tau^{\prime}:: K}{\Gamma \vdash e\left[\tau^{\prime}\right]: \tau_{\left[\tau^{\prime} / X\right]}}
$$

Semantics

Kinding

- KBaseType:

$$
\Gamma \vdash \tau_{b}:: *
$$

Semantics

Kinding

- KBaseType:

$$
\Gamma \vdash \tau_{b}:: *
$$

- KTypeVar:

$$
\frac{X:: K \in \Gamma}{\Gamma \vdash X:: K}
$$

Semantics

Kinding

- KBaseType:

$$
\Gamma \vdash \tau_{b}:: *
$$

- KTypeVar:

$$
\frac{X:: K \in \Gamma}{\Gamma \vdash X:: K}
$$

- KTypeAbs:

$$
\frac{\Gamma, X:: K \vdash \tau:: K^{\prime}}{\Gamma \vdash \lambda X:: K . \tau::\left(K \Rightarrow K^{\prime}\right)}
$$

Semantics

Kinding

- KBaseType:

$$
\Gamma \vdash \tau_{b}:: *
$$

- KTypeVar:

$$
\frac{X:: K \in \Gamma}{\Gamma \vdash X:: K}
$$

- KTypeAbs:

$$
\frac{\Gamma, X:: K \vdash \tau:: K^{\prime}}{\Gamma \vdash \lambda X:: K . \tau::\left(K \Rightarrow K^{\prime}\right)}
$$

- KTypeApp:

$$
\frac{\Gamma \vdash \tau::\left(K^{\prime} \Rightarrow K\right) \quad \Gamma \vdash \tau^{\prime}:: K^{\prime}}{\Gamma \vdash\left(\tau \tau^{\prime}\right):: K}
$$

Semantics

Kinding

- $K A b s_{1}$:

$$
\frac{\Gamma \vdash \tau:: * \quad \Gamma \vdash \tau^{\prime}:: *}{\Gamma \vdash\left(\tau \rightarrow \tau^{\prime}\right):: *}
$$

Semantics

Kinding

- $K A b s_{1}$:

$$
\frac{\Gamma \vdash \tau:: * \quad \Gamma \vdash \tau^{\prime}:: *}{\Gamma \vdash\left(\tau \rightarrow \tau^{\prime}\right):: *}
$$

- $K A b s_{2}$:

$$
\frac{\Gamma, X:: K \vdash \tau:: *}{\Gamma \vdash \forall X:: K . \tau:: *}
$$

Semantics

Type equivalence

- EqReflexivity:

$$
\tau \equiv \tau
$$

Semantics

Type equivalence

- EqReflexivity:

$$
\tau \equiv \tau
$$

- EqSymmetry:

$$
\frac{\tau \equiv \tau^{\prime}}{\tau^{\prime} \equiv \tau}
$$

Semantics

Type equivalence

- EqReflexivity:

$$
\tau \equiv \tau
$$

- EqSymmetry:

$$
\frac{\tau \equiv \tau^{\prime}}{\tau^{\prime} \equiv \tau}
$$

- EqTransitivity:

$$
\frac{\tau \equiv \tau^{\prime} \quad \tau^{\prime} \equiv \tau^{\prime \prime}}{\tau \equiv \tau^{\prime \prime}}
$$

Semantics

Type equivalence

- EqReflexivity:

$$
\tau \equiv \tau
$$

- EqSymmetry:

$$
\frac{\tau \equiv \tau^{\prime}}{\tau^{\prime} \equiv \tau}
$$

- EqTransitivity:

$$
\frac{\tau \equiv \tau^{\prime} \quad \tau^{\prime} \equiv \tau^{\prime \prime}}{\tau \equiv \tau^{\prime \prime}}
$$

- EqTypeReduce:

$$
\left(\lambda X:: K . \tau \quad \tau^{\prime}\right) \equiv \tau_{\left[\tau^{\prime} / X\right]}
$$

Semantics

Type equivalence

- EqTypeAbs:

$$
\frac{\tau \equiv \tau^{\prime}}{\lambda X:: K . \tau \equiv \lambda X:: K . \tau^{\prime}}
$$

Semantics

Type equivalence

- EqTypeAbs:

$$
\frac{\tau \equiv \tau^{\prime}}{\lambda X:: K . \tau \equiv \lambda X:: K . \tau^{\prime}}
$$

- EqTypeApp:

$$
\frac{\tau \equiv \tau^{\prime} \quad \sigma \equiv \sigma^{\prime}}{(\tau \sigma) \equiv\left(\tau^{\prime} \sigma^{\prime}\right)}
$$

Semantics

Type equivalence

- EqTypeAbs:

$$
\frac{\tau \equiv \tau^{\prime}}{\lambda X:: K . \tau \equiv \lambda X:: K . \tau^{\prime}}
$$

- EqTypeApp:

$$
\frac{\tau \equiv \tau^{\prime} \quad \sigma \equiv \sigma^{\prime}}{(\tau \sigma) \equiv\left(\tau^{\prime} \sigma^{\prime}\right)}
$$

- EqAbs ${ }_{1}$:

$$
\frac{\tau \equiv \tau^{\prime} \quad \sigma \equiv \sigma^{\prime}}{(\tau \rightarrow \sigma) \equiv\left(\tau^{\prime} \rightarrow \sigma^{\prime}\right)}
$$

Semantics

Type equivalence

- EqTypeAbs:

$$
\frac{\tau \equiv \tau^{\prime}}{\lambda X:: K . \tau \equiv \lambda X:: K . \tau^{\prime}}
$$

- EqTypeApp:

$$
\frac{\tau \equiv \tau^{\prime} \quad \sigma \equiv \sigma^{\prime}}{(\tau \sigma) \equiv\left(\tau^{\prime} \sigma^{\prime}\right)}
$$

- $E q A b s_{1}$:

$$
\frac{\tau \equiv \tau^{\prime} \quad \sigma \equiv \sigma^{\prime}}{(\tau \rightarrow \sigma) \equiv\left(\tau^{\prime} \rightarrow \sigma^{\prime}\right)}
$$

- EqAbs 2 :

$$
\frac{\tau \equiv \tau^{\prime}}{\forall X:: K . \tau \equiv \forall X:: K . \tau^{\prime}}
$$

Semantics

Type equivalence

- TypeEquivalence:

$$
\frac{\Gamma \vdash e: \tau \quad \tau \equiv \tau^{\prime}}{\Gamma \vdash e: \tau^{\prime}}
$$

Kinding example

Example 18.2 (Kinding).

$$
\forall X:: * .(X \rightarrow((\text { List } X) \rightarrow(\text { Tree } X)))
$$

Kinding example

Example 18.2 (Kinding).

$$
\forall X:: * .(X \rightarrow((\text { List } X) \rightarrow(\text { Tree } X))):: *
$$

Blackboard!

Part V

Constructive Type Theory

Contents

Constructive paradigm

Syntax and semantics

Contents

Constructive paradigm

Syntax and semantics

Classical logic

- Example: prove $\exists x . P(x)$

Classical logic

- Example: prove $\exists x . P(x)$
- Perhaps, proof by contradiction: assume $\neg \exists x . P(x)$ and reach a contradiction

Classical logic

- Example: prove $\exists x \cdot P(x)$
- Perhaps, proof by contradiction: assume $\neg \exists x . P(x)$ and reach a contradiction
- Assumption: $\exists x . P(x) \vee \neg \exists x . P(x)$
(law of excluded middle)

Classical logic

- Example: prove $\exists x . P(x)$
- Perhaps, proof by contradiction: assume $\neg \exists x . P(x)$ and reach a contradiction
- Assumption: $\exists x . P(x) \vee \neg \exists x . P(x)$ (law of excluded middle)
- Problem: possibly no actual evidence regarding either sentence i.e., some a s.t. either $P(a)$ or $\neg P(a)$ is true

Constructive logic

- Prove $\exists x . P(x)$ by computing an object a s.t. $P(a)$ is true

Constructive logic

- Prove $\exists x . P(x)$ by computing an object a s.t. $P(a)$ is true
- Not always possible

Constructive logic

- Prove $\exists x . P(x)$ by computing an object a s.t. $P(a)$ is true
- Not always possible
- However, not being able to compute a does not mean that $\exists x . P(x)$ is false

Constructive logic

- Prove $\exists x . P(x)$ by computing an object a s.t. $P(a)$ is true
- Not always possible
- However, not being able to compute a does not mean that $\exists x . P(x)$ is false
- Law of excluded middle - not an axiom in constructive logic

Constructive type theory

- Bridge between constructive logic and typed lambda calculus

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:
- sentence \leftrightarrow type

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:
- sentence \leftrightarrow type
- logical connective \leftrightarrow type constructor

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:
- sentence \leftrightarrow type
- logical connective \leftrightarrow type constructor
- proof \leftrightarrow function with that type

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:
- sentence \leftrightarrow type
- logical connective \leftrightarrow type constructor
- proof \leftrightarrow function with that type
- Application: synthesize a program by proving the sentence that corresponds to its specification

The Curry-Howard isomorphism

Contents

Constructive paradigm

Syntax and semantics

Two views

$a: A$

- Type-theoretic: "a is a value of type A "
- Logical: "a is a proof of sentence A "

Definitional rules

Rule
Logical view
Type-theoretic view

Definitional rules

Rule	Logical view	Type-theoretic view
Formation	How a connective re- lates two sentences	How a type construc- tor is used

Definitional rules

Rule	Logical view	Type-theoretic view
Formation	How a connective re- lates two sentences	How a type construc- tor is used
Introduction/	How a proof is derived	How a value is con- structed
elimination		con

Definitional rules

Rule	Logical view	Type-theoretic view
Formation	How a connective re- lates two sentences	How a type construc- tor is used
Introduction/ elimination	How a proof is derived	How a value is con- structed
Computation	How a proof is simpli- fied	How an expression is evaluated

Other logic-type correspondences

Logical view

Type-theoretic view

Other logic-type correspondences

Logical view	Type-theoretic view
Truth (T)	One-element type, containing the trivial proof

Other logic-type correspondences

Logical view	Type-theoretic view
Truth (\top)	One-element type, containing the trivial proof
Falsity (\perp)	No-element type, containing no proof

Other logic-type correspondences

Logical view	Type-theoretic view
Truth (\top)	One-element type, containing the trivial proof
Falsity (\perp)	No-element type, containing no proof
Proof by induction	Definition by recursion

Logical conjunction / product type constructor I

- Formation rule ($\wedge F$):

A is a sentence/ type $\quad B$ is a sentence/ type
 $A \wedge B$ is a sentence/ type

- Introduction rule (\wedge I):

$$
\frac{a: A \quad b: B}{(a, b): A \wedge B}
$$

Logical conjunction / product type constructor II

- Elimination rules $\left(\wedge E_{1,2}\right)$:

$$
\frac{p: A \wedge B}{\text { fst } p: A} \quad \frac{p: A \wedge B}{\text { snd } p: B}
$$

- Computation rules:

$$
\begin{aligned}
f s t \quad(a, b) & \rightarrow a \\
\text { snd }(a, b) & \rightarrow b
\end{aligned}
$$

Logical implication / function type constructor I

- Formation rule $(\Rightarrow F)$:

A is a sentence/ type $\quad B$ is a sentence/ type $A \Rightarrow B$ is a sentence/ type

- Introduction rule ($\Rightarrow I$)
(square brackets = discharged assumption):

$$
\begin{gathered}
{[x: A]} \\
\vdots \\
\frac{b: B}{\lambda x: A \cdot b: A \Rightarrow B}
\end{gathered}
$$

Logical implication / function type constructor II

- Elimination rule $(\Rightarrow E)$:

$$
\frac{a: A \quad f: A \Rightarrow B}{(f a): B}
$$

- Computation rule:

$$
(\lambda x: A . b a) \rightarrow b_{[a / x]}
$$

Logical disjunction / sum type constructor I

- Formation rule ($\vee F$):
$\frac{A \text { is a sentence/ type } \quad B \text { is a sentence/ type }}{A \vee B \text { is a sentence/ type }}$
- Introduction rules $\left(\vee l_{1,2}\right)$:

$$
\frac{a: A}{i n l a: A \vee B}
$$

$$
\frac{b: B}{\operatorname{inr} b: A \vee B}
$$

Logical disjunction / sum type constructor II

- Elimination rule ($V E$):

$$
\frac{p: A \vee B \quad f: A \Rightarrow C \quad g: B \Rightarrow C}{\operatorname{cases} p f g: C}
$$

- Computation rules:

$$
\begin{aligned}
& \text { cases (inl a) } f g \rightarrow f \text { a } \\
& \text { cases (inr b) } f g \rightarrow g \text { b }
\end{aligned}
$$

Absurd sentence / empty type I

- Formation rule ($\perp F$):
$\bar{\perp}$ is a sentence/ type
- Introduction rule: none - there is no proof of the absurd sentence

Absurd sentence / empty type II

- Elimination rule ($\perp E$)
(a proof of the absurd sentence can prove anything):

$$
\frac{p: \perp}{\operatorname{abort}_{A} p: A}
$$

- Computation rule: none

Logical negation and equivalence

- Logical negation:

$$
\neg A \equiv A \Rightarrow \perp
$$

- Logical equivalence:

$$
A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A)
$$

Example proofs

- $A \Rightarrow A$

Example proofs

- $A \Rightarrow A$
- $A \Rightarrow \neg \neg A \quad$ (converse?)

Example proofs

- $A \Rightarrow A$
- $A \Rightarrow \neg \neg A \quad$ (converse?)
- $((A \wedge B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$

Example proofs

- $A \Rightarrow A$
- $A \Rightarrow \neg \neg A \quad$ (converse?)
- $((A \wedge B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- $(A \Rightarrow B) \Rightarrow(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$

Example proofs

- $A \Rightarrow A$
- $A \Rightarrow \neg \neg A \quad$ (converse?)
- $((A \wedge B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- $(A \Rightarrow B) \Rightarrow(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$
- $(A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A)$

Example proofs

- $A \Rightarrow A$
- $A \Rightarrow \neg \neg A \quad$ (converse?)
- $((A \wedge B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- $(A \Rightarrow B) \Rightarrow(B \Rightarrow C) \Rightarrow(A \Rightarrow C)$
- $(A \Rightarrow B) \Rightarrow(\neg B \Rightarrow \neg A)$
- $(A \vee B) \Rightarrow \neg(\neg A \wedge \neg B)$

Universal quantification / generalized function type constructor I

- Formation rule ($\forall F$) (square brackets = discharged assumption):

$$
[x: A]
$$

A is a sentence/ type $\quad B$ is a sentence/ type ($\forall X: A) . B$ is a sentence/ type

- Introduction rule ($\forall /$):

$$
\begin{gathered}
{[x: A]} \\
\vdots \\
b: B \\
(\lambda x: A) \cdot b:(\forall X: A) \cdot B
\end{gathered}
$$

Universal quantification / generalized function type constructor II

- Elimination rule $(\forall E)$:

$$
\frac{a: A \quad f:(\forall x: A) \cdot B}{(f a): B_{[a / x]}}
$$

- Computation rule:

$$
((\lambda x: A) . b \quad a) \rightarrow b_{[a / x]}
$$

Existential quantification / generalized product type constructor I

- Formation rule (\exists F)
(square brackets = discharged assumption):

$$
[x: A]
$$

A is a sentence/ type $\quad B$ is a sentence/ type
$(\exists X: A) . B$ is a sentence/ type

- Introduction rule (\exists) :

$$
\frac{a: A \quad b: B_{[a / x]}}{(a, b):(\exists X: A) \cdot B}
$$

Existential quantification / generalized product type constructor II

- Elimination rules $\left(\exists E_{1,2}\right)$:

$$
\frac{p:(\exists x: A) \cdot B}{\text { Fst } p: A} \quad \frac{p:(\exists x: A) \cdot B}{\text { Snd } \left.p: B_{[F s t} p / x\right]}
$$

- Computation rules:

$$
\begin{array}{r}
\text { Fst }(a, b) \rightarrow a \\
\text { Snd }(a, b) \rightarrow b
\end{array}
$$

Example proofs

- $(\forall x: A) \cdot(B \Rightarrow C) \Rightarrow(\forall x: A) \cdot B \Rightarrow(\forall x: A) \cdot C$

Example proofs

- $(\forall x: A) \cdot(B \Rightarrow C) \Rightarrow(\forall x: A) \cdot B \Rightarrow(\forall x: A) \cdot C$
$-(\exists x: X) \cdot \neg P \Rightarrow \neg(\forall x: X) \cdot P \quad$ (converse?)

Example proofs

- $(\forall x: A) \cdot(B \Rightarrow C) \Rightarrow(\forall x: A) \cdot B \Rightarrow(\forall x: A) \cdot C$
$-(\exists x: X) \cdot \neg P \Rightarrow \neg(\forall x: X) \cdot P \quad$ (converse?)
- $(\exists y: Y) \cdot(\forall x: X) \cdot P \Rightarrow(\forall x: X) \cdot(\exists y: Y) \cdot P \quad$ (converse?)

