Type Systems
and Functional Programming

S.l. dr. ing. Mihnea Muraru

mmihnea@gmail.com

Computer Science Department

Fall 2017

1/210

Contents

0 Objectives

e Functional programming

3/210

Contents

0 Objectives

Part |

Introduction

2/210

4/210

Grading

@ Lab: 60, > 30
@ Exam: 40, > 20

@ Final grade > 50

One of the lab outcomes

An evaluator for a functional language,
equipped with a type synthesizer

5/210

7/210

Course objectives

@ Studying the particularities of functional
programming, such as lazy evaluation
and type systems of different strengths

@ Learning advanced mechanisms of the Haskell
language, which are impossible or difficult to simulate

in other languages

@ Applying this apparatus to modeling practical
problems, e.g. program synthesis, lazy search,
probability spaces, genetic algorithms . ..

Contents

e Functional programming

6/210

8/210

Functional programming features Functional flow

@ Mathematical functions, as value transformers
N i ———{#]

@ Functions as first-class values L L

@ No side effects or state

@ Immutability

@ Referential transparency Ny ———— out
@ Recursion
@ Higher-order functions i3

@ Lazy evaluation

9/210 10/210

Stateless computation Stateful computation
Output dependent on input exlcusively: Output dependent on input and time:
X E y X E y'#y

11/210 12/210

Functional flow Functional programming features

Pure

@ Mathematical functions, as value transformers

@ Functions as first-class values

iny ——

No side effects or state

Immutability

Referential transparency

Recursion

Higher-order functions

Lazy evaluation

13/210 14/210

Why functional programming?

@ Simple processing model; equational reasoning
@ Declarative

Part Il

@ Modularity, composability, reuse (lazy evaluation
as glue)

@ Exploration of huge or formally infinite search spaces Untyped Lambda Calculus
@ Embedded Domain Specific Languages (EDSLs)

@ Massive parallelization

@ Type systems and logic, inextricably linked

@ Automatic program verification and synthesis

15/210 16/210

Contents

© Introduction

e Lambda expressions
@ Reduction

e Normal forms

e Evaluation order

Untyped lambda calculus

@ Model of computation — Alonzo Church, 1932

@ Equivalent to the Turing machine (see the
Church-Turing thesis)

@ Main building block: the function

@ Computation: evaluation of function applications,
through textual substitution

@ Evaluate = obtain a value (a function)!

@ No side effects or state

17/210

19/210

Contents

© Introduction

Applications

@ Theoretical basis of numerous languages:

o LISP e ML o Clojure
@ Scheme o F# @ Scala
e Haskell e Clean e Erlang

@ Formal program verification, due to its simple
execution model

18/210

20/210

A-expressions

Definition

Contents

Definition 4.1 (1-expression).
@ Variable: a variable x is a A-expression

@ Lambda expressions
@ Function: if x is a variable and E is a A-expression,
then A x.E is a A-expression, which stands for an
anonymous, unary function, with the formal argument
x and the body E

@ Application: if E and A are A-expressions, then (E A)
is a A-expression, which stands for the application of
the expression E onto the actual argument A.

21/210 22/210

A-expressions Intuition on application evaluation

Examples

Example 4.2 (A-expressions).
@ x — variable x

@ Ax.x : the identity function

@ Ax.Ay.x : afunction with another function as body!

@ (Ax.x y) : the application of the identity function onto
the actual argument y

@ (Ax.(X X) AX.X)

23/210 24/210

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x, of a variable x is bound in the
expression E iff:

@ E=Ax.For
@ E=... Axp.F...0r
@ E=... Ax.F ... and x, appears in F.

Definition 4.4 (Free occurrence).

A variable occurrence is free in an expression iff it is not
bound in that expression.

Bound/ free occurrence w.r.t. a given expression!

25/210

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression E = (Ax.x x), we emphasize the
occurrences of x:

E = (A,X1. Xo X3).
~—~
F
@ Xq, Xo bound in E
@ x3freein E

@ x, free in F!
@ x freein E and F

26/210

Variable occurrences Variables

Examples Definitions

Example 4.6 (Bound and free variables).

In the expression E = (Ax.Az.(z x) (z y)), we emphasize

the occurrences of x, y, z:
F

—N—
E=(Ax1.221.(22 X2) (23 Y1))-
@ Xy, X0, Z¢, Zo bound in E
@y, zzfreein E
@ 74, Zo boundin F
@ x, freein F
@ x boundin E, but free in F
@ yfreein E
@ zfreein E, but boundin F

27/210

Definition 4.7 (Bound variable).

A variable is bound in an expression iff all its occurrences
are bound in that expression.

Definition 4.8 (Free variable).

A variable is free in an expression iff it is not bound in that
expression i.e., iff at least one of its occurrences is free in
that expression.

Bound/ free variable w.r.t. a given expression!

28/210

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression E = (Ax.x x), we emphasize the
occurrences of x:

E= (7LX1. Xo X3).
i

@ X1, Xo bound in E
@ x3freein E
@ x, free in F!
@ x freein E and F

Free and bound variables

Free variables
e FV(x)={x}
@ FV(Ax.E)=FV(E)\{x}
@ FV((E; E5))=FV(E;)UFV(Ey)

Bound variables
@ BV(x)=0
@ BV(Ax.E)=BV(E)u{x}
o BV((Ey E»))=BV(Ey)\FV(E2)UBV(E)\ FV(Ey)

29/210

31/210

Variable occurrences
Examples
Example 4.6 (Bound and free variables).

In the expression E = (Ax.Az.(z X) (Z y)), we emphasize

the occurrences of x, y, z:
F

———
E=(Ax1.221.(22 X2) (23 Y1))-
@ Xy, X0, 2y, Zo bound in E
@y, Zzzfreein E
@ 24, 2o, boundin F
@ x, freein F
@ x boundin E, but free in F
@ yfreein E
@ zfreein E, but boundin F

Closed expressions

Definition 4.9 (Closed expression).
An expression that does not contain any free variables.

Example 4.10 (Closed expressions).
@ (Ax.X AX.Ay.x) : closed
@ (Ax.x a):open, since ais free
Remarks:

@ Free variables may stand for other A-expressions,
asin Ax.((+ x) 1).

@ Before evaluation, an expression must be brought
to the closed form.

@ The substitution process must terminate.

30/210

32/210

Contents

@ Reduction

33/210

B-reduction

Examples

Example 5.3 (5-reduction).
@ (AX.X Y)—=p Xiy/x1 =Y
@ (AXAX.X Y) —p AXXy/x) — AX.X
@ (AXAY.X Y)—=pAY Xy =AYy
Wrong! The free variable y becomes bound,
changing its meaning!

35/210

B-reduction

Definitions

Definition 5.1 (5-reduction).

The evaluation of the application (Ax.E A), by substituting
every free occurrence of the formal argument, x, in the
function body, E, with the actual argument, A:

(Ax.E A) =g Ejp/x-

Definition 5.2 (3-redex).
The application (Ax.E A).

34/210

B-reduction

Collisions

@ Problem: within the expression (Ax.E A):
e FV(A)nBV(E)=0 = correct reduction always
e FV(A)nBV(E) +# 0 = potentially wrong reduction

@ Solution: rename the bound variables in E,
that are freein A

Example 5.4 (Bound variable renaming).
AXAYy.X Y) = (AXAZX Y) =g AZ X[y = AZ.Y

36/210

a-conversion

Definition

Definition 5.5 («-conversion).

Systematic relabeling of bound variables in a function:
AX.E =4 AYy.Epy x. Two conditions must be met.

Example 5.6 (a-conversion).
@ AX.Y =a Y Yy — AY.y - Wrong!
@ AXAY X —=q AY.AY Xy — Ay.Ay.y : Wrong!

Conditions:

@ yisnotfreein E
@ afree occurrence in E stays free in £y

37/210

Reduction

Definitions

Definition 5.8 (Reduction step).

A sequence made of a possible a-conversion, followed by
a B-reduction, such that the second produces no
collisions: E1 — E2 = E-] —a E3 —B EQ.

Definition 5.9 (Reduction sequence).

A string of zero or more reduction steps: E; —* E5. Itis an
element of the reflexive transitive closure of relation —.

39/210

a-conversion

Examples

Example 5.7 (x-conversion).
@ AX.(X ¥)—=aAZ.(z y) : Correct!

@ AXAX.(X Y)—=a Ay Ax.(x y): Wrong!
y is freein Ax.(x y).

@ AXAY.(Y X)=a Ay Ay.(y y): Wrong!
The free occurrence of x in Ay.(y x) becomes bound,
after substitution, in 1y.(y y).

@ AXAY.(Y ¥Y) —aAy.Ay.(y y) : Correct!

38/210

Reduction

Examples

Example 5.10 (Reduction).

@ (AxAy.(y x) y) Ax.x)
—(Az.(z y) AX.X)
— (AX.X Y)
-y

@ (AXAY.(y X) y) Ax.X) ="y

40/210

Reduction

Properties

@ Reduction step = reduction sequence:
Ei—~E=E ~"E
@ Reflexivity:
E-E
@ Transitivity:

E1 —>*E2/\E2—>*E3:>E1 —)*Es

41/210

Questions

@ When does the computation terminate?
Does it always?

e NO

© Does the answer depend on the reduction sequence?
e YES

© If the computation terminates for distinct reduction
sequences, do we always get the same result?

e YES

© If the result is unique, how do we safely obtain it?
e Left-to-right reduction

43/210

Contents

e Normal forms

Normal forms

Definition 6.1 (Normal form).

The form of an expression that cannot be reduced i.e.,
that contains no -redexes.

Definition 6.2 (Functional normal form, FNF).
Ax.E, even if E contains B-redexes.

Example 6.3 (Normal forms).
(AXAYy.(X ¥) AX.X) N AY-(AX.X Y) =>NEAY.Y

FNF is used in programming, where the function body

is evaluated only when the function is effectively applied.

42/210

44/210

Reduction termination (reducibility)

Example 6.4.
Q=(AXx.(X X) Ax.(X X)) = (AX.(X X) AX.(X X)) —=*...
Q does not have a terminating reduction sequence.

Definition 6.5 (Reducible expression).
An expression that has a terminating reduction sequence.

Q is irreducible.

45/210

Reduction sequences

Example 6.6 (Reduction sequences).

E=(xy Q)
oLy
e 2ELy e Xy n>0
oiE%ELy o & .
°

@ E has a nonterminating reduction sequence, but still
has a normal form, y. E is reducible, Q is not.

@ The length of terminating reduction sequences
is unbounded.

47/210

Questions

@ When does the computation terminate?
Does it always?

e NO

© Does the answer depend on the reduction sequence?
e YES

© If the computation terminates for distinct reduction
sequences, do we always get the same result?

e YES

© If the result is unique, how do we safely obtain it?
o Left-to-right reduction

46/210

Questions

@ When does the computation terminate?
Does it always?

e NO

© Does the answer depend on the reduction sequence?
e YES

© If the computation terminates for distinct reduction
sequences, do we always get the same result?

e YES

© If the result is unique, how do we safely obtain it?
o Left-to-right reduction

48/210

Normal form uniqueness

Results

Theorem 6.7 (Church-Rosser / diamond).

If E —* Ey and E —* E5, then there is an E3 such that
E-| —* E3 and E2 —* E3.

/VE‘I‘

E
\‘EZ/'

Es

Corollary 6.8 (Normal form uniqueness).

If an expression is reducible, its normal form is unique. It
corresponds to the value of that expression.

49/210

Structural equivalence

Definition 6.10 (Structural equivalence).

Two expressions are structurally equivalent iff they both
reduce to the same expression.

Example 6.11 (Structural equivalence).
Az.((Ax.x y) z)and (Ax.Ay.(x y) y) in Example 6.9.

51/210

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).
(AxAy.(x y) (Ax.x Yy))

@ > AZ((AxX Y) Z)=Az(Y 2)—qAa.(y a)
@ S (AXAY.(XY)Y) = AW(y W) —gAa.(y a)

@ Normal form: class of expressions, equivalent under
systematic relabeling

@ Value: distinguished member of this class

50/210

Computational equivalence

Definition 6.12 (Computational equivalence).

Two expressions are computationally equivalent iff they
the behave in the same way when applied onto the same
arguments.

Example 6.13 (Computational equivalence).
Ei=AyAx.(y X)

E> =Ax.x

@ ((Ey a) b)—*(ab)
° ((Ez2 a) b)—~"(a b)
@ E; A* E; and E, A* E4 (not structurally equivalent)

52/210

Questions

@ When does the computation terminate?
Does it always?

e NO

© Does the answer depend on the reduction sequence?
e YES

© If the computation terminates for distinct reduction
sequences, do we always get the same result?

e YES

Q If the result is unique, how do we safely obtain it?
o Left-to-right reduction

53/210

Reduction order

Which one is better?

Theorem 6.18 (Normalization).

If an expression is reducible, its left-to-right reduction
terminates.

The theorem does not guarantee the termination for any
expression, but only for reducible ones!

55/210

Reduction order

Definitions and examples

Definition 6.14 (Left-to-right reduction step).
The reduction of the outermost leftmost g-redex.

Example 6.15 (Left-to-right reduction).
(Ax.x Ax.y) (Ax.(X X) AXx.(X X))) = (AX.y Q) =Yy

Definition 6.16 (Right-to-left reduction step).
The reduction of the innermost rightmost g-redex.

Example 6.17 (Right-to-left reduction).
(Ax.x AXx.y) (Ax.(X X) Ax.(X X))) = (AX.y Q)— ...

54/210

Questions

@ When does the computation terminate?
Does it always?

e NO

© Does the answer depend on the reduction sequence?
e YES

@ If the computation terminates for distinct reduction
sequences, do we always get the same result?

e YES

Q If the result is unique, how do we safely obtain it?
o Left-to-right reduction

56/210

Contents

@ Evaluation order

57/210

In practice |

Applicative-order evaluation employed in most
programming languages, due to efficiency — one-time
evaluation of arguments: C, Java, Scheme, PHP, etc.

Example 7.5 (Applicative-order evaluation in

Scheme).

((A (x) (+ x x)) (+ 2 3))
— ((A (x) (+ x x)) 5)

— (+ 5 5)

— 10

59/210

Evaluation order

Definition 7.1 (Applicative-order evaluation).

Corresponds to right-to-left reduction. Function
arguments are evaluated before the function is applied.

Definition 7.2 (Strict function).
A function that uses applicative-order evaluation.

Definition 7.3 (Normal-order evaluation).

Corresponds to left-to-right reduction. Function
arguments are evaluated when needed.

Definition 7.4 (Non-strict function).
A function that uses normal-order evaluation.

58/210

In practice Il

Lazy evaluation (a kind of normal-order evaluation) in
Haskell: on-demand evaluation of arguments, allowing for
interesting constructions

Example 7.6 (Lazy evaluation in Haskell).
((\x —> x + x) (2 + 3))

= (2 + 3) + (2 + 3)

- 5+ 5

— 10

Need for non-strict functions, even in applicative
languages: if, and, or, etc.

60/210

Summary

@ Lambda calculus: model of computation,
underpinned by functions and textual substitution

Part IlI

@ Bound/free variables and variable occurrences w.r.t.
an expression

| . . | Lambda Calculus
@ j-reduction, a-conversion, reduction step, reduction i
sequence, reduction order, normal forms dasS a Programmlng Language

@ Left-to-right reduction (normal-order evaluation):
always terminates for reducible expressions

@ Right-to-left reduction (applicative-order evaluation):
more efficient but no guarantee on termination even
for reducible expressions!

61/210 62/210

Contents Contents

e The 1 language e The A language
Q Abstract data types (ADTSs)

@ mplementation

@ Recursion

@ Language specification

63/210 64/210

Purpose Aq features

@ Proving the expressive power of lambda calculus @ Instructions:
@ L-expressions

@ Hypothetical 1-machine o top-level variable bindings: variable =4 expression
e.g., frue =g AX.AY.X

@ Machine code: 1-expressions — the 1, language .
@ Values represented as functions

© Instead of @ Expressions brought to the closed form,

e bits prior to evaluation

@ bit operations, .
P @ Normal-order evaluation

we have
o structured strings of symbols @ Functional normal form (see Definition 6.2)
e reduction — textual substitution @ No predefined types!
65/210 66/210
Shorthands Purpose of types
@ Way of expressing the programmer’s intent
@ Documentation: which operators act
@ AX{AXo A... AXn.E — AX4Xo... Xn.E onto which objects

@ Particular representation for values of different types:
1, “Hello”, #t, etc.

@ ((...((E A) A) .0 A EA A ... A
(-« 1) Az)) An) = (1o) @ Optimization of specific operations
@ Error prevention

@ Formal verification

67/210 68/210

No types

How are objects represented?

@ A number, list or tree potentially designated
by the same value e.g.,

number 3 — Ax.Ay.x < list (() () ()

@ Both values and operators represented by functions
— context-dependent meaning

number 3 — Ax.1y.x < operator car

@ Value applicable onto another value, as an operator!

] LYoo o
X |] -y z

69/210

No types

Consequences
@ Enhanced representational flexibility

@ Useful when the uniform representation of objects,
as lists de symbols, is convenient

@ Increased error-proneness
@ Program instability

@ Difficulty of verification and maintenance

71/210

No types

How is correctness affected?

@ I[nability of the A machine to
@ interpret the meaning of expressions

@ ensure their correctness
@ Every operator applicable onto every value
@ Both aspects above delegated to the programmer

@ Erroneus constructs accepted without warning,
but computation ended with

e values with no meaning or

e expressions that are neither values, nor reducible
e.g., (x x)

70/210

So...

@ How do we employ the A language in everyday
programming?

@ How do we represent usual values — numbers,
booleans, lists, etc. — and their corresponding
operators?

72/210

Contents

Q Abstract data types (ADTSs)

73/210

The Natural ADT

Base constructors and operators

@ Base constructors:
@ zero: — Natural
@ succ : Natural — Natural

@ Operators:
e zero?: Natural — Bool
e pred : Natural\ {zero} — Natural

e add : Natural® — Natural

75/210

Definition

Definition 9.1 (Abstract data type, ADT).

Mathematical model of a set of values and their
corresponding operations.

Example 9.2 (ADTs).
Natural, Bool, List, Set, Stack, Tree, ... A-expression!

Components:
@ base constructors: how are values built

@ operators: what can be done with these values
@ axioms: how

74/210

The Natural ADT

Axioms
@ zero?
o (zero? zero)=T
e (zero? (succ n))=F
@ pred
@ (pred (succ n))=n
@ add

e (add zero n)=n
e (add (succ m) n)=(succ (add m n))

76/210

Providing axioms

@ One axiom for each (operator, base constructor) pair
@ More — useless

@ Less — insufficient for completely specifying
the operators

77/210

From ADTs to functional programming

Discussion

@ Proving ADT correctness
— structural induction

@ Proving properties of 1-expressions, seen as values
of an ADT with 3 base constructors!

@ Functional programming
— reflection of mathematical specifications

@ Recursion
— natural instrument, inherited from axioms

@ Applying formal methods on the recursive code,
taking advantage of the lack of side effects

79/210

From ADTs to functional programming
Exemple
@ Axiome:
e add(zero,n)=n

e add(succ(m),n) = succ(add(m,n))

@ Scheme:

1 (define add

2 (lambda (m n)

3 (if (zero? m) n

4 (+ 1 (add (- m 1) n)))))

@ Haskell:

1 add 0 n = n
)

2 add (m + 1) n =1 + (add m n)

78/210

Contents

@ Implementation

80/210

The Bool ADT

Base contrsuctors and operators

@ Base constructors:
e T:— Bool
e F:— Bool

@ Operators:
e not: Bool — Bool
e and : Bool? — Bool

e or: Bool® — Bool
@ if:BoolxTxT—T

81/210

The Bool ADT

Base constructor implementation

@ Intuition: selecting one of the two values, true or false

@ T =y AXY.X

@ F=yei AXY.y

@ Selector-like behavior:
o (Tab—(Axyx ab)—a
e (Fab)—(Axy.y ab)—b

83/210

The Bool ADT

Axioms

@ not
e (not TY=F
e (not F)=T
@ and
e (and T a)=a
e (and F a)=F
@ or
o (orT a=T
e (or Fa=a
o If
o (if Tab)y=a
o (if Faby=b

The Bool ADT

Operator implementation

@ not=ygesAX.(x F T)
@ (not TYwAx.(x FT) T)=(T FT)=F
o (not Fy-Ax.x FT)F)=(FFT)>T
@ and =gt Axy.(x y F)
e(and T ay—(Axy.(xy F) T a)— (T aF)—a
o (and F ay—-(Axy.(xy F) Fa—(FaF)—F
@ Or=get AXy.(x T y)
e(orTa—-WAxy.xTy)Ta—-(TTa-—-T
o (or Fay—-Axy.xTy)Fa—-(FTa-—a
@ if =4 Acte.(c t e) non-strict!
o (if Tab)— (Acte(cte) T ab)y- (T ab)—a
o (if Fab)— (Acte(cte) Fab)—(Fab)y—b

82/210

84/210

The Pair ADT

Specification

@ Base constructors:
e pair: Ax B — Pair

@ Operators:
o fst: Pair - A
e snd: Pair -+ B

@ Axioms:
o (fst (pair a b))=a
e (snd (pair a b))=b

The List ADT

Base constructors and operators

@ Base constructors:
e null : — List
@ cons: Ax List— List

@ Operators:

car: List\{null} — A
cdr: List\ {null} — List
null? : List — Bool

append : List® — List

85/210

87/210

The Pair ADT

Implementation

@ Intuition: a pair = a function that expects a selector, in

order to apply it onto its components

@ pair =gei AXYS.(S X)
e (pair a b) — (Axys.(s x y) a b) > 1s.(s a b)

@ fst=ges AP.(p T)

o (fst (pair a b)) — (Ap.(p T) As.(s a b)) —
(As(sab) T)=(T ab)—a

@ snd =def lp(p F)

e (snd (pair a b)) — (Ap.(p F) As.(s a b)) —
(As(sab) F)y-(Fab)—b

The List ADT

Axioms

@ car

e (car (cons e L))=e
@ car

@ (cdr (cons e L))=L
@ null?

o (null? nully=T

e (null? (cons e L))=F
@ append

e (append null B)=B
@ (append (cons e A) B)=(cons e (append A B))

86/210

88/210

The List ADT The Natural ADT

Implementation Axioms

@ Intuition: a list = a (head, tail) pair
@ zero?

@ null =4t Ax. T
o (zero? zero)=T

@ CONS =ygt palr e (zero? (succ n))=F
@ car =def fst
@ cdr =y SNd 2 [l

@ null? =g4es AL.(L Axy.F) o (pred (succ n))=n
o (null? nully— (AL(L Axy.F) Ax.T)—= Ax.T ...)—=T

@ (null? (cons e L)) — (AL.(L Axy.F) As.(s e L))— - el
(As.(s e L) Axy.F)— (Axy.F e L)— F e (add zero n)=n

@ append =yef ...no closed form o el (e i) it = (euee (et m i)

AAB.(if (null? A) B (cons (car A) (append (cdr A) B)))

89/210 90/210

The Natural ADT Contents

Implementation

@ Intuition: a number = a list having the number value
as its length

@ zero =qgt NUll

@ succ =y An.(cons null n)

@ zero? =yes NUIl? 0 e
@ pred =y CAr

@ add =4 append

91/210 92/210

Functions

@ Several possible definitions of the identity function:
e id(n)=n
e idn)=n+1-1
e idin)=n+2-2

@ Infinitely many textual representations for the same
function

@ Then... what is a function? A relation between inputs
and outputs, independent of any textual
representation e.g.,

id ={(0,0),(1,1),(2,2),...}

93/210

Implementing length

Problem
@ Length of a list:
length=g4es AL.(if (null? L) zero (succ (length (cdr L))))

@ What do we replace the underlined area with,
to avoid textual recursion?

@ Rewrite the definition as a fixed-point equation

Length =4 AfL.(if (null? L) zero (succ (f (cdr L))))
(Length length) — length

@ How do we compute the fixed point? (see code
archive)

95/210

Perspectives on recursion

@ Textual: a function that refers itself,
using its name

@ Constructivist: recursive functions as values of an
ADT, with specific ways of building them

@ Semantic: the mathematical object designated

by a recursive function

94/210

Contents

@ Language specification

96/210

Syntax

Axiomatization benefits
@ Variable:

Var ::= any symbol distinct from 4, ., (,)

@ Disambiguation
@ Expression:

Expr :: = Var
A Var.Expr
(Expr Expr)

@ Proof of properties

@ Implementation skeleton
@ Value:
Val ::= A Var.Expr

98/210

97/210

Semantics for normal-order evaluation

Evaluation rules
Evaluation
@ Reduce:
Rule name: (Ax.e &) e
preconditiony, ..., precondition,,
conclusion
@ Eval:

e—¢
(e &) — (€ €

100/210

99/210

Semantics for normal-order evaluation

Substitution
@ Xep =€

® Vie;y=Y, Y#X

@ (AX.6)[e/x) =AX.€

@ (Ay.€)e/x=AY-€e;x, YF#FXNYZFV(€)

@ (Ay.€)e/x=AZ.€z)y1e/x)

y#x ANyeFV(E)AzgFV(e)uFV(€)

® (& €")e/x1=(€g/x) Ee/x)

Semantics for normal-order evaluation

Example

Example 12.1 (Evaluation rules).

((Ax.Ay.y a) b)

(AXAy.y a)—Ay.y

(Reduce)

((Ax.Ay.y a) b)— (Ay.y b)

(Ay.y b)—b

(Reduce)

(Eval)

101/210

103/210

Semantics for normal-order evaluation

Free variables

@ FV(x)={x}

® FV(Ax.e)=FV(e)\ {x}

@ FV((e ¢))=FV(e)uFV(e")

Semantics for applicative-order evaluation

Evaluation

@ Reduce (v € Val):

@ Evaly:

@ Eval, (v € Val):

e—~¢e
(e e//)_>(e/ e//)

e—¢e
(ve—(ve)

102/210

104/210

Formal proof

Proposition 12.2 (Free and bound variables).

veec ExpreBV(e)nFV(e)=0

Proof.

Structural induction, according to the different forms of
A-expressions (see the lecture notes). O

105/210

Part IV

Typed Lambda Calculus

107/210

Summary

@ Practical usage of the untyped lambda calculus,
as a programming language

@ Formal specifications, for different evaluation
semantics

106/210

Contents

@ Introduction

@ Simply Typed Lambda Calculus (STLC, System F;)
@ Extending STLC

@ Polymorphic Lambda Calculus (PSTLC, System F)
Q Type reconstruction

@ Higher-Order Polymorphic Lambda Calculus
(HPSTLC, System F,)

108/210

Contents

@ Introduction

Solution

@ Restricted ways of constructing expressions,
depending on the types of their parts

@ Sacrificed expressivity in change for soundness

109/210

111/210

Drawbacks of the absence of types

@ Meaningless expressions e.g., (car 3)

@ No canonical representation for the values
of a given type e.g., both a tree and a set
having the same representation

@ Impossibility of translating certain expressions
into certain typed languages e.g., (x x), Q, Fix

@ Potential irreducibility of expressions — inconsistent
representation of equivalent values

AX.(Fix x)—= Ax.(x (Fix x)) = Ax.(x (x (Fix x)))— ...

110/210

Desired properties

Definition 13.1 (Progress).

A well-typed expression is either a value or is subject to at
least one reduction step.

Definition 13.2 (Preservation).

The result obtained by reducing a well-typed expression
is well-typed. Usually, the type is the same.

Definition 13.3 (Strong normalization).
The evaluation of a well-typed expression terminates.

112/210

Contents

@ Simply Typed Lambda Calculus (STLC, System F;)

113/210

Typed A-expressions

Definition 14.3 (A-expression).
@ Base value: a base value b € 7, is a Ai-expression.

@ Typed variable: an (explicitly) typed variable x : t is a
A-expression.

@ Function: if x: o is a typed variable and e: 7 is a
M-expression, then Ax : c.€: 0 — tis a i-expression,
which stands for

@ Application: if f: 6 — t and a: o are 4-expressions,
then (f a): tis a A;-expression, which stands for

115/210

Base and simple types

Definition 14.1 (Base type).
An atomic type e.g., numbers, booleans etc.

Definition 14.2 (Simple type).
A type built from existing types e.g., 0 — t, where o and ¢
are types.

Notation:
@ e:1: “expression e has type t”
@ ver: “vis avalue of type 77
@ ect=€:7
@e:tAect

Relation to untyped lambda calculus

Similarities
@ B-reduction
@ (-conversion
@ normal forms
@ Church-Rosser theorem

Differences
@ (x:7 x:1)invalid
@ some fixed-point combinators are invalid

114/210

116/210

Syntax
Expressions
@ Variables:
Var =
@ Expressions:
Expr = Val
| Var
| (Expr Expr)
@ Values:
Val .= BaseVal

| AVar : Type.Expr

Semantics for normal-order evaluation

Evaluation
@ Reduce:
(AX 1 T.e e/) — e[e//x]

@ Eval:

e—¢
(e e//) — (e/ e//)

The type annotations are ignored,
since typing precedes evaluation.

117/210

119/210

Syntax

Types

@ Types:

Type := Baselype
| (Type— Type)

@ Typing contexts:

e include variable-type associations
i.e., typing hypotheses

TypingContext := 0

Semantics
Typing

@ TBaseVal:

@ TVar:

@ TAbs:

@ TApp:

| TypingContext, Var : Type

VeET
[+ V.1

X:tel
M= x:t

rx:tke: 7
N Ax:t.e:(t—17)

r-e: (-1 r-e:v

r-(eée):

118/210

120/210

Typing example

Example 14.4 (Typing).

AX T AY 10X (11 = (T2 — T1))

Blackboard!

Contents

@ Extending STLC

121/210

123/210

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming
language to organize, build and handle the types
accepted in the language.

Definition 14.6 (Soundness).

The type system of a language is sound if any well-typed
expression in the language has the progress and
preservation properties.

Proposition 14.7.
STLC is sound and possesses the strong normalization
property.

122/210

Ways of extending STLC

@ Particular base types

@ n-ary type constructors, n> 1, which build
simple types

124/210

The product type

Algebraic specification

@ Base constructors i.e., canonical values:

o tx7 = (1,7)

@ Operators:

o fst:txt — 1

@ snd:txtv — 1

@ Axioms (e: 1, €':

7'):

o (fst (e,€))— e

e (snd (e, €))—¢€

The product type

Evaluation

@ EvalFst:
@ EvalSnd:

@ EvalFstApp:

@ EvalSndApp:

(fst (e, €))— e

(snd (e, €))— €

e—¢
(fst e) — (fst €')

e—¢

(snd e)— (snd €)

125/210

127/210

The product type

Syntax

Expr = .
| (fst Expr)
\ (snd Expr)
| (Expr, Expr)
BaseVal := ...
| ProductVal
ProductVal = (Val,Val)
Type =
| (TypexType)

126/210

The product type

Typing

@ TProduct:

@ TFst:

@ 7Snd:

r-e:z r-e:7v
M- (e ée):(tx1)

FEe:(tx7)
Fre(fste):r

FEe:(tx7)
' (snd e): 7

128/210

The product type The Bool type

Typing example Algebraic specification

@ Base constructors i.e., canonical values:
i @ Bool ::= True| False
Example 15.1 (Typing). |
@ Operators:
@ not: Bool — Bool

M Ax:((pxt) = 0)AYy:pAZ:1.(X (V,2))

((px1)—>0)—>p—=>T—>0
e and : Bool? - Bool

e or: Bool® — Bool
Blackboard! e if:Boolxtx1t—1

@ Axioms: see slide 81

129/210 130/210
The Bool type The Bool type
Syntax Evaluation
Expr = ... o EvallfT:
| (if Expr Expr Expr) (if True e €)— e
BaseVal := ...
BoolVal @ EvallfF:
| oolva (if False e €)— €
Boolval ::= True| False o Evallf
e—¢e
if e e; e if € e e
BrscTie = (1 €2) = (1 €2)
| Bool

131/210 132/210

The Bool type

Typing

@ TTrue:

I + True: Bool
@ TFalse:
I + False: Bool
o TIf:
I - e: Bool r-eq:t N-e:t
I+ (If ee &)t

The N type

Algebraic specification

@ Base constructors i.e., canonical values:
o N ::= 0| (succ N)

@ Operators:
@ +:N2 5N

@ zero?: N — Bool

@ Axioms (m,n e N):
@ (+0nMm=n
@ (+ (succ m) n)=(succ (+ m n))
e (zero? 0) = True
@ (zero? (succ n)) = False

133/210

135/210

The Bool type

Top-level variable bindings

@ not=Ax: Bool.(if x False True)

@ and = Ax:Bool. Ay : Bool.(if x y False)

@ or=Ax:Bool Ay : Bool.(if x True y)

The N type

Operator semantics

@ How to avoid defining evaluation and typing rules
for each operator of N?

@ Introduce the primitive recursor for N, precy,
which allows for defining any primitive recursive
function on natural numbers

@ Define the operators using the primitive recursor

134/210

136/210

The N type The N type

Syntax Evaluation

@ EvalSucc:
Expr = .. e—¢

(succ Expr) (succ e) — (succ €')
| (precy Expr Expr Expr)

@ EvalPrecyy:
(precy ey f 0) — e

BaseVal =
| NVal
@ EvalPrecy; (neN):
Nval = 0 (precy ey f (succ n)) — (f n (precy €y f n))
| (succ NVal)
@ EvalPrecys:
BaseType := ... e—¢
| N (precy ey f e)— (precy ey f €)
137/210 138/210
The N type The N type
Typing Top-level variable bindings
@ TZero:
r-0:N
@ zero?=An:N.(precy True Ax:N.Ay: Bool.False n)
@ TSucc:
- e:N
I+ (succ e):N
@ +=Am:NAn:N.(precy n Ax:N.Ay :N.(succ y) m)
@ TPrecy:

r-ey:t r-f:N—o1t-—1 r-e:N
'+ (precy ey f e):t

139/210 140/210

The (List 7) type
Algebraic specification
@ Base constructors i.e., canonical values:
e (Listt) == [| (cons t (List 7))

@ Operators:
e head: (List t)\{[]} ==
o tail: (List 7)\{[]} — (List)
e length: (List t) - N

@ Axioms (he, t € (List 7)):
@ (head (cons h t))=h
e (tail (cons h t))=t
o (length [])=0
e (length (cons h t)) = (succ (length t))

141/210

The (List 7) type
Evaluation
@ EvalCons:
e—~é¢e
(cons e e’) — (cons € ¢€")

@ EvalPrecy:
(prec, eo f [1)— €

@ EvalPrec;4 (v € Value):
(prec; ey f (cons v e))— (f v e (prec; ey f e))

@ EvalPrec,»:
e—¢
(prec, ey f €)— (prec; ey f €)

143/210

The (List 7) type

Syntax

Expr

| (cons Expr Expr)

| (prec; Expr Expr Expr)

BaseVal =
| ListVal

Listval == |
| (cons Value ListVal)

Type =
| (List Type)

The (List 7) type

Typing

@ TEmpty:

@ TCons:

@ TPrec;:

rl—eoi’l'/

FF [(List 7)

r-e:r I+ €:(List 7)

I+ (cons e €):(List 1)

ref:r—(Listt)—>17 -7

142/210

I+ e:(List 1)

I+ (prec, ey f €): 7

144/210

The (List 7) type

Top-level variable bindings

@ empty? = Al (List t).(prec, True f I),
f=Ah:tAt:(List 7).Ar: Bool.False

@ length=Al: (List t).(prec; O f I),
f=Ah:tAt:(List 7).Ar:N.(succ r)

145/210

fix
Syntax

Expr =
| (fix Expr)

147/210

General recursion

@ Primitive recursion
e induces strong normalization

e insufficient for capturing effectively computable
functions

@ Introduce the operator fix i.e., a fixed-point
combinator

@ Gain computation power at the expense
of strong normalization

146/210
fix
Evaluation
@ EvalFix:
(fix AX:7.€) = €(fix 1x:1.e)/x] = (f (fix 1))
@ EvalFix':
e—¢
(fix e) — (fix €)
148/210

fix fix
Typing Example

Example 15.2 (The remainder function).

° Thh: r-e:(t—r) remainder =Am:N.An:N.
re(fix e):r ((fix Af:(N—N).Ap:N.
(if p<n then p else (f (p—n)))) m)
The evaluation of (remainder 3 0) does not terminate.
149/210 150/210
Monomorphism Contents
@ Within the types (r*1') and (List t), T and 7’
designate specific types e.g., Bool, N, (List N), etc.

@ Dedicated operators for each simple type
@ fsty Bools fStBoolns - - - @ Polymorphic Lambda Calculus (PSTLC, System F)

° []Na []Boola

@ empty?y, empty?goop; - - -

151/210 152/210

|dea Syntax

@ Monomorphic identity function for type N:
_ @ Program variables: stand for program values
idy=Ax:N.x:(N—N)
Var =
@ Polymorphic identity function — type variables:

iId=AXAx:Nx:VX(X— X
() @ Type variables: stand for types

@ Type coercion prior to function application: TypeVar =

(id[N] 5) — (idy 5) =5

153/210 154/210

Syntax Syntax
@ Expressions: - Fsee:
T = B T
Expr = \Value ype ase lype

| Var | TypeVar

| (Expr Expr) | (Type — Type)
| v TypeVar.Type

| Expr[Type]

@ Values: @ Typing contexts:

TypingContext := 0
| TypingContext, Var : Type
| TypingContext, TypeVar

Value := BaseValue
| AVar : Type.Expr
| A TypeVar.Expr

155/210 156/210

Semantics Semantics

Evaluation Typing
: ° ;
@ Reduce;: / TBaseValue Ve,
(Ax:t.e e)—>e[e//x] F=v:t
@ Reduces: @ TVar: -
AX.e[t]— e X:Te
B FFx:t
@ Evaly: / @ TAbs;:
e—e rx:tke: 7

& &)= &) N-ix:t.e:(t— 1)

@ Eval,:

@ TApp;:
e—e ree:(v—1 ree:v
e[t] — e'[1] r-(eée):t
157/210 158/210
Semantics Semantics
Typing Substitution and free variables

@ TAbs, — polymorphic expressions have © EXPIigxpr) var

universal types:

rXre:t ® EXpritype; mypevar]
r- AX.e vX.t

° Ty (4 e[Type/ TypeVar]

@ TApp,: .
r-e:vX.t @ Free program variables

M+ e[T/] : T[T’/X]

@ Free type variables

159/210 160/210

Typing example Examples of polymorphic expressions

Example 16.2 (Doubling a computation).
double = AXAf:(X— X)Ax: X.(f (f x))
= AfYX(X = X)AYAx: Y.(f[Y] x) VX (X = X) = (X = X))
(VXX = X)=VY.(Y=Y))

Example 16.1 (Typing).

Monomorphic function

with polymorphic argument and result! Example 16.3 (Quadrupling a computation).

quadruple = A X.(double[X — X] double[X])
Blackboard! VXX = X) = (X = X))

161/210 162/210

Examples of polymorphic expressions Contents

Example 16.4 (Reflexive computation).
reflexive = Af:vX.(X = X).(flYX.(X = X)] f)
(VX.(X = X) = VX.(X = X))

Example 16.5 (Fixed-point combinator).
Fix = AXAF:(X = X).(f (Fix[X] £) @ Type reconstruction
VX.(X = X) = X)

163/210 164/210

Motivation Contents

@ Higher-Order Polymorphic Lambda Calculus
(HPSTLC, System F,)

165/210 166/210

Problem Solution

@ Polymorphic identity function, on objects of a type

built using 1-ary type constructors e.g., List:
@ Two categories of types: proper types, and type

f=ACAXAx:(C X).x:YVCVX.((C X)— (C X)) constructors i.e., A TypeVar.Type
@ C stands for a 1-ary type constructor, X stands for a
type of program values i.e., a proper type @ Type not only program variables, but also type
variables

@ Monomorphic identity function for type (List N):

fIList][N] — Ax : (List N).x : ((List N) — (List N)) @ The type of a type: kind

@ How do we prevent erroneous situations e.g.,
fN][N], f[List][List]?

167/210 168/210

Kinds

Notation

@ The kind of a proper type: x
@ The kind of a 1-ary type constructor: (x = %)
@ The kind of an n-ary type constructor, n>1: ky = ko

@ The kind k of atype 7: 7:: k

169/210

Levels of expressions

((x = %)= (x= %))
. (= (x =)

(x=+) T Kinds
\
List (L*)
(0]

(N* Bool)\ (N—N) AC:: (x=%x)AX =% (X = (C X))
N

(List N) VX k(X = X)

\ Types

0 (0, True) [1[N] AX:N.X AX xAx: X.x
Expressions

171/210

Kinds

Examples

Example 18.1 (Kinds).
@ N::x

@ List:: (x = x)

@ f=AC: (x=#)AX:xAx:(C X).x
fVC:: (x=%)¥X:x((C X)— (C X))

170/210

Type equivalence

@ Two syntactically distinct types:

7y = ((List N) — (List N))
(AX ::x.((List X)— (List X)) N)

T2

@ Semantically, they denote the same type i.e., they are
equivalent: 7y =1

172/210

Syntax Syntax

@ Types
@ Expressions:
P Type := Baselype
Expr == Value | TypeVar
| Var | (Type— Type)
| (Expr Expr) | VTypeVar :: Kind.Type
| Expr[Type] | A TypeVar :: Kind. Type
| (Type Type)
@ Values:
Value := BaseValue @ Typing contexts:
| AVar : Type.Expr TypingContext := 0
| A TypeVar :: Kind.Expr | TypingContext, Var : Type
| TypingContext, TypeVar :: Kind
173/210 174/210
Syntax Semantics
Evaluation
@ Reduce;:
(Ax:t.€ e’) — €le//x]
. @ Reduces:
@ Kinds:
Kind = =« AX K.e[T] — e[T/X]
| (Kind = Kind) o Eval;:
e—¢
(e e//)_>(e/ e//)
@ Evals:

e—¢€
e[t] — €]

175/210 176/210

Semantics
Typing

@ TBaseValue:

@ TVar:

@ TAbs;:

@ TApp;:

Semantics
Kinding

VeT
M+ V.1

X:tel
N x:7

rx:tke: 7
r-axe:(rt—1)

r-e: (-1 r- ¢e:

T/

r-(eée)):z

@ KBaselype:

@ KlypeVar:

@ KlypeAbs:

@ KlypeApp:

NE 7pix

X:Kerl
r- X:K

rX:KrFz:K

FreaX:Kro:(K=K')

e 72 (K'=K) ret:

i<7

reE(rv):=K

177/210

179/210

Semantics
Typing

@ TAbs,:

@ TApp,:

Semantics
Kinding

@ KAbs;:

@ KAbss:

rX:Kre:r
r-AX:Ke:vX: Kz

r-e:vX:Kz r-7:K

M= e[T/] . T[T//X]

N 7% M- 7«
Fe-(t—17)ox

NLX:KETox
FrevX:K.z:x

178/210

180/210

Semantics
Type equivalence

@ EqgReflexivity:

T=7T
@ EqSymmetry:
T=17
=1
@ EqTransitivity:
T=1 v=1"
=7

@ EqTypeReduce:
AX: Kt) =1

181/210

Semantics

Type equivalence

@ TypeEquivalence:

r-e:z =1
M- e: v

183/210

Semantics
Type equivalence
@ EqTypeAbs:
T=1

AX:Kt=AX:K.1

@ EqlypeApp:

=17 c=0
(tr o)=(7 o)

@ EqgAbs;:

t=1 oc=o0'

(t—o0)=(t—0)

@ EqAbs,:

T=1

VX :Kt=vX: K1t

Kinding example

Example 18.2 (Kinding).
VX ik (X = ((List X)— (Tree X)))::x

Blackboard!

182/210

184/210

Part V

Constructive Type Theory

Contents

@ Constructive paradigm

Contents

@ Constructive paradigm

@ Syntax and semantics

185/210 186/210

Classical logic

@ Example: prove 3x.P(x)

@ Perhaps, proof by contradiction: assume —3x.P(x)
and reach a contradiction

@ Assumption: 3x.P(x) v —3x.P(x)
(law of excluded middle)

@ Problem: possibly no actual evidence regarding either
sentence i.e., some a s.t. either P(a) or —=P(a) is true

187/210 188/210

Constructive logic

@ Prove 3x.P(x) by computing an object a
s.t. P(a) is true

@ Not always possible

@ However, not being able to compute a does not mean
that 3x.P(x) is false

@ Law of excluded middle — not an axiom
in constructive logic

189/210

The Curry-Howard isomorphism

Proof Value
inference synthesis

Y 4

191/210

Constructive type theory

@ Bridge between constructive logic and typed lambda
calculus

@ Correspondences:
e sentence « type
o logical connective « type constructor
e proof « function with that type

@ Application: synthesize a program by proving
the sentence that corresponds to its specification

190/210

Contents

@ Syntax and semantics

192/210

Two views

a: A

@ Type-theoretic: “ais a value of type A”
@ Logical: “ais a proof of sentence A”

193/210

Other logic-type correspondences

Logical view | Type-theoretic view

Truth (T) One-element type, containing the
trivial proof

Falsity (L) No-element type, containing no
proof

Proof by induction | Definition by recursion

195/210

Definitional rules

Rule

| Logical view

| Type-theoretic view

Formation

How a connective re-
lates two sentences

How a type construc-
tor is used

Introduction/
elimination

How a proof is derived

How a value is con-
structed

Computation

How a proof is simpli-
fied

How an expression is
evaluated

194/210

Logical conjunction / product type constructor |

@ Formation rule (AF):

Ais a sentence/ type B is a sentence/ type
AN B is a sentence/ type

@ Introduction rule (A/):

a A b:B
(a,b): ANB

196/210

Logical conjunction / product type constructor Il

@ Elimination rules (AEq »):

p:ANB p:ANB
fst p: A snd p: B

@ Computation rules:

fst (a,b) — a
snd (a,b) — b

197/210

Logical implication / function type constructor |l

@ Elimination rule (= E):

=B

a A f-A
(fa:B

@ Computation rule:

(Ax:Ab a)— b[a/x]

199/210

Logical implication / function type constructor |

@ Formation rule (= F):

Ais a sentence/ type B is a sentence/ type
A= B is a sentence/ type

@ Introduction rule (= /)
(square brackets = discharged assumption):

[x: A

b:B
AX:Ab:A=B

198/210

Logical disjunction / sum type constructor |

@ Formation rule (VF):

Ais a sentence/ type B is a sentence/ type
Av B is a sentence/ type

@ Introduction rules (v »):

a A b:B
inl a: AvB inr b: AvB

200/210

Logical disjunction / sum type constructor Il

@ Elimination rule (VE):

p:AvB f:A=C g:B=C
casespfg:C

@ Computation rules:

cases (inl a) f g—f a
cases (inr by f g—g b

201/210

Absurd sentence / empty type Il

@ Elimination rule (LE)
(a proof of the absurd sentence can prove anything):

p:L
aborty p: A

@ Computation rule: none

203/210

Absurd sentence / empty type |

@ Formation rule (LF):

1 is a sentence/ type

@ Introduction rule: none — there is no proof of the
absurd sentence

202/210

Logical negation and equivalence

@ Logical negation:

—|A = A=>J_

@ Logical equivalence:

AsB = (A= B)A(B= A)

204/210

Example proofs

A=A

@ A= ——A (converse?)

@ (AAB)=C)=A=B=C
@ (A=B)=(B=0C)=(A=0)
@ (A= B)= (-B=-A)

@ (AvB)= ~(-AA-B)

205/210

Universal quantification / generalized function
type constructor Il

@ Elimination rule (VE):

a:A f:(vx:A).B
(f a) : B[a/X]

@ Computation rule:

(Ax:A).b a)— b[a/x]

207/210

Universal quantification / generalized function
type constructor |

@ Formation rule (VF)
(square brackets = discharged assumption):

[x: A

Ais a sentence/ type Bis a sentence/ type
(vx : A).B is a sentence/ type

@ Introduction rule (v/):
[x: A

bB
(Ax:A).b:(vx:A).B

206/210

Existential quantification / generalized product
type constructor |

@ Formation rule (3F)
(square brackets = discharged assumption):

[x: A

Ais a sentence/ type Bis a sentence/ type
(3x : A).B is a sentence/ type

@ Introduction rule (3/):

aA b: B[a/x]
(a,b): (3x:A).B

208/210

Existential quantification / generalized product
type constructor Il

@ Elimination rules (3E; »):

p:(3x:A).B p:(3x:A).B
FSt pA Snd p: B[FSt p/X]

@ Computation rules:

Fst (a,b) — a
Snd (a,b) — b

209/210

Example proofs

@ (Vx:A).(B=C)= (vx:A).B=(vx:A).C
@ (Ix: X).-P=—(vx:X).P (converse?)

@ (Ay:Y).(vx: X).P=(vx:X).(3y:Y).P

(converse?)

210/210

	Introduction
	Objectives
	Functional programming

	Untyped Lambda Calculus
	Introduction
	Lambda expressions
	Reduction
	Normal forms
	Evaluation order

	Lambda Calculus as a Programming Language
	The 0 language
	Abstract data types (ADTs)
	Implementation
	Recursion
	Language specification

	Typed Lambda Calculus
	Introduction
	Simply Typed Lambda Calculus (STLC, System F1)
	Extending STLC
	Polymorphic Lambda Calculus (PSTLC, System F)
	Type reconstruction
	Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F)

	Constructive Type Theory
	Constructive paradigm
	Syntax and semantics

