Type Systems and Functional Programming

S.I. dr. ing. Mihnea Muraru

mmihnea@gmail.com

Computer Science Department

Fall 2017

Part I

Introduction

1/210

0/040

Contents

- Objectives
- 2 Functional programming

Contents

- Objectives
- 2 Functional programming

3/210

Grading

• Lab: $60, \ge 30$

• Exam: 40, ≥ 20

Final grade ≥ 50

5/210

Course objectives

- Studying the particularities of functional programming, such as lazy evaluation and type systems of different strengths
- Learning advanced mechanisms of the Haskell language, which are impossible or difficult to simulate in other languages
- Applying this apparatus to modeling practical problems, e.g. program synthesis, lazy search, probability spaces, genetic algorithms . . .

6/210

One of the lab outcomes

An evaluator for a functional language, equipped with a type synthesizer

Contents

Objectives

2 Functional programming

7/210

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion
- Higher-order functions
- Lazy evaluation

9/210

Functional flow

10/210

Stateless computation

Output dependent on input exlcusively:

 t_1

Stateful computation

Output dependent on input and time:

Functional flow Pure

13/210

Functional programming features

- Mathematical functions, as value transformers
- Functions as first-class values
- No side effects or state
- Immutability
- Referential transparency
- Recursion
- Higher-order functions
- Lazy evaluation

14/210

Why functional programming?

- Simple processing model; equational reasoning
- Declarative
- Modularity, composability, reuse (lazy evaluation as glue)
- Exploration of huge or formally infinite search spaces
- Embedded Domain Specific Languages (EDSLs)
- Massive parallelization
- Type systems and logic, inextricably linked
- Automatic program verification and synthesis

Part II

Untyped Lambda Calculus

15/210 16/2

Contents

- Introduction
- 4 Lambda expressions
- 6 Reduction
- 6 Normal forms
- Evaluation order

17/210

Contents

- Introduction
- 4 Lambda expressions
- 6 Reduction
- 6 Normal form
- Evaluation order

18/210

Untyped lambda calculus

- Model of computation Alonzo Church, 1932
- Equivalent to the Turing machine (see the Church-Turing thesis)
- Main building block: the function
- Computation: evaluation of function applications, through textual substitution
- Evaluate = obtain a value (a function)!
- No side effects or state

Applications

- Theoretical basis of numerous languages:
 - LISP
- ML
- Clojure

- Scheme
- F#
- Scala

- Haskell
- Clean
- Erlang

Formal program verification, due to its simple execution model

19/210 20/210

Contents

- Introduction
- 4 Lambda expressions
- 5 Reduction
- 6 Normal forms
- Evaluation order

21/210

λ -expressions

Definition

Definition 4.1 (\lambda-expression).

- Variable: a variable x is a λ -expression
- Function: if x is a variable and E is a λ -expression, then $\lambda x.E$ is a λ -expression, which stands for an anonymous, unary function, with the formal argument x and the body E
- Application: if E and A are λ -expressions, then (E A) is a λ -expression, which stands for the application of the expression E onto the actual argument A.

22/210

24/210

λ -expressions

Examples

Example 4.2 (λ -expressions).

- $x \rightarrow \text{variable } x$
- $\lambda x.x$: the identity function
- $\lambda x.\lambda y.x$: a function with another function as body!
- $(\lambda x.x \ y)$: the application of the identity function onto the actual argument y
- $\bullet \ (\lambda X.(X\ X)\ \lambda X.X)$

Intuition on application evaluation

Variable occurrences

Definitions

Definition 4.3 (Bound occurrence).

An occurrence x_n of a variable x is bound in the expression E iff:

- $E = \lambda x.F$ or
- $E = \dots \lambda x_n . F \dots$ or
- $E = \dots \lambda x.F \dots$ and x_n appears in F.

Definition 4.4 (Free occurrence).

A variable occurrence is free in an expression iff it is not bound in that expression.

Bound/ free occurrence w.r.t. a given expression!

25/210

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E = (\lambda x.x \ x)$, we emphasize the occurrences of x:

$$E=(\lambda x_1.\underbrace{x_2}_{E} x_3).$$

- x_1 , x_2 bound in E
- x_3 free in E
- x_2 free in F!
- x free in E and F

26/210

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E = (\lambda x. \lambda z. (z \ x) \ (z \ y))$, we emphasize the occurrences of x, y, z:

$$E = (\lambda x_1. \lambda z_1. (z_2 x_2) (z_3 y_1)).$$

- x_1, x_2, z_1, z_2 bound in E
- y₁, z₃ free in E
- z_1 , z_2 bound in F
- x_2 free in F
- x bound in E, but free in F
- y free in E
- z free in E, but bound in F

Variables

Definitions

Definition 4.7 (Bound variable).

A variable is bound in an expression iff all its occurrences are bound in that expression.

Definition 4.8 (Free variable).

A variable is free in an expression iff it is not bound in that expression i.e., iff at least one of its occurrences is free in that expression.

Bound/ free variable w.r.t. a given expression!

Variable occurrences

Examples

Example 4.5 (Bound and free variables).

In the expression $E = (\lambda x.x \ x)$, we emphasize the occurrences of x:

$$E=(\lambda x_1.\underbrace{x_2}_{F} x_3).$$

- x_1 , x_2 bound in E
- *x*₃ free in *E*
- *x*₂ free in *F*!
- x free in E and F

29/210

Variable occurrences

Examples

Example 4.6 (Bound and free variables).

In the expression $E = (\lambda x. \lambda z. (z \ x) \ (z \ y))$, we emphasize the occurrences of x, y, z:

$$E = (\lambda x_1. \overbrace{\lambda z_1. (z_2 \ x_2)}^F \ (z_3 \ y_1)).$$

- x_1, x_2, z_1, z_2 bound in E
- y_1 , z_3 free in E
- z_1 , z_2 bound in F
- *x*₂ free in *F*
- x bound in E, but free in F
- y free in E
- z free in E, but bound in F

30/210

Free and bound variables

Free variables

- $FV(x) = \{x\}$
- $FV(\lambda x.E) = FV(E) \setminus \{x\}$
- $FV((E_1 \ E_2)) = FV(E_1) \cup FV(E_2)$

Bound variables

- $BV(x) = \emptyset$
- $BV(\lambda x.E) = BV(E) \cup \{x\}$
- $BV((E_1 \ E_2)) = BV(E_1) \setminus FV(E_2) \cup BV(E_2) \setminus FV(E_1)$

Closed expressions

Definition 4.9 (Closed expression).

An expression that does not contain any free variables.

Example 4.10 (Closed expressions).

- $(\lambda x.x \ \lambda x.\lambda y.x)$: closed
- $(\lambda x.x \ a)$: open, since a is free

Remarks:

- Free variables may stand for other λ -expressions, as in $\lambda x.((+x) \ 1)$.
- Before evaluation, an expression must be brought to the closed form.
- The substitution process must terminate.

Contents

- Introduction
- 4 Lambda expressions
- 6 Reduction
- 6 Normal forms
- Evaluation order

22/210

35/210

β-reduction

Definitions

Definition 5.1 (β -reduction).

The evaluation of the application ($\lambda x.E$ A), by substituting every free occurrence of the <u>formal</u> argument, x, in the function body, E, with the <u>actual</u> argument, A: ($\lambda x.E$ A) $\rightarrow_{\beta} E_{[A/x]}$.

Definition 5.2 (β -redex).

The application ($\lambda x.E$ A).

34/210

36/210

β -reduction

Examples

Example 5.3 (β -reduction).

- $\bullet (\lambda x. x y) \rightarrow_{\beta} x_{[y/x]} \rightarrow y$
- $\bullet (\lambda X. \lambda X. X y) \rightarrow_{\beta} \lambda X. X_{[V/X]} \rightarrow \lambda X. X$
- $\bullet (\lambda x.\lambda y.x y) \rightarrow_{\beta} \lambda y.x_{\lceil y/x \rceil} \rightarrow \lambda y.y$

Wrong! The free variable *y* becomes bound, changing its meaning!

β -reduction

Collisions

- Problem: within the expression ($\lambda x.E$ A):
 - $FV(A) \cap BV(E) = \emptyset \Rightarrow$ correct reduction always
 - $FV(A) \cap BV(E) \neq \emptyset \Rightarrow$ potentially wrong reduction
- Solution: rename the bound variables in E, that are free in A

Example 5.4 (Bound variable renaming).

 $(\lambda X.\lambda y.X \ y) \rightarrow (\lambda X.\lambda z.X \ y) \rightarrow_{\beta} \lambda z.X_{[y/x]} \rightarrow \lambda z.y$

α -conversion

Definition

Definition 5.5 (α -conversion).

Systematic relabeling of bound variables in a function: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[v/x]}$. Two conditions must be met.

Example 5.6 (α -conversion).

- $\lambda x.y \rightarrow_{\alpha} \lambda y.y_{[y/x]} \rightarrow \lambda y.y$: Wrong!
- $\lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[y/x]} \rightarrow \lambda y.\lambda y.y$: Wrong!

Conditions:

- y is not free in E
- a free occurrence in E stays free in $E_{[V/X]}$

37/210

α -conversion

Examples

Example 5.7 (α -conversion).

- $\lambda x.(x \ y) \rightarrow_{\alpha} \lambda z.(z \ y)$: Correct!
- $\lambda x.\lambda x.(x \ y) \rightarrow_{\alpha} \lambda y.\lambda x.(x \ y)$: Wrong! y is free in $\lambda x.(x \ y)$.
- $\lambda x.\lambda y.(y \ x) \rightarrow_{\alpha} \lambda y.\lambda y.(y \ y)$: Wrong! The free occurrence of x in $\lambda y.(y \ x)$ becomes bound, after substitution, in $\lambda y.(y \ y)$.
- $\lambda x.\lambda y.(y \ y) \rightarrow_{\alpha} \lambda y.\lambda y.(y \ y)$: Correct!

38/210

Reduction

Definitions

Definition 5.8 (Reduction step).

A sequence made of a possible α -conversion, followed by a β -reduction, such that the second produces no collisions: $E_1 \to E_2 \equiv E_1 \to_{\alpha} E_3 \to_{\beta} E_2$.

Definition 5.9 (Reduction sequence).

A string of zero or more reduction steps: $E_1 \rightarrow^* E_2$. It is an element of the reflexive transitive closure of relation \rightarrow .

Reduction

Examples

Example 5.10 (Reduction).

- $\bullet ((\lambda x.\lambda y.(y \ x) \ y) \ \lambda x.x)$ $\rightarrow (\lambda z.(z \ y) \ \lambda x.x)$ $\rightarrow (\lambda x.x \ y)$ $\rightarrow y$
- $\bullet ((\lambda x.\lambda y.(y \ x) \ y) \ \lambda x.x) \rightarrow^* y$

39/210

Reduction

Properties

• Reduction step = reduction sequence:

$$E_1 \to E_2 \Rightarrow E_1 \to^* E_2$$

• Reflexivity:

$$E \rightarrow^* E$$

• Transitivity:

$$E_1 \rightarrow^* E_2 \wedge E_2 \rightarrow^* E_3 \Rightarrow E_1 \rightarrow^* E_3$$

41/210

Contents

- Introduction
- 4 Lambda expressions
- 5 Reduction
- 6 Normal forms
- Evaluation order

42/210

Questions

- When does the computation terminate? Does it always?
 - NO
- 2 Does the answer depend on the reduction sequence?
 - YES
- If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

Normal forms

Definition 6.1 (Normal form).

The form of an expression that cannot be reduced i.e., that contains no β -redexes.

Definition 6.2 (Functional normal form, FNF).

 $\lambda x.E$, even if *E* contains β -redexes.

Example 6.3 (Normal forms).

$$(\lambda x.\lambda y.(x \ y) \ \lambda x.x) \rightarrow_{\mathsf{FNF}} \lambda y.(\lambda x.x \ y) \rightarrow_{\mathsf{NF}} \lambda y.y$$

FNF is used in programming, where the function body is evaluated only when the function is effectively applied.

Reduction termination (reducibility)

Example 6.4.

 $\Omega \equiv (\lambda X.(X X) \lambda X.(X X)) \rightarrow (\lambda X.(X X) \lambda X.(X X)) \rightarrow^* \dots$ Ω does not have a terminating reduction sequence.

Definition 6.5 (Reducible expression).

An expression that has a terminating reduction sequence.

 Ω is irreducible.

47/210

Questions

- When does the computation terminate? Does it always?
 - NO
- 2 Does the answer depend on the reduction sequence?
 - YES
- 3 If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

48/210

Reduction sequences

Example 6.6 (Reduction sequences).

$$E = (\lambda x. y \Omega)$$

- $\bullet \xrightarrow{1} y$
- $\bullet \xrightarrow{2} E \xrightarrow{1} y \qquad \bullet \xrightarrow{2^{n}1}^{*} y, n \ge 0$
- $\bullet \xrightarrow{2} E \xrightarrow{2} E \xrightarrow{1} y \qquad \bullet \xrightarrow{2^{\infty}}^{*} \dots$

- E has a nonterminating reduction sequence, but still has a normal form, y. E is reducible, Ω is not.
- The length of terminating reduction sequences is unbounded.

Questions

- When does the computation terminate? Does it always?
 - NO
- 2 Does the answer depend on the reduction sequence?
 - YES
- 3 If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

Normal form uniqueness

Results

Theorem 6.7 (Church-Rosser / diamond).

If $E \to^* E_1$ and $E \to^* E_2$, then there is an E_3 such that $E_1 \to^* E_3$ and $E_2 \to^* E_3$.

Corollary 6.8 (Normal form uniqueness).

If an expression is reducible, its normal form is unique. It corresponds to the value of that expression.

49/210

Normal form uniqueness

Examples

Example 6.9 (Normal form uniqueness).

$$(\lambda x.\lambda y.(x \ y) \ (\lambda x.x \ y))$$

- $\bullet \to \lambda z.((\lambda x.x \ y) \ z) \to \lambda z.(y \ z) \to_{\alpha} \lambda a.(y \ a)$
- $\bullet \to (\lambda x.\lambda y.(x \ y) \ y) \to \lambda w.(y \ w) \to_{\alpha} \lambda a.(y \ a)$
- Normal form: class of expressions, equivalent under systematic relabeling
- Value: distinguished member of this class

50/210

Structural equivalence

Definition 6.10 (Structural equivalence).

Two expressions are structurally equivalent iff they both reduce to the <u>same</u> expression.

Example 6.11 (Structural equivalence).

 $\lambda z.((\lambda x.x \ y) \ z)$ and $(\lambda x.\lambda y.(x \ y) \ y)$ in Example 6.9.

Computational equivalence

Definition 6.12 (Computational equivalence).

Two expressions are computationally equivalent iff they the behave in the same way when applied onto the same arguments.

Example 6.13 (Computational equivalence).

$$E_1 = \lambda y.\lambda x.(y x)$$
$$E_2 = \lambda x.x$$

- $((E_1 \ a) \ b)$ →* $(a \ b)$
- $((E_2 \ a) \ b) \to^* (a \ b)$
- $E_1
 ightharpoonup E_2
 ightharpoonup E_1
 ightharpoonup E_2
 ightharpoonup E_1
 ightharpoonup E_1
 ightharpoonup E_2
 ightharpoonup E_1
 ightharpoonup E_2
 ightharpoonup E_1
 ightharpoonup E_2
 ight$

51/210

Questions

- When does the computation terminate? Does it always?
 - NO
- 2 Does the answer depend on the reduction sequence?
 - YES
- If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

53/210

Reduction order

Definitions and examples

Definition 6.14 (Left-to-right reduction step).

The reduction of the outermost leftmost β -redex.

Example 6.15 (Left-to-right reduction).

$$((\lambda X.X \ \lambda X.y) \ (\lambda X.(X \ X) \ \lambda X.(X \ X))) \rightarrow (\lambda X.y \ \Omega) \rightarrow y$$

Definition 6.16 (Right-to-left reduction step).

The reduction of the innermost rightmost β -redex.

Example 6.17 (Right-to-left reduction).

$$((\lambda X.X \ \lambda X.Y) \ (\lambda X.(X \ X) \ \lambda X.(X \ X))) \rightarrow (\lambda X.Y \ \underline{\Omega}) \rightarrow \dots$$

54/210

Reduction order

Which one is better?

Theorem 6.18 (Normalization).

If an expression is reducible, its left-to-right reduction terminates.

The theorem does not guarantee the termination for any expression, but only for reducible ones!

Questions

- When does the computation terminate? Does it always?
 - NO
- ② Does the answer depend on the reduction sequence?
 - YES
- If the computation terminates for distinct reduction sequences, do we always get the same result?
 - YES
- If the result is unique, how do we safely obtain it?
 - Left-to-right reduction

55/210

Contents

- Introduction
- 4 Lambda expressions
- 5 Reduction
- 6 Normal forms
- Evaluation order

57/210

Evaluation order

Definition 7.1 (Applicative-order evaluation).

Corresponds to right-to-left reduction. Function arguments are evaluated before the function is applied.

Definition 7.2 (Strict function).

A function that uses applicative-order evaluation.

Definition 7.3 (Normal-order evaluation).

Corresponds to left-to-right reduction. Function arguments are evaluated when needed.

Definition 7.4 (Non-strict function).

A function that uses normal-order evaluation.

8/210

In practice I

Applicative-order evaluation employed in most programming languages, due to efficiency — one-time evaluation of arguments: C, Java, Scheme, PHP, etc.

Example 7.5 (Applicative-order evaluation in Scheme).

$$((\lambda (x) (+ x x)) (+ 2 3))$$

$$\rightarrow ((\lambda (x) (+ x x)) 5)$$

$$\rightarrow (+ 5 5)$$

$$\rightarrow 10$$

In practice II

Lazy evaluation (a kind of normal-order evaluation) in Haskell: on-demand evaluation of arguments, allowing for interesting constructions

Example 7.6 (Lazy evaluation in Haskell).

$$\frac{((\x -> x + x) (2 + 3))}{\rightarrow (2 + 3)} + (2 + 3)}{\rightarrow 5 + 5} \\ \rightarrow 10$$

Need for non-strict functions, even in applicative languages: if, and, or, etc.

Summary

- Lambda calculus: model of computation, underpinned by functions and textual substitution
- Bound/free variables and variable occurrences w.r.t. an expression
- β -reduction, α -conversion, reduction step, reduction sequence, reduction order, normal forms
- Left-to-right reduction (normal-order evaluation): always terminates for reducible expressions
- Right-to-left reduction (applicative-order evaluation): more efficient but no guarantee on termination even for reducible expressions!

Part III

Lambda Calculus as a Programming Language

61/210

Contents

- 8 The λ_0 language
- Abstract data types (ADTs)
- 10 Implementation
- Recursion
- Language specification

Contents

- 8 The λ_0 language
- Abstract data types (ADTs
- 10 Implementation
- Recursion
- Language specification

Purpose

- Proving the expressive power of lambda calculus
- Hypothetical λ-machine
- Machine code: λ -expressions the λ_0 language
- Instead of
 - bits
 - bit operations,

we have

- structured strings of symbols
- reduction textual substitution

65/210

λ_0 features

- Instructions:
 - λ-expressions
 - top-level variable bindings: variable \equiv_{def} expression e.g., $true \equiv_{def} \lambda x. \lambda y. x$
- Values represented as functions
- Expressions brought to the closed form, prior to evaluation
- Normal-order evaluation
- Functional normal form (see Definition 6.2)
- No predefined types!

66/210

Shorthands

- $\bullet \lambda x_1.\lambda x_2.\lambda...\lambda x_n.E \rightarrow \lambda x_1 x_2...x_n.E$
- $((...((E A_1) A_2) ...) A_n) \rightarrow (E A_1 A_2 ... A_n)$

Purpose of types

- Way of expressing the programmer's intent
- Documentation: which operators act onto which objects
- Particular representation for values of different types:
 1, "Hello", #t, etc.
- Optimization of specific operations
- Error prevention
- Formal verification

No types

How are objects represented?

 A number, list or tree potentially designated by the same value e.g.,

number
$$3 \rightarrow \lambda x.\lambda y.x \leftarrow \text{list}(()()())$$

Both values and operators represented by functions
 — context-dependent meaning

number
$$3 \rightarrow \lambda x.\lambda y.x \leftarrow$$
 operator *car*

• Value applicable onto another value, as an operator!

69/210

No types

How is correctness affected?

- Inability of the λ machine to
 - interpret the meaning of expressions
 - ensure their correctness
- Every operator applicable onto every value
- Both aspects above delegated to the programmer
- Erroneus constructs accepted without warning, but computation ended with
 - values with no meaning or
 - expressions that are neither values, nor reducible
 e.g., (x x)

70/210

No types

Consequences

- Enhanced representational flexibility
- Useful when the uniform representation of objects, as lists de symbols, is convenient
- Increased error-proneness
- Program instability
- Difficulty of verification and maintenance

So...

- How do we employ the λ_0 language in everyday programming?
- How do we represent usual values numbers, booleans, lists, etc. — and their corresponding operators?

71/210 72/210

Contents

- 8 The λ_0 language
- Abstract data types (ADTs)
- 10 Implementation
- Recursion
- Language specification

73/210

75/210

Definition

Definition 9.1 (Abstract data type, ADT).

Mathematical model of a set of values and their corresponding operations.

Example 9.2 (ADTs).

Natural, *Bool*, *List*, *Set*, *Stack*, *Tree*, ... λ-expression!

Components:

- base constructors: how are values built
- operators: what can be done with these values
- axioms: how

74/210

76/210

The Natural ADT

Base constructors and operators

- Base constructors:
 - zero : → Natural
 - succ : Natural → Natural
- Operators:
 - zero? : Natural → Bool
 - pred : Natural \setminus {zero} \rightarrow Natural
 - add : Natural² → Natural

The Natural ADT

Axioms

- zero?
 - (*zero*? *zero*) = *T*
 - (zero? (succ n)) = F
- pred
 - (pred (succ n)) = n
- add
 - (add zero n) = n
 - (add (succ m) n) = (succ (add m n))

Providing axioms

- One axiom for each (operator, base constructor) pair
- More useless
- Less insufficient for completely specifying the operators

77/210

From ADTs to functional programming

Discussion

- Proving ADT correctness
 - structural induction
- Proving properties of λ-expressions, seen as values of an ADT with 3 base constructors!
- Functional programming
 - reflection of mathematical specifications
- Recursion
 - natural instrument, inherited from axioms
- Applying formal methods on the recursive code, taking advantage of the lack of side effects

From ADTs to functional programming

Exemple

- Axiome:
 - add(zero, n) = n
 - add(succ(m), n) = succ(add(m, n))
- Scheme:

Haskell:

```
1 add 0 n = n
2 add (m + 1) n = 1 + (add m n)
```

78/210

Contents

- 8 The λ_0 language
- Abstract data types (ADTs
- 10 Implementation
- Recursion
- 12 Language specification

79/210

The Bool ADT

Base contrsuctors and operators

- Base constructors:
 - $T: \rightarrow Bool$
 - F : → Bool
- Operators:
 - not : Bool → Bool
 - and : Bool² → Bool
 - or : $Bool^2 \rightarrow Bool$
 - *if* : $Bool \times T \times T \rightarrow T$

81/210

The Bool ADT

Base constructor implementation

- Intuition: selecting one of the two values, true or false
- $T \equiv_{\mathsf{def}} \lambda xy.x$
- $F \equiv_{\mathsf{def}} \lambda xy.y$
- Selector-like behavior:
 - $(T \ a \ b) \rightarrow (\lambda xy.x \ a \ b) \rightarrow a$
 - $(F \ a \ b) \rightarrow (\lambda xy.y \ a \ b) \rightarrow b$

The Bool ADT

Axioms

- not
 - (not T) = F
 - (not F) = T
- and
 - (and T a) = a
 - (and F a) = F
- or
 - (or T a) = T
 - (or F a) = a
- if
 - (if T a b) = a
 - $(if \ F \ a \ b) = b$

82/210

The Bool ADT

Operator implementation

- $not \equiv_{def} \lambda x.(x F T)$
 - (not T) \rightarrow ($\lambda x.(x F T) T$) \rightarrow (T F T) \rightarrow F
 - (not F) \rightarrow ($\lambda x.(x F T) F$) \rightarrow (F F T) \rightarrow T
- and $\equiv_{def} \lambda xy.(x \ y \ F)$
 - (and T a) \rightarrow ($\lambda xy.(x y F) T a$) \rightarrow (T a F) \rightarrow a
 - (and F a) \rightarrow ($\lambda xy.(x \ y \ F) \ F a) <math>\rightarrow$ (F a F) \rightarrow F
- or $\equiv_{\mathsf{def}} \lambda x y.(x \ T \ y)$
 - (or T a) \rightarrow ($\lambda xy.(x T y) T a$) \rightarrow (T T a) \rightarrow T
 - (or F a) \rightarrow ($\lambda xy.(x T y) F$ a) \rightarrow (F T a) \rightarrow a
- $if \equiv_{def} \lambda cte.(c \ t \ e) \text{ non-strict!}$
 - (if T a b) \rightarrow (λ cte.(c t e) T a b) \rightarrow (T a b) \rightarrow a
 - (if F a b) \rightarrow (λ cte.(c t e) F a b) \rightarrow (F a b) \rightarrow b

The Pair ADT

Specification

- Base constructors:
 - $pair : A \times B \rightarrow Pair$
- Operators:
 - fst : Pair → A
 - snd : Pair → B
- Axioms:
 - (fst (pair a b)) = a
 - (snd (pair a b)) = b

85/210

The Pair ADT

Implementation

- Intuition: a pair = a function that expects a selector, in order to apply it onto its components
- $pair \equiv_{def} \lambda xys.(s \ x \ y)$
 - (pair a b) \rightarrow ($\lambda xys.(s x y) a b$) $\rightarrow \lambda s.(s a b)$
- $fst \equiv_{def} \lambda p.(p T)$
 - $(fst\ (pair\ a\ b)) \rightarrow (\lambda p.(p\ T)\ \lambda s.(s\ a\ b)) \rightarrow (\lambda s.(s\ a\ b)\ T) \rightarrow (T\ a\ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$
 - $(snd (pair \ a \ b)) \rightarrow (\lambda p.(p \ F) \ \lambda s.(s \ a \ b)) \rightarrow (\lambda s.(s \ a \ b) \ F) \rightarrow (F \ a \ b) \rightarrow b$

86/210

The List ADT

Base constructors and operators

- Base constructors:
 - null : → List
 - cons : A × List → List
- Operators:
 - $car: List \setminus \{null\} \rightarrow A$
 - $cdr : List \setminus \{null\} \rightarrow List$
 - null? : List → Bool
 - append : List² → List

The List ADT

Axioms

- car
 - (car (cons e L)) = e
- cdr
 - (cdr (cons e L)) = L
- null?
 - (null? null) = T
 - (null? (cons e L)) = F
- append
 - (append null B) = B
 - (append (cons e A) B) = (cons e (append A B))

The List ADT

Implementation

- Intuition: a list = a (head, tail) pair
- $null \equiv_{def} \lambda x.T$
- cons ≡_{def} pair
- car _{def} fst
- cdr _{def} snd
- $null? \equiv_{def} \lambda L.(L \lambda xy.F)$
 - (null? null) \rightarrow ($\lambda L.(L \lambda xy.F) \lambda x.T) <math>\rightarrow$ ($\lambda x.T ...$) $\rightarrow T$
 - (null? (cons e L)) \rightarrow (λ L.(L λ xy.F) λ s.(s e L)) \rightarrow (λ s.(s e L) λ xy.F) \rightarrow (λ xy.F e L) \rightarrow F
- $append \equiv_{def}$... no closed form $\lambda AB.(if (null? A) B (cons (car A) (append (cdr A) B)))$

89/210

The Natural ADT

Axioms

- zero?
 - (zero? zero) = T
 - (zero? (succ n)) = F
- pred
 - (pred (succ n)) = n
- add
 - (add zero n) = n
 - (add (succ m) n) = (succ (add m n))

90/210

The Natural ADT

Implementation

- Intuition: a number = a list having the number value as its length
- zero ≡_{def} null
- $succ \equiv_{def} \lambda n.(cons \ null \ n)$
- zero? ≡_{def} null?
- pred ≡_{def} cdr
- add ≡_{def} append

Contents

- 8 The λ_0 language
- Abstract data types (ADTs
- 10 Implementation
- **11** Recursion
- 12 Language specification

Functions

- Several possible definitions of the identity function:
 - id(n) = n
 - id(n) = n+1-1
 - id(n) = n+2-2
 - ...
- Infinitely many textual representations for the same function
- Then... what is a function? A relation between inputs and outputs, independent of any textual representation e.g., id = {(0,0),(1,1),(2,2),...}

93/210

Perspectives on recursion

- Textual: a function that refers itself, using its name
- Constructivist: recursive functions as values of an ADT, with specific ways of building them
- Semantic: the mathematical object designated by a recursive function

94/210

Implementing *length*

Problem

Length of a list:

 $length \equiv_{def} \lambda L.(if (null? L) zero (succ (length (cdr L))))$

- What do we replace the underlined area with, to avoid textual recursion?
- Rewrite the definition as a fixed-point equation

Length $\equiv_{def} \lambda f L.(if (null? L) zero (succ (f (cdr L))))$ (Length length) \rightarrow length

 How do we compute the fixed point? (see code archive)

Contents

- 8 The λ_0 language
- Abstract data types (ADTs
- 10 Implementation
- Recursio
- 12 Language specification

Axiomatization benefits

- Disambiguation
- Proof of properties
- Implementation skeleton

97/210

Syntax

Variable:

Var :=any symbol distinct from λ , ., (,)

• Expression:

$$Expr ::= Var$$

 $\mid \quad \lambda Var.Expr$
 $\mid \quad (Expr \ Expr)$

Value:

 $Val ::= \lambda Var.Expr$

08/210

Evaluation rules

Rule name:

 $\frac{precondition_1, \dots, precondition_n}{conclusion}$

Semantics for normal-order evaluation

Evaluation

Reduce:

$$(\lambda x.e\ e') \rightarrow e_{[e'/x]}$$

• Eval:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textcolor{red}{\textbf{\textit{e}}} \ \textbf{\textit{e}}'') \rightarrow (\textcolor{red}{\textbf{\textit{e}}'} \ \textbf{\textit{e}}'')}$$

99/210

Semantics for normal-order evaluation

Substitution

• $x_{[e/x]} = e$

• $\langle \lambda x.e \rangle_{[e'/x]} = \lambda x.e$

• $\langle \lambda y.e \rangle_{[e'/x]} = \lambda y.e_{[e'/x]}, \quad y \neq x \land y \notin FV(e')$

• $\langle \lambda y.e \rangle_{[e'/x]} = \lambda z.e_{[z/y][e'/x]},$ $y \neq x \land y \in FV(e') \land z \notin FV(e) \cup FV(e')$

• $(e' e'')_{[e/x]} = (e'_{[e/x]} e''_{[e/x]})$

101/210

Semantics for normal-order evaluation

Free variables

• $FV(x) = \{x\}$

• $FV(\lambda x.e) = FV(e) \setminus \{x\}$

• $FV((e' e'')) = FV(e') \cup FV(e'')$

102/210

Semantics for normal-order evaluation Example

Example 12.1 (Evaluation rules).

 $((\lambda x.\lambda y.y \ a) \ b)$

 $\frac{(\lambda x.\lambda y.y \ a) \rightarrow \lambda y.y \ (Reduce)}{((\lambda x.\lambda y.y \ a) \ b) \rightarrow (\lambda y.y \ b)} \quad (Eval)$

 $(\lambda y.y \ b) \rightarrow b \ (Reduce)$

Semantics for applicative-order evaluation

Evaluation

• Reduce ($v \in Val$):

$$(\lambda x.e \ v) \rightarrow e_{[v/x]}$$

• *Eval*₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{\left(\begin{array}{ccc} \textbf{\textit{e}} & \textbf{\textit{e}}'' \end{array} \right) \rightarrow \left(\begin{array}{ccc} \textbf{\textit{e}}' & \textbf{\textit{e}}'' \end{array} \right)}$$

• *Eval*₂ (*v* ∈ *Val*):

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textbf{\textit{v}} \ \textbf{\textit{e}}) \rightarrow (\textbf{\textit{v}} \ \textbf{\textit{e}}')}$$

103/210

Formal proof

Proposition 12.2 (Free and bound variables).

 $\forall e \in Expr \bullet BV(e) \cap FV(e) = \emptyset$

Proof.

Structural induction, according to the different forms of λ -expressions (see the lecture notes).

105/210

Part IV

Typed Lambda Calculus

Summary

- Practical usage of the untyped lambda calculus, as a programming language
- Formal specifications, for different evaluation semantics

106/01

Contents

- 13 Introduction
- Simply Typed Lambda Calculus (STLC, System F₁)
- 15 Extending STLC
- 6 Polymorphic Lambda Calculus (PSTLC, System F)
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

107/210

Contents

- 13 Introduction
- 14 Simply Typed Lambda Calculus (STLC, System F₁
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

109/210

Drawbacks of the absence of types

- Meaningless expressions e.g., (car 3)
- No canonical representation for the values of a given type e.g., both a tree and a set having the same representation
- Impossibility of translating certain expressions into certain typed languages e.g., $(x \ x)$, Ω , Fix
- Potential irreducibility of expressions inconsistent representation of equivalent values

$$\lambda x.(Fix \ x) \rightarrow \lambda x.(x \ (Fix \ x)) \rightarrow \lambda x.(x \ (x \ (Fix \ x))) \rightarrow \dots$$

110/210

Solution

- Restricted ways of constructing expressions, depending on the types of their parts
- Sacrificed expressivity in change for soundness

Desired properties

Definition 13.1 (Progress).

A well-typed expression is either a value or is subject to at least one reduction step.

Definition 13.2 (Preservation).

The result obtained by reducing a well-typed expression is well-typed. Usually, the type is the same.

Definition 13.3 (Strong normalization).

The evaluation of a well-typed expression terminates.

Contents

- 13 Introduction
- \bigcirc Simply Typed Lambda Calculus (STLC, System F_1)
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

113/210

Base and simple types

Definition 14.1 (Base type).

An atomic type e.g., numbers, booleans etc.

Definition 14.2 (Simple type).

A type built from existing types e.g., $\sigma \to \tau$, where σ and τ are types.

Notation:

- $e:\tau$: "expression e has type τ "
- $v \in \tau$: "v is a value of type τ "
- $e \in \tau \Rightarrow e : \tau$
- $e: \tau \not\Rightarrow e \in \tau$

114/210

Typed λ -expressions

Definition 14.3 (λ_t -expression).

- Base value: a base value $b \in \tau_b$ is a λ_t -expression.
- Typed variable: an (explicitly) typed variable $x : \tau$ is a λ_t -expression.
- Function: if $x : \sigma$ is a typed variable and $e : \tau$ is a λ_t -expression, then $\lambda x : \sigma.e : \sigma \to \tau$ is a λ_t -expression, which stands for
- Application: if $f : \sigma \to \tau$ and $a : \sigma$ are λ_t -expressions, then $(f \ a) : \tau$ is a λ_t -expression, which stands for

Relation to untyped lambda calculus

Similarities

- β-reduction
- α -conversion
- normal forms
- Church-Rosser theorem

Differences

- $(X : \tau X : \tau)$ invalid
- some fixed-point combinators are invalid

115/210 116/2

Syntax

Expressions

Variables:

• Expressions:

Values:

$$Val ::= BaseVal$$

 $\lambda Var : Type.Expr$

117/210

Syntax

Types

Types:

Type ::= BaseType
$$(Type \rightarrow Type)$$

- Typing contexts:
 - include variable-type associations i.e., *typing hypotheses*

118/210

Semantics for normal-order evaluation

Evaluation

• Reduce:

$$(\lambda X : \tau.e \ e') \rightarrow e_{[e'/X]}$$

Eval:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textcolor{red}{\textbf{\textit{e}}} \ \textbf{\textit{e}}'') \rightarrow (\textcolor{red}{\textbf{\textit{e}}'} \ \textbf{\textit{e}}'')}$$

The type annotations are ignored, since typing precedes evaluation.

Semantics

Typing

TBaseVal:

$$\frac{\textit{\textbf{V}} \in \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}{\Gamma \; \vdash \; \textit{\textbf{V}} : \textit{\textbf{\tau}}_{\textit{\textbf{b}}}}$$

• TVar:

$$\frac{X:\tau\in\Gamma}{\Gamma\vdash X:\tau}$$

• TAbs:

$$\frac{\Gamma, X : \tau \vdash \boldsymbol{e} : \tau'}{\Gamma \vdash \lambda X : \tau.\boldsymbol{e} : (\tau \to \tau')}$$

TApp:

$$\frac{\Gamma \vdash e : (\tau' \to \tau) \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash (e \ e') : \tau}$$

Typing example

Example 14.4 (Typing).

$$\lambda X : \tau_1.\lambda Y : \tau_2.X : (\tau_1 \rightarrow (\tau_2 \rightarrow \tau_1))$$

Blackboard!

121/210

Type systems

Definition 14.5 (Type system).

The set of rules and mechanisms used in a programming language to organize, build and handle the types accepted in the language.

Definition 14.6 (Soundness).

The type system of a language is *sound* if any well-typed expression in the language has the progress and preservation properties.

Proposition 14.7.

STLC is sound and possesses the strong normalization property.

122/210

Contents

- 13 Introduction
- 14 Simply Typed Lambda Calculus (STLC, System F_1)
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

Ways of extending STLC

- Particular base types
- 2 *n*-ary type constructors, $n \ge 1$, which build simple types

123/210 124/210

The product type

Algebraic specification

- Base constructors i.e., canonical values:
 - $\tau * \tau' ::= (\tau, \tau')$
- Operators:
 - $fst: \tau * \tau' \rightarrow \tau$
 - snd : $\tau * \tau' \rightarrow \tau'$
- Axioms (e: τ, e': τ'):
 - (fst (e, e')) → e
 - (snd (e,e')) $\rightarrow e'$

125/210

The product type

Syntax

126/210

The product type

Evaluation

• EvalFst:

(fst
$$(e,e')$$
) $\rightarrow e$

• EvalSnd:

$$(snd (e,e')) \rightarrow e'$$

• EvalFstApp:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textit{fst e}) \rightarrow (\textit{fst e}')}$$

• EvalSndApp:

$$\frac{e \rightarrow e'}{(\textit{snd } e) \rightarrow (\textit{snd } e')}$$

The product type

Typing

• TProduct:

$$\frac{\Gamma \vdash e : \tau \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash (e, e') : (\tau * \tau')}$$

• TFst:

$$\frac{\Gamma \vdash e : (\tau * \tau')}{\Gamma \vdash (\mathit{fst}\ e) : \tau}$$

• TSnd:

$$\frac{\Gamma \vdash e : (\tau * \tau')}{\Gamma \vdash (snd \ e) : \tau'}$$

The product type

Typing example

Example 15.1 (Typing).

$$\Gamma \vdash \lambda X : ((\rho * \tau) \to \sigma).\lambda Y : \rho.\lambda Z : \tau.(X (y,Z))$$
$$: ((\rho * \tau) \to \sigma) \to \rho \to \tau \to \sigma$$

Blackboard!

129/210

The Bool type

Algebraic specification

- Base constructors i.e., canonical values:
 - Bool ::= True | False
- Operators:
 - not : Bool → Bool
 - and : $Bool^2 \rightarrow Bool$
 - or : $Bool^2 \rightarrow Bool$
 - *if* : *Bool* $\times \tau \times \tau \rightarrow \tau$
- Axioms: see slide 81

130/210

The Bool type

Syntax

The Bool type

Evaluation

• EvalIfT:

(if True
$$e e'$$
) $\rightarrow e$

EvalIfF:

(if False
$$e e'$$
) $\rightarrow e'$

• Evallf:

$$\frac{e \rightarrow e'}{(\textit{if } e \ e_1 \ e_2) \rightarrow (\textit{if } e' \ e_1 \ e_2)}$$

131/210

The Bool type

Typing

• TTrue:

Γ ⊢ True : Bool

• TFalse:

Γ ⊢ False : Bool

• *TIf*:

$$\frac{\Gamma \vdash e : Bool \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash (if \ e \ e_1 \ e_2) : \tau}$$

133/210

The Bool type

Top-level variable bindings

• $not \equiv \lambda x : Bool.(if x False True)$

• and $\equiv \lambda x$: Bool. λy : Bool.(if x y False)

• or $\equiv \lambda x$: Bool. λy : Bool.(if x True y)

134/210

The N type

Algebraic specification

- Base constructors i.e., canonical values:
 - $\mathbb{N} ::= 0 \mid (succ \ \mathbb{N})$
- Operators:
 - ullet $+: \mathbb{N}^2 \to \mathbb{N}$
 - zero? : $\mathbb{N} \to Bool$
- Axioms $(m, n \in \mathbb{N})$:
 - (+ 0 n) = n
 - (+ (succ m) n) = (succ (+ m n))
 - (*zero*? 0) = *True*
 - (zero? (succ n)) = False

The N type

Operator semantics

- How to avoid defining evaluation and typing rules for each operator of \mathbb{N} ?
- Introduce the primitive recursor for \mathbb{N} , $prec_{\mathbb{N}}$, which allows for defining any primitive recursive function on natural numbers
- Define the operators using the primitive recursor

The N type

Syntax

137/210

The N type

Evaluation

• EvalSucc:

$$\frac{\textit{e} \rightarrow \textit{e}'}{(\textit{succ e}) \rightarrow (\textit{succ e}')}$$

• EvalPrec_{N0}:

$$(prec_{\mathbb{N}} e_0 f 0) \rightarrow e_0$$

• EvalPrec_{N1} $(n \in \mathbb{N})$:

$$(prec_{\mathbb{N}} \ e_0 \ f \ (succ \ n)) \rightarrow (f \ n \ (prec_{\mathbb{N}} \ e_0 \ f \ n))$$

• EvalPrec_{N2}:

$$\frac{e \rightarrow e'}{(\textit{prec}_{\mathbb{N}} \ \textit{e}_{0} \ \textit{f} \ \textit{e}) \rightarrow (\textit{prec}_{\mathbb{N}} \ \textit{e}_{0} \ \textit{f} \ \textit{e}')}$$

138/210

The N type

Typing

• TZero:

$$\Gamma \vdash 0 : \mathbb{N}$$

 \mathbb{N}

• TSucc:

$$\frac{\Gamma \vdash e : \mathbb{N}}{\Gamma \vdash (succ \ e) : \mathbb{N}}$$

TPrec_N:

$$\frac{\Gamma \vdash e_0 : \tau \qquad \Gamma \vdash f : \mathbb{N} \to \tau \to \tau \qquad \Gamma \vdash e : \mathbb{N}}{\Gamma \vdash (prec_{\mathbb{N}} \ e_0 \ f \ e) : \tau}$$

The N type

Top-level variable bindings

• zero? $\equiv \lambda n : \mathbb{N}.(prec_{\mathbb{N}} | True \lambda x : \mathbb{N}.\lambda y : Bool.False n)$

• $+ \equiv \lambda m : \mathbb{N}.\lambda n : \mathbb{N}.(prec_{\mathbb{N}} \ n \ \lambda x : \mathbb{N}.\lambda y : \mathbb{N}.(succ \ y) \ m)$

The (*List* τ) type

Algebraic specification

- Base constructors i.e., canonical values:
 - (List τ) ::= [] $_{\tau}$ | (cons τ (List τ))
- Operators:
 - head : (List τ) \ {[]} $\rightarrow \tau$
 - $tail: (List \ \tau) \setminus \{[]\} \rightarrow (List \ \tau)$
 - *length* : (*List* τ) \to \mathbb{N}
- Axioms $(h \in \tau, t \in (List \ \tau))$:
 - (head (cons h t)) = h
 - (tail (cons h t)) = t
 - (*length* []) = 0
 - (length (cons h t)) = (succ (length t))

The (*List* τ) type

Syntax

$$Expr ::= ...$$
 $| (cons Expr Expr)$
 $| (prec_L Expr Expr Expr)$

140/010

The (*List* τ) type

Evaluation

• EvalCons:

$$\frac{\textit{e} \rightarrow \textit{e}'}{(\textit{cons e e''}) \rightarrow (\textit{cons e' e''})}$$

• EvalPrec_{L0}:

$$(prec_L e_0 f []) \rightarrow e_0$$

• EvalPrec_{L1} (*v* ∈ Value):

$$(prec_t \ e_0 \ f \ (cons \ v \ e)) \rightarrow (f \ v \ e \ (prec_t \ e_0 \ f \ e))$$

• EvalPrec₁₂:

$$\frac{\textbf{e} \rightarrow \textbf{e}'}{(\textbf{prec}_L \ \textbf{e}_0 \ \textbf{f} \ \textbf{e}) \rightarrow (\textbf{prec}_L \ \textbf{e}_0 \ \textbf{f} \ \textbf{e}')}$$

The (*List* τ) type

Typing

TEmpty:

$$\Gamma \vdash []_{\tau} : (List \ \tau)$$

• TCons:

$$\frac{\Gamma \vdash e : \tau \qquad \Gamma \vdash e' : (List \ \tau)}{\Gamma \vdash (cons \ e \ e') : (List \ \tau)}$$

• TPrec₁:

$$\frac{\Gamma \vdash e_0 : \tau' \quad \Gamma \vdash f : \tau \to (\textit{List } \tau) \to \tau' \to \tau' \quad \Gamma \vdash e : (\textit{List } \tau)}{\Gamma \vdash (\textit{prec}_{\textit{L}} \ e_0 \ f \ e) : \tau'}$$

The (*List* τ) type

Top-level variable bindings

• empty? $\equiv \lambda I : (List \ \tau).(prec_L \ True \ f \ I),$ $f \equiv \lambda h : \tau.\lambda t : (List \ \tau).\lambda r : Bool.False$

• $length \equiv \lambda l : (List \ \tau).(prec_L \ 0 \ f \ l),$ $f \equiv \lambda h : \tau.\lambda t : (List \ \tau).\lambda r : \mathbb{N}.(succ \ r)$

145/210

General recursion

- Primitive recursion
 - induces strong normalization
 - insufficient for capturing effectively computable functions
- Introduce the operator *fix* i.e., a fixed-point combinator
- Gain computation power at the expense of strong normalization

146/210

fix

Syntax

$$Expr$$
 ::= ... $|$ $(fix Expr)$

fix

Evaluation

• EvalFix:

$$(fix \ \lambda x : \tau.e) \rightarrow e_{[(fix \ \lambda x : \tau.e)/x]} = (f \ (fix \ f))$$

• EvalFix':

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textit{\textit{fix}} \ \textbf{\textit{e}}) \rightarrow (\textit{\textit{fix}} \ \textbf{\textit{e}}')}$$

147/210

*fix*Typing

• TFix:

$$\frac{\Gamma \vdash e : (\tau \to \tau)}{\Gamma \vdash (\mathit{fix} \ e) : \tau}$$

fix Exar

Example

Example 15.2 (The remainder function).

$$\label{eq:remainder} \begin{split} \textit{remainder} &= \lambda \, \textit{m} : \mathbb{N}. \lambda \, \textit{n} : \mathbb{N}. \\ & (\textit{(fix } \lambda \, \textit{f} : (\mathbb{N} \to \mathbb{N}). \lambda \, \textit{p} : \mathbb{N}. \\ & (\textit{if } p < \textit{n then } p \textit{ else } (\textit{f } (p - \textit{n})))) \textit{ m}) \end{split}$$

The evaluation of (remainder 3 0) does not terminate.

150/210

149/210

Monomorphism

- Within the types $(\tau * \tau')$ and $(List \ \tau)$, τ and τ' designate specific types e.g., Bool, \mathbb{N} , $(List \ \mathbb{N})$, etc.
- Dedicated operators for each simple type
- $fst_{\mathbb{N},Bool}$, $fst_{Bool,\mathbb{N}}$, . . .
- \bullet $[]_{\mathbb{N}}$, $[]_{Bool}$, ...
- empty?_N, empty?_{Bool}, . . .

Contents

- 13 Introduction
- 14 Simply Typed Lambda Calculus (STLC, System F_1)
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F)
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculu (HPSTLC, System F_{ω})

Idea

Monomorphic identity function for type N:

$$id_{\mathbb{N}} \equiv \lambda x : \mathbb{N}.x : (\mathbb{N} \to \mathbb{N})$$

• Polymorphic identity function — type variables:

$$id \equiv \lambda X \cdot \lambda X : \mathbb{N} \cdot X : \forall X \cdot (X \to X)$$

• Type coercion prior to function application:

$$(id[\mathbb{N}] \ 5) \rightarrow (id_{\mathbb{N}} \ 5) \rightarrow 5$$

153/210

Syntax

Program variables: stand for program values

Type variables: stand for types

154/210

Syntax

• Expressions:

Values:

Value ::= BaseValue

$$\lambda Var : Type.Expr$$

 $\lambda TypeVar.Expr$

Syntax

Types:

Typing contexts:

Semantics

Evaluation

• Reduce₁:

$$(\lambda x : \tau.e \ e') \rightarrow e_{[e'/x]}$$

• Reduce₂:

$$\lambda X.e[au] o e_{[au/X]}$$

• Eval₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textbf{\textit{e}} \ \textbf{\textit{e}}'') \rightarrow (\textbf{\textit{e}}' \ \textbf{\textit{e}}'')}$$

• Eval₂:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{\textbf{\textit{e}}[\tau] \rightarrow \textbf{\textit{e}}'[\tau]}$$

157/210

Semantics

Typing

TBaseValue:

$$\frac{\textit{\textbf{v}} \in \textit{\textbf{\tau}}_\textit{\textbf{b}}}{\Gamma \; \vdash \; \textit{\textbf{v}} : \textit{\textbf{\tau}}_\textit{\textbf{b}}}$$

TVar:

$$\frac{\mathbf{X}: \tau \in \Gamma}{\Gamma \vdash \mathbf{X}: \tau}$$

• TAbs₁:

$$\frac{\Gamma, X : \tau \vdash e : \tau'}{\Gamma \vdash \lambda X : \tau . e : (\tau \rightarrow \tau')}$$

• *TApp*₁:

$$\frac{\Gamma \vdash e : (\tau' \to \tau) \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash (e \ e') : \tau}$$

158/210

Semantics

Typing

 TAbs₂ — polymorphic expressions have universal types:

$$\frac{\Gamma, X \vdash e \colon \tau}{\Gamma \vdash \lambda X.e \colon \forall X.\tau}$$

• *TApp*₂:

$$\frac{\Gamma \vdash e : \forall X.\tau}{\Gamma \vdash e[\tau'] : \tau_{[\tau'/X]}}$$

Semantics

Substitution and free variables

- Expr_[Expr/Var]
- Expr_[Type/TypeVar]
- Type_[Type/TypeVar]
- Free program variables
- Free type variables

Typing example

Example 16.1 (Typing).

$$\Gamma \vdash \lambda f : \forall X.(X \to X).\lambda Y.\lambda x : Y.(f[Y] x)$$
$$: (\forall X.(X \to X) \to \forall Y.(Y \to Y))$$

Monomorphic function with polymorphic argument and result!

Blackboard!

161/210

Examples of polymorphic expressions

Example 16.2 (Doubling a computation).

double
$$\equiv \lambda X.\lambda f: (X \to X).\lambda x: X.(f (f x))$$

: $\forall X.((X \to X) \to (X \to X))$

Example 16.3 (Quadrupling a computation).

quadruple
$$\equiv \lambda X.(double[X \rightarrow X] \ double[X])$$

: $\forall X.((X \rightarrow X) \rightarrow (X \rightarrow X))$

162/210

Examples of polymorphic expressions

Example 16.4 (Reflexive computation).

reflexive
$$\equiv \lambda f : \forall X.(X \rightarrow X).(f[\forall X.(X \rightarrow X)] f)$$

: $(\forall X.(X \rightarrow X) \rightarrow \forall X.(X \rightarrow X))$

Example 16.5 (Fixed-point combinator).

$$Fix \equiv \lambda X.\lambda f: (X \to X).(f (Fix[X] f))$$
$$: \forall X.((X \to X) \to X)$$

Contents

- 13 Introduction
- 14 Simply Typed Lambda Calculus (STLC, System F_1)
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F)
- Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_ω)

163/210

Motivation

Contents

- 13 Introduction
- 14 Simply Typed Lambda Calculus (STLC, System F₁)
- 15 Extending STLC
- 16 Polymorphic Lambda Calculus (PSTLC, System F
- 17 Type reconstruction
- Higher-Order Polymorphic Lambda Calculus (HPSTLC, System F_{ω})

166/210

168/210

Problem

 Polymorphic identity function, on objects of a type built using 1-ary type constructors e.g., List:

$$f \equiv \lambda C.\lambda X.\lambda x : (C X).x : \forall C.\forall X.((C X) \rightarrow (C X))$$

- *C* stands for a 1-ary type constructor, *X* stands for a type of program values i.e., a *proper type*
- Monomorphic identity function for type (*List* \mathbb{N}):

$$f[List][\mathbb{N}] \rightarrow \lambda x : (List \mathbb{N}).x : ((List \mathbb{N}) \rightarrow (List \mathbb{N}))$$

• How do we prevent erroneous situations e.g., $f[\mathbb{N}][\mathbb{N}]$, f[List][List]?

Solution

- Two categories of types: proper types, and type constructors i.e., λ TypeVar. Type
- Type not only program variables, but also type variables
- The type of a type: kind

Kinds Notation

- The kind of a proper type: *
- The kind of a 1-ary type constructor: (* ⇒ *)
- The kind of an *n*-ary type constructor, $n \ge 1$: $k_1 \Rightarrow k_2$
- The kind k of a type τ : τ :: k

169/210

Kinds

Examples

Example 18.1 (Kinds).

- N :: ∗
- *List* :: (* ⇒ *)
- $f \equiv \lambda C :: (* \Rightarrow *).\lambda X :: *.\lambda X : (C X).X$ $f : \forall C :: (* \Rightarrow *).\forall X :: *.((C X) \rightarrow (C X))$

170/210

Levels of expressions

Type equivalence

• Two syntactically distinct types:

$$\tau_1 \equiv ((List \mathbb{N}) \to (List \mathbb{N}))$$

$$\tau_2 \equiv (\lambda X :: *.((List X) \to (List X)) \mathbb{N})$$

• Semantically, they denote the same type i.e., they are equivalent: $\tau_1 \equiv \tau_2$

171/21

Syntax

• Expressions:

Values:

Value ::= BaseValue

$$\lambda Var : Type.Expr$$

 $\lambda TypeVar :: Kind.Expr$

173/210

Syntax

Types:

Type ::= BaseType

| TypeVar

| (Type
$$\rightarrow$$
 Type)

| \forall TypeVar :: Kind.Type

| λ TypeVar :: Kind.Type

| (Type Type)

Typing contexts:

174/210

Syntax

• Kinds:

Kind
$$::= *$$
 $(Kind \Rightarrow Kind)$

Semantics

Evaluation

Reduce₁:

$$(\lambda X : \tau.e \ e') \rightarrow e_{[e'/X]}$$

• Reduce₂:

$$\lambda X :: K.e[\tau] \rightarrow e_{[\tau/X]}$$

• *Eval*₁:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{(\textbf{\textit{e}} \ \textbf{\textit{e}}'') \rightarrow (\textbf{\textit{e}}' \ \textbf{\textit{e}}'')}$$

• Eval₂:

$$\frac{\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}'}{\textbf{\textit{e}}[\tau] \rightarrow \textbf{\textit{e}}'[\tau]}$$

Semantics

Typing

• TBaseValue:

$$\frac{\textit{\textbf{v}} \in \textit{\textbf{\tau}}_{\textit{b}}}{\Gamma \; \vdash \; \textit{\textbf{v}} : \textit{\textbf{\tau}}_{\textit{b}}}$$

• TVar:

$$\frac{\mathbf{X}:\boldsymbol{\tau}\in\boldsymbol{\Gamma}}{\boldsymbol{\Gamma}\vdash\mathbf{X}:\boldsymbol{\tau}}$$

• *TAbs*₁:

$$\frac{\Gamma, \mathbf{X} : \tau \vdash \mathbf{e} : \tau'}{\Gamma \vdash \lambda \mathbf{X}.\mathbf{e} : (\tau \rightarrow \tau')}$$

■ TApp₁:

$$\frac{\Gamma \vdash e : (\tau' \to \tau) \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash (e e') : \tau}$$

177/210

Semantics

Typing

• *TAbs*₂:

$$\frac{\Gamma, X :: \mathbf{K} \vdash \mathbf{e} : \tau}{\Gamma \vdash \lambda X :: \mathbf{K}.\mathbf{e} : \forall X :: \mathbf{K}.\tau}$$

• *TApp*₂:

$$\frac{\Gamma \vdash e : \forall X :: K.\tau \qquad \Gamma \vdash \tau' :: K}{\Gamma \vdash e[\tau'] : \tau_{[\tau'/X]}}$$

170/010

Semantics

Kinding

KBaseType:

$$\Gamma \vdash \tau_b :: *$$

KTypeVar:

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$

KTypeAbs:

$$\frac{\Gamma, X :: K \vdash \tau :: K'}{\Gamma \vdash \lambda X :: K.\tau :: (K \Rightarrow K')}$$

KTypeApp:

$$\frac{\Gamma \vdash \tau :: (K' \Rightarrow K) \qquad \Gamma \vdash \tau' :: K'}{\Gamma \vdash (\tau \ \tau') :: K}$$

Semantics

Kinding

• KAbs₁:

$$\frac{\Gamma \vdash \tau :: * \qquad \Gamma \vdash \tau' :: *}{\Gamma \vdash (\tau \to \tau') :: *}$$

• KAbs₂:

$$\frac{\Gamma, X :: K \vdash \tau :: *}{\Gamma \vdash \forall X :: K.\tau :: *}$$

Semantics

Type equivalence

• EqReflexivity:

$$au \equiv au$$

• EqSymmetry:

$$rac{ au \equiv au'}{ au' \equiv au}$$

• EqTransitivity:

$$rac{ au \equiv au' \qquad au' \equiv au''}{ au \equiv au''}$$

• EqTypeReduce:

$$(\lambda X :: K.\tau \ \tau') \equiv \tau_{[\tau'/X]}$$

181/210

Semantics

Type equivalence

• EqTypeAbs:

$$\frac{\tau \equiv \tau'}{\lambda X :: K.\tau \equiv \lambda X :: K.\tau'}$$

• EqTypeApp:

$$\frac{\tau \equiv \tau' \qquad \sigma \equiv \sigma'}{(\tau \ \sigma) \equiv (\tau' \ \sigma')}$$

• EqAbs₁:

$$rac{ au \equiv au' \qquad \sigma \equiv \sigma'}{(au
ightarrow \sigma) \equiv (au'
ightarrow \sigma')}$$

• EqAbs₂:

$$\frac{\tau \equiv \tau'}{\forall X :: K.\tau \equiv \forall X :: K.\tau'}$$

182/210

Semantics

Type equivalence

• TypeEquivalence:

$$\frac{\Gamma \vdash \boldsymbol{e} : \boldsymbol{\tau} \qquad \boldsymbol{\tau} \equiv \boldsymbol{\tau}'}{\Gamma \vdash \boldsymbol{e} : \boldsymbol{\tau}'}$$

Kinding example

Example 18.2 (Kinding).

$$\forall X :: *.(X \rightarrow ((List\ X) \rightarrow (Tree\ X))) :: *$$

Blackboard!

Part V

Constructive Type Theory

Contents

- 19 Constructive paradigm
- 20 Syntax and semantics

186/210

185/210

Contents

- 19 Constructive paradigm
- Syntax and semantics

Classical logic

- Example: prove $\exists x.P(x)$
- Perhaps, proof by contradiction: assume $\neg \exists x. P(x)$ and reach a contradiction
- Assumption: $\exists x.P(x) \lor \neg \exists x.P(x)$ (law of excluded middle)
- Problem: possibly no actual evidence regarding either sentence i.e., some a s.t. either P(a) or $\neg P(a)$ is true

187/210

Constructive logic

- Prove ∃x.P(x) by computing an object a s.t. P(a) is true
- Not always possible
- However, not being able to compute a does not mean that $\exists x. P(x)$ is false
- Law of excluded middle not an axiom in constructive logic

189/210

Constructive type theory

- Bridge between constructive logic and typed lambda calculus
- Correspondences:
 - sentence ↔ type
 - logical connective ↔ type constructor
 - ullet proof \leftrightarrow function with that type
- Application: synthesize a program by proving the sentence that corresponds to its specification

190/210

The Curry-Howard isomorphism

Contents

19 Constructive paradigm

20 Syntax and semantics

1/210 192/210

Two views

a: A

• Type-theoretic: "a is a value of type A"

• Logical: "a is a proof of sentence A"

193/210

Definitional rules

Rule	Logical view	Type-theoretic view
Formation	How a connective re-	How a type construc-
	lates two sentences	tor is used
Introduction/	How a proof is derived	How a value is con-
elimination		structed
Computation	How a proof is simplified	How an expression is evaluated

194/210

Other logic-type correspondences

Logical view	Type-theoretic view	
Truth (⊤)	One-element type, containing the	
	trivial proof	
Falsity (⊥)	No-element type, containing no	
	proof	
Proof by induction	Definition by recursion	

Logical conjunction / product type constructor I

• Formation rule ($\wedge F$):

 $\frac{A \text{ is a sentence/ type}}{A \land B \text{ is a sentence/ type}}$

• Introduction rule (∧*I*):

 $\frac{a:A \qquad b:B}{(a,b):A \wedge B}$

Logical conjunction / product type constructor II

• Elimination rules ($\wedge E_{1,2}$):

$$\begin{array}{ccc} p: A \wedge B & & p: A \wedge B \\ \hline fst & p: A & & snd & p: B \end{array}$$

Computation rules:

$$fst (a,b) \rightarrow a$$
 $snd (a,b) \rightarrow b$

197/210

Logical implication / function type constructor I

• Formation rule ($\Rightarrow F$):

 $\frac{A \text{ is a sentence/ type}}{A \Rightarrow B \text{ is a sentence/ type}}$

Introduction rule (⇒ I)
 (square brackets = discharged assumption):

$$[x : A]$$

$$\vdots$$

$$b : B$$

$$\lambda x : A.b : A \Rightarrow B$$

198/210

200/210

Logical implication / function type constructor II

• Elimination rule ($\Rightarrow E$):

$$\frac{a:A \qquad f:A \Rightarrow B}{(f \ a):B}$$

Computation rule:

$$(\lambda x : A.b \ a) \rightarrow b_{[a/x]}$$

Logical disjunction / sum type constructor I

• Formation rule ($\vee F$):

 $\frac{A \text{ is a sentence/ type}}{A \lor B \text{ is a sentence/ type}}$

• Introduction rules ($\lor I_{1,2}$):

$$\frac{a:A}{inl\ a:A\vee B} \qquad \frac{b:B}{inr\ b:A\vee B}$$

Logical disjunction / sum type constructor II

• Elimination rule ($\vee E$):

$$\frac{p:A\vee B \qquad f:A\Rightarrow C \qquad g:B\Rightarrow C}{cases\ p\ f\ g:C}$$

Computation rules:

cases (inl a)
$$f g \rightarrow f a$$
 cases (inr b) $f g \rightarrow g b$

201/210

Absurd sentence / empty type I

• Formation rule $(\bot F)$:

 \perp is a sentence/ type

 Introduction rule: none — there is no proof of the absurd sentence

202/210

Absurd sentence / empty type II

• Elimination rule ($\perp E$) (a proof of the absurd sentence can prove anything):

$$\frac{p:\bot}{abort_A\ p:A}$$

Computation rule: none

Logical negation and equivalence

Logical negation:

$$\neg A \equiv A \Rightarrow \bot$$

Logical equivalence:

$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

203/210

Example proofs

- \bullet $A \Rightarrow A$
- $A \Rightarrow \neg \neg A$ (converse?)
- $\bullet ((A \land B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- $\bullet (A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$
- $(A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A)$
- $(A \lor B) \Rightarrow \neg (\neg A \land \neg B)$

205/210

Universal quantification / generalized function type constructor II

• Elimination rule $(\forall E)$:

$$\frac{a:A \qquad f:(\forall x:A).B}{(f\ a):B_{[a/x]}}$$

Computation rule:

$$((\lambda x : A).b \ a) \rightarrow b_{[a/x]}$$

Universal quantification / generalized function type constructor I

Formation rule (∀F)
 (square brackets = discharged assumption):

[*x* : *A*]

A is a sentence/ type B is a sentence/ type $(\forall x : A).B$ is a sentence/ type

• Introduction rule (∀I):

$$[x : A]$$

$$\vdots$$

$$b : B$$

$$(\lambda x : A).b : (\forall x : A).B$$

206/210

Existential quantification / generalized product type constructor I

 Formation rule (∃F) (square brackets = discharged assumption):

[*x* : *A*]

 $\frac{A \text{ is a sentence/ type}}{(\exists x : A).B \text{ is a sentence/ type}}$

• Introduction rule (∃*I*):

$$\frac{a:A \qquad b:B_{[a/x]}}{(a,b):(\exists x:A).B}$$

207/21

Existential quantification / generalized product type constructor II

• Elimination rules $(\exists E_{1,2})$:

$$\frac{p: (\exists x: A).B}{Fst \ p: A} \qquad \frac{p: (\exists x: A).B}{Snd \ p: B_{[Fst \ p/x]}}$$

Computation rules:

Fst
$$(a,b) \rightarrow a$$

Snd $(a,b) \rightarrow b$

Example proofs

$$\bullet (\forall x : A).(B \Rightarrow C) \Rightarrow (\forall x : A).B \Rightarrow (\forall x : A).C$$

•
$$(\exists x : X). \neg P \Rightarrow \neg (\forall x : X).P$$
 (converse?)

•
$$(\exists y : Y).(\forall x : X).P \Rightarrow (\forall x : X).(\exists y : Y).P$$
 (converse?)

209/210