Decomposition based Algorithm for State Prediction
in Large Scale Distributed Systems

Mihai Istin, Andreea Visan

Faculty of Automatic Control and Computers, Computer Science Department,
University “Politehnica” of Bucharest, Romania
Emails: mihai.istin@cti.pub.ro, andreea.visan@cti.pub.ro

Abstract—Prediction represents an important component of
resource management, providing information about the future
state, utilization and availability of resources. We propose a
new prediction algorithm inspired from the decomposition of a
complex wave into simpler waves with fixed frequencies (similar
to Fourier decomposition). The partial results obtained from
this decomposition stage are combined using approaches inspired
from artificial intelligence models. The experimental results for
different system parameters, used in Alice experiment, highlight
the great improvement, discussed in terms of error reduction,
offered by this new prediction algorithm. The tests were made
using real-time monitoring data provided by a system monitoring
tool, in the case of one-step and multi-step ahead prediction. The
prediction’s results can be used by the resource management
systems in order to improve the scheduling decisions, assuring
the load balancing and optimizing the resource utilization.

Keywords

State Monitoring, Prediction, Neural Network, Fourier Decomposi-
tion, Distributed Systems

I. INTRODUCTION

The size of distributed systems followed an ascending trend
during the last decade leading to today’s Large Scale Dis-
tributed Systems (LSDSs). As a result, resource management
became more and more important as a main component used
for improving the performance of the system. Scheduling,
meaning the assignment of received tasks to distributed com-
putational resources, is one of the most important parts of
resource management [4], [1].

Monitoring can contribute to the improvement of the func-
tionalities and the performance of resource management sys-
tems in various ways, and for this reason most of the current
resource management systems use monitoring instruments.
The most important functional requirements that a monitoring
module should satisfy are: obtaining accurate information
for all relevant parameters, support for various data delivery
models, extensible data representation, access to real-time and
history data, intuitive results visualization, and portability. We
have also to mention the scalability, a minimal monitoring
overhead and the ability to process and distribute, in real-time,
large amounts of gathered data.

Resource management often relies on prediction mecha-
nisms in order to estimate what the resources utilization will
be in the near future, or how many resources are likely to fail.
The prediction mechanisms use monitoring data that have been

collected from the system and usually stored in databases.
Based on a set of previous values for a certain parameter,
the next value is forecasted and sent to a resource manager.
Classical prediction algorithms are based on mean, median
and standard deviation theory, but can also be used approaches
using natural models.

The paper proposes a new prediction algorithm inspired
from the decomposition of a complex wave into simpler
waves with fixed frequencies, similar to a Fourier decom-
position. The partial results (obtained for each “frequency”
represented by sampling step in our case) represent the inputs
for a neural network structure constructed using artificial
intelligence methods. Our experimental results highlight the
great error reduction offered by this approach, compared to
classical prediction algorithms in both one-step and multi-step
ahead prediction situations. We have used a framework for
distributed system monitoring, real time prediction evolution
for the proposed algorithm and also a real-time error analyzer
for other well-known approaches.

The paper is organized as follow: Section II presents the
related work referring to prediction approaches. Section III
briefly introduces the components of the monitoring and state
prediction tool. Next, Section IV presents the new prediction
algorithm. In Section V, a performance comparison between
the new algorithm and classical prediction algorithm is made
for different system parameters. The experimental tests were
made in both one-step ahead and multi-step ahead prediction.
The results highlight the great improvement obtained by our
new approach. Section VI presents the conclusions.

II. RELATED WORK

This section presents a brief description of other prediction
algorithms. The correlation between prediction and monitoring
is important because performance prediction and evaluation of
LSDS resources and applications are used to implement for
example adaptive scheduling and on-line fault detection.

Different techniques have been developed to predict the
behavior of available resources, such as CPU load, network
traffic, storage systems or memory. Performance predictions
are made using compositional models based on previous
behavior and static characteristics of the resources. Table I
summarizes the proposed approaches.

TABLE I
DESCRIPTION OF PREDICTION ALGORITHMS

Name Prediction Approach

Simple Moving Average (SMA)|[3]

The un-weighted mean of the previous n data points

Weighted Moving Average (WMA) [3]

The weighted mean. The weights are decreasing arithmetically as the values are older in time.

Exponential Moving Average (EMA) [3]

Applies weighting factors which decrease exponentially.

Random prediction

Random number contained in the interval (mean — standardDeviation; mean + standardDeviation)

Backpropagation NN [10]

A multi-layer NN using delta-rule for corrections

CasCorAG NN [12]

NN architecture dynamically constructed, initiated using genetic algorithms

Different prediction algorithms have been proposed in the
current literature [3], [10], [8], [9] based on median, mean and
standard deviation. A moving average [3] is used to analyze a
time series by creating a series of averages of different subsets
of the full data set. It is a type of convolution and it is similar to
the low-pass filter used in signal processing. Several methods
of computing the next value have been developed: simple,
weighted and exponential moving average.

The random predictions are based on the standard prediction
theory. Standard deviation measures the spread of data about
the mean. The random prediction algorithm computes one step
ahead value as a random real number contained in the interval
(m — s,m+ s) where m is the mean of the set of values and
s is the standard deviation.

Other prediction algorithms based on neural networks (NNs)
[6], [11] have been also implemented thanks to their learning
ability from historical data and thanks to their capability
of multi-step ahead prediction. In [12] we proposed a state
prediction algorithm based on the Cascade Correlation NN
architecture initialized using a genetic algorithm in order to
obtain better results and fast performance. Combining the ad-
vantages of NNs with a dynamically constructed architecture,
fully adapted to the characteristics of the time series, the
algorithm proved to be able to provide more accurate results
than classical prediction methods and the back-propagation
prediction algorithm.

This paper proposes an optimization of our previous work.
We consider a new approach in the evaluation of the time
series that we want to predict, computing the next value by
taking into account not only past values, but also older values.
We first divide the current time series into multiple series
using different sampling steps, than we compute the next value
for each of them and finally, we compose the results using
machine learning techniques.

III. THE MONITORING AND STATE PREDICTION TOOL

The main design goals of the monitoring and state prediction
tool we have developed were the scalability, the flexibility
and the ease-of-use. Figure 1 presents the architecture of
the monitoring and state prediction tool, where the main
components are: the monitoring module, the repository server,
the prediction server, the database and the web server.

Prediction Server

Monitoring Repository Server

Module

------ Monitai,
Applications Parameg, e
Servers

5 \oritoig ==
Lo

Monitoring
Module

Prediction
Performance
Evaluator

free_mem

RSN

AN

Fig. 1. The Architecture of The Monitoring and State Prediction Tool

A. The Monitoring Module

The aim of the monitoring module is to provide accurate
information about the current values of system parameters,
collecting them from system files. The most important func-
tional requirements of a monitoring module are: extensibility,
scalability, portability, intuitive results visualization, minimal
monitoring overhead and the ability to process and distribute,
in real-time, large amounts of monitoring data.

The collected parameters are grouped into two categories:
dynamic system parameters and general (static) system pa-
rameters. The dynamic system parameters represent various
aspects from the monitored systems that usually vary in time.
We present below the list of dynamic system parameters
considered by our monitoring tool:

e cpu usr, cpu sys, cpu nice, cpu idle: percent of the time
spent by the CPU in user mode, in system mode, in nice
mode, in idle mode

o cpu usage: CPU usage percent

e loadl, load5, loadl5: average system load over the last
minute, last 5 min and last 15 min

e mem free, swap free: amount of free memory and swap
memory, in MB

o number of total, blocked and running processes

e lowait, irq, softirg: waiting time for 10 operations, num-
ber of interrupt requests and software interrupt requests

The group of general (static) system parameters character-
izes the system’s characteristics that does not vary in time: the
machine’s hostname, model name, CPU frequency, number of
CPUs and total cache size.

At the base of the monitoring service is a multithreaded
system that independently executes various data collection

tasks in parallel. Each thread is responsible for dynamically
loading and executing the modules that collect different sets
of information. The threads initially created are reused when a
task assigned to a thread is completed, in order to reduce the
load on systems running MonALISA. Due to the independent
threads that compose the system, a failure in one monitoring
task will not affect the execution of other tasks. The tasks that
need to be periodically executed are kept in a priority queue,
thus, monitoring a large number of heterogeneous nodes with
different response times can be done without difficulty.

B. The Repository Server

The repository module gathers monitoring information from
different systems, forwarding them to a prediction server and
also to a database who stores the history of each monitored
station for a possible future data mining. The repository mod-
ule implementation is based on the multi-threading paradigm.

The monitoring module works similar to a state machine
(see Figure 2). Messages sent between the monitoring module
and its clients have one of the following types:

e authentication message - contains the static parameters
and represents a connection request made by a station to
a repository server.

o acknowledgment message - contains the secret key of-
fered by the repository server to the station in case of
acceptance.

e registration message - contains the previously obtained
secret key and represents a reconnection request made
by a station that tries to reconnect to the same repository
server.

o done message - contains the reconnection acknowledg-
ment sent by the repository server to the requester.

e update message - contains monitoring data, periodically
sent to the repository server.

2
=

CLN SRV CLN |__
| AUTH, Secre T Genoral infy_g|
M > R M ot 1R
) \ E o e, secreb E
sten 0
N ACK, 5Y 3 N | gyatem® 3
T Luep, s T |y s
ATE, PDATE
:] C"”@"'”nfo.. -:- g ° Current Infom] -I|-
H ° H 0
R R
[-UPDA ~UuPD,
E, Y AT, Y
Current jpge, | E, Currens Infom
a) b)

Fig. 2. Communication protocols a) with authentication b) with registration

C. The Prediction Module

The prediction module receives different monitoring data
and predicts the future values of the parameters, for both one-
step and multi-step ahead prediction. The predictions can be
made using different algorithms such as: simple, exponential
and weighted moving average, random prediction, CasCorGA
prediction [12], etc and also prediction using the new approach
proposed in this paper.

The prediction module also provides a performance evalu-
ator useful to compare the results of different algorithms on
the same time series in order to choose the fittest algorithm
for each parameter.

As a performance criterion, we consider the Absolute Per-
centage Error (APE), that is computed using the following
formula:

— 7]

APE(pr) =3 P nl
1=0

T

where:

o 7; is the real value at the i** measurement

e p; is the predicted value for r;

e n represents the number of measurements taken into
account

D. The Web Server

The web server provides a flexible interface that offers a real
time perspective of both gathered and predicted parameters. It
gives the possibility to inspect the behavior of the monitored
hosts, offering real time information of different parameters
that characterize the system’s state, utilization and availability.
More, the web server provides an evaluation framework for the
proposed prediction solution, comparing its performance with
results of classical prediction approaches. the performances of
different prediction algorithms are evaluated according to the
previously described criterion.

IV. DECOMPOSITION BASED PREDICTION ALGORITHM

All the prediction algorithms proposed in the literature take
into account the last consecutive w values in order to predict
the next future value of the time series that describes the
resource’s behavior. This approach is represented in Figure
4, where:

e w is the window size, meaning the number of history
values used to predict the future values (in Figure 4, w
is equal to five)

o V(t) represents the measured value at the t*" measure-
ment

o the goal is to predict the next future value, V(¢ + 1),
marked in the figure with a filled bullet

o the marked values are those taken into account by the
prediction algorithm.

—O— O B e S E—@-
V(t-(w-1)) V1) V() Vi)

Fig. 4. Model of classical prediction approaches

Considering the prediction of the future value V(¢ + 1),
denoted by PV (t+1), the prediction in the classical approach
is made according to the following formula:

PV(t + 1) = fpred(v(t - (w - 1))7 '7V(t - 1)7V(t))

PV (t+1)=£Flt—(w-1)....Vie-171t))

o0—O0—0—0—10—"0—10—0—0C—0—0C—0—0—0+—@
V(t-(w-1)) V(1) V() V(t+1)
Pt+1)= £t =2-(w=1))... Ve =2 710))
O—O0—O0——0—"O0—0O0+——0—0C+—"0C0—C——0——C—0——0C—@
V(t-2%(w-1)) o VIt4) V(t-2) V() Vit+1)
L]
[]

PVstep(t+1)= f,(V(t — step-(w—1))....

V(t—step).V(t))

oO——0—O0—0—F—0—0O0—0——0—0—0—0—0C0——0—FT0—0
V(t-step*(w-1)) V(t-step*2) V(t-step*1) Vi) Vi)

Fig. 3.

where fpreq is the used prediction algorithm and may be an
algorithm based on mean, median, standard deviation or a
complex one, inspired from artificial intelligence methods.

We propose a different prediction approach that takes into
account not only the last w values as the classical solution
previously described, but also considers older values with
different sampling rates. This model is inspired from the
decomposition of a complex wave into simpler waves with
fixed frequencies.

We divide the time series that describes the current state of
one resource, into multiple time series using different sampling
steps. This represents in fact the decomposition stage presented
in Figure 5. The number and values of sampling step should
be carefully chosen. These issues are further discussed in the
paper.

For each of the obtained series, we predict the value of
V(t+ 1) using one of the classical algorithms. Then, in the
composition stage of the algorithm, all these prediction results
are combined into a single value using methods inspired from
artificial intelligence, namely neural networks.

Decomposition Composition

= s
Step1, | PVi(t+1)
£. —
History
values o
|| Step2,| PV(t+1) Predicted
WV(t-step(w-1)), f fored —future value
P PV(t+1)
V(t-2), .
V(t-1), p
V(1) ——
. &.tifpl" (b4 1;‘
L I L

Fig. 5. New prediction approach based on wave decomposition followed by
composition

New prediction approach

Figure 3 presents the time series decomposition considered
by our prediction algorithm, where:

e fi1, fa,..., fr, are the prediction algorithms applied on the
first, second, ... nt" sampling series, and can be one of
the prediction algorithms named in Section IL. f; with
1 € 1..n computes PV}, the predicted future value.

e PVi,PVa,..., PV, are the predicted values of V(¢ + 1)
of the first, second, ... n*" step

Different sampling steps can taken into account. Figure 3
presents an example that uses 3 different sampling step values
(1, 2, 3) corresponding to PVy, PV3, PVyep. Customizing the
new prediction approach and considering only one sampling
step, equal to 1, we obtain the classical prediction approach,
presented in Figure 4.

For each sampling step (denoted by %), the partial prediction
is computed using the following formula:

= fpred; V(t — i(w —1)), .,

As previously mentioned, those partial results (PV; with
1 € l..step) are further combined for the final computing of
the predicted value for the moment ¢ + 1 according to the
following formula:

PV(t+1) = fprea(PVi(t+1), PVa(t+1), ...,

PVi(t+1) V(t—1i),V(t)

PVsiep(t+1))

In our experimental tests, we use three different sampling
steps (one, two, three) in the decomposition stage (Figure 5),
solution motivated further in the paper. In order to predict each
branch (PV;, PV,, PV3) we use a prediction algorithm based
on average and in order to compose all those results (instead
of fpreq in Figure 5) we use a learning algorithm based on
NNs: a perceptron or a complex architecture inspired for the
Cascade Correlation NN architecture [5], [7].

The first learning algorithm uses a perceptron which is the
simplest kind of feed-forward NN: a linear classifier. We con-
sidered the architecture presented in Figure 6, containing three
real inputs (corresponding to each partial prediction result -
PVy, PV,, PV3) and one real output and trained using the

PV1(t+1)

PV2(t+1)— s PV(t+1)

PVn(t+1)

Fig. 6. The perceptron’s architecture used in the composition stage

delta rule. The threshold is considered zero and accordingly,
the output is computed using the following formula:

PV (t + 1) = Weightoupur Y (PVi(t + 1) * Weight;)
=0

where:

Weight output Z Weight; = 1.
i=0

The second learning algorithm uses a complex architecture
inspired for the Cascade Correlation NN architecture [5], [7]
(Figure 7, where the hidden layers are represented using a
circle, the frozen weights are represented using a filled square
and the trained weights are represented using an unfilled
square). This kind of NN has a dynamical structure which
adapts to the properties of the function to be learned by
adding multiple hidden layers until the correlation between
the input weights of those hidden layer and the previously
obtained errors. Another important advantage of the Cascade
Correlation NN is that is requires no back-propagation of error

signals through the connections of the network.

PV(t+1)

® o0

Hidden
layer 3

PV1(t+1)
PV2(t+1)

PVn(t+1)

B Frozen (trained only once) weights

[Active (trained at each step) weights

Fig. 7. The Cascade Correlation architecture [5], [7] used in the composition
stage

The Cascade Correlation NN architecture is dynamically
constructed in the following way [12]: the initial input weights
are set according to a weighted moving average and the initial
output weights are trained according to the delta rule, trying to
minimize the errors for the considered training set. Until the
errors are inacceptable we add a new hidden layer. Its input

weights can be set for instance using the results of a genetic
algorithm, trying to maximize the correlation between the
current errors and those weights. Its output weight is trained
together with the other output weights according to the same
rule until the output of the neural network reaches a threshold
of accuracy.

The solution based on perceptron has the advantage of
simplicity; the time needed for the structure to learn the weight
corresponding to each sampling step value is low, having a
negligible overhead. Due to the fact that it has only one layer,
the architecture is very sensitive to fast input variations. Thus,
this solution is the best choice for the prediction of parameters
presenting very fast tendency modifications. Experimental
results, presented in Section IV highlight this property.

In contrast, the solution based on Cascade Correlation
Neural Network architecture presents a complex structure,
which is dynamically created according to the evolution of
the inspected parameter. The response to unexpected behavior
will be less accurate than the perceptron case because the
convergence of this solution is slower, as it needs to modify
not only the weights on a single layer, but the weights
corresponding to multiple layers. Thus, it perfectly suits for
the prediction of parameters having fast variations but no rapid
tendency modifications. The ’free memory’ scenario presented
in Section IV highlights these properties.

We have also to mention that the overhead implied by our
approach is comparable to the overhead of any other time
series prediction algorithm. Basically, at each prediction step,
we will compute the next value for each sampling step we take
into account. The number of different time series to consider
is a tradeoff between the overhead and the precision of the
resulting estimation. As the number of different sampling steps
increases, both the overhead and the accuracy also increase.
The experimental results have proved that the number of
sampling rates equal to three is best choice.

The time complexity for each sampling series is O(w),
where w represents the window size. The time complexity for
the entire algorithm using the Cascade Correlation approach
in the composition stage is O(w *n) + O(h *n + h?), where:

e n is the number of sampling steps considered
e h is the number of hidden layers dynamically added to
the network.

The first term (O(w * n)) denotes the complexity of the
decomposition stage while the second (O(h * n + h?))shows
the overhead of the composition stage.

The experiments have shown that the number of necessary
hidden layers is always lower than the number of network
inputs, in our case equal to n. Thus, we can suppose that
O(w *n) + O(h xn + h?) = O(w * n) + O(n? + n?) =
O(w * n +n?).

In the second case, using a perceptron, the resulting time
complexity is O(w *n) + O(n) = O(w *n). Considering that
n = 3 the overhead implied by our approach is comparable to
the overhead of other similar algorithms.

TABLE II
AVERAGE PERCENTAGE ERRORS (%) FOR ONE-STEP AHEAD PREDICTION

Param SMA EMA | WMA | Random | CascorGA FA FC
cpu idle 0.103 0.116 0.099 0.098 0.019 | 0.010 | 0.009
cpu usage 6.672 7.284 | 6.898 8.472 6.433 | 6.994 | 5.645
load5 0.721 0.832 0.561 0911 0.481 | 0.456 | 0.266
free mem | 12.107 | 12.766 9.886 14.266 12.458 | 8.749 | 7.400

V. EXPERIMENTAL RESULTS

This section presents the experimental results obtained using
the new prediction approach. We also make a comparison
with the classical prediction algorithms for different types of
parameters representing one stations state, information very
important and useful in a distributed system. The experiments
are made for both one-step ahead and multi-step ahead predic-
tion. The performance criterion used in order to evaluate the
results is Absolute Percentage Error (APE), criterion described
in Section II.

We have chosen to monitor systems involved in the ALICE
[2] project, one of the largest experiments in the world devoted
to research in the physics of matter at an infinitely small scale.
The system parameters chosen in prediction are discussed in
the following paragraph.

A. Predicted Parameters

A prediction based scheduler can improve considerable the
time necessary to schedule tasks with dependencies. Using
predictions, we can presume that the idle time of tasks
can be reduced significantly, resulting a completely resource
utilization and load balance. In order to tune a scheduler
with a state prediction component, we have to choose the
minimum, but the sufficient set of system parameters that is
able to provide a correct image over the system state and also
a relevant entry for the scheduling component but without a
considerable overhead.

In our experiments, we considered the parameters set com-
posed by the cpu usage, the free memory, the swap memory
and the load averages. In the following paragraphs we make
a comparison between the results of our new approach and
other existing prediction algorithms. For the comparison, we
use the results obtained for each parameter presented above.

B. Errors Interpretation for One-Step Ahead Prediction

This section discusses the experimental results obtained by
our new algorithm in the situation of one-step ahead prediction
for the earlier described parameters. The results are also
compared with those obtained by other algorithms on the
same historical data set, comparison made using the absolute
percentage error criterion. The presented graphics highlight the
errors obtained by the following prediction approaches: SMA
(simple moving average), EMA (exponential moving average),
WMA (weighted moving average), Random (random predic-
tion), CascorGA (the prediction algorithm proposed in [12]
based on the Cascade Correlation NN and genetic algorithms),

FA (the new prediction approach based on composition using
a perceptron), FC (the new prediction approach based on
composition using the Cascade Correlation NN architecture).

Table II presents the absolute percentage errors obtained us-
ing those prediction algorithms for different system parameters
where the minimum error for each parameter is bolded. As
the table emphasized, in each situation the minimum error is
obtained using the new prediction approach using the Cascade
Correlation NN architecture.

Figure 8 presents a comparison between the errors obtained
for the ’idle’ parameter using different prediction algorithms.
Because of the fact that the parameter’s behavior don’t vary
very fast, the errors obtained are very small (less than 0.12%
for all algorithms). There aren’t large differences between the
results obtained using the new prediction approach using a
perceptron (marked with FA in the graphic) and the results
obtained by the new algorithm using a Cascade Correlation
NN architecture (marked with FC in the graphic). The dif-
ference between those two is 1.8%. The improvement offered
by the new approach compared to the algorithm proposed in
[12] is more than 51% and more than 90% compared to the
classical prediction algorithms [3].

g & o ———§—— 4 - —a—]
0 1 20 30 40 50 60 time ()
Fig. 8. Errors’ evolution for the ’idle’ parameter

Figure 9 presents the evolution of the prediction results for
the ’load5’ parameter using the new approach and the Cascade
Correlation NN architecture compared to the real parameter’s
behavior. Figure 10 present the errors obtained for the ’load5’
by different algorithms. The fast variations of the parameter’s
behavior cause larger errors than the first presented experiment
(7% or less). The new prediction approach using the Cascade
Correlation NN architecture proved to offer better results
than the one using a perceptron, obtaining an error reduced
with 30%. In this situation, our new approach offers a great
improvement compared to the classical prediction algorithms:
more than 38%.

Figure 11 presents the evolution of the prediction results
for the ’cpu_usage’ parameter using the new approach and

= ———iat

0.10 /"",\x\,,,é//w\o'\:;’r xr“"\r/\o/f/

11:00 12:00 13:00 14:00 15:00 16:00 time:

Fig. 9. Prediction’ evolution for the "load5’ parameter using the new approach
and the Cascade Correlation NN architecture

10
° 11:.00 12.00 13:00 1400 15:00 16:00 time

Fig. 10. Errors’ evolution for the ’load5’ parameter

the Cascade Correlation NN architecture compared to the real
parameter’s behavior. Figure 12 present the errors obtained by
all prediction algorithms. This parameter has fast variations
and tendency modifications. The new prediction approach
using one perceptron proved to offer better results, obtaining
an error reduced with 12.8%.

%
~O-Monitor Data

AR A A s S A ki 22O

14:00 14:30 15:00 15:30 16:00 16:30 17:00 time

Fig. 11. Prediction’ evolution for the ’cpu_usage’ parameter using the new
approach and the Cascade Correlation NN architecture

o 14.00 14:30 15:00 15:30 16:00 16:30 17:00 time

Fig. 12. Errors’ evolution for the ’cpu_usage’ parameter

A very interesting situation is encountered in the case
of ’free mem’ parameter prediction, situation represented in
Figure 13. This parameter is very hard to predict because it has
fast and vast value variations and tendency modifications and
this is the reason why the errors are much more significant than
those earlier discussed. Analyzing the experimental results, we
observe three regions in the graphic, separated in Figure 13
using a vertical line. The first and the third zone are charac-
terized by fast variations but no rapid tendency modifications
and our new prediction approach based on cascade correlation
architecture proved to offer very good results, improving the
error with 15.4%. But in the second zone, characterized by
very rapid tendency modifications, this architecture proved to
be not proper to predict such a time series, in opposition
with the decomposition prediction approach combined with
a perceptron who offered the smallest error.

70000 [\
60000
50000
40000
30000
20000

11:00 12:00 13:00 14:00 15:00 16:00 time

%

2

11:00 12:00 13:00 14:00 15:00 16:00 time

Fig. 13. a) Prediction’ evolution for the *free mem’ parameter using the new
approach and the Cascade Correlation NN architecture b) Errors’ evolution
for the "free mem’ parameter

C. Errors Interpretation for Multi-Step Ahead Prediction

A most relevant performance benchmark over all algorithms
is given by the situation of multi-step ahead prediction. Also,
one-step ahead prediction is often insufficient because, in order
to optimize the resources utilization, a meta-scheduler needs
an image over the future resources’ state on a full period of
time not only for a future moment of time.

Short-term prediction is preferred over a long-term one [6],
[11] because on the fact that the scheduling mechanism must
take decisions on process migration considering limited time
and environment constraints. Besides, long-term prediction is
not always as beneficial in distributed systems, as another
task may start its execution, altering the node behavior un-
expectedly. Short-term prediction allows one to schedule the
same task over different nodes if its behavior changes when
necessary. Summarizing, it is more important to know what
may happen in the next few seconds than in several hours.

The multi-step ahead prediction experiments are made for
the same system parameters, using the same performance
criterion as in the previous case. The tested algorithms were
put in the situation to predict the next interval of seven
moments of time. The window for all classical algorithms is
considered five and all approaches based on neural networks
were trained using a training set with 30 elements.

Figure 14 presents the multi-step ahead prediction’s results
obtained by our approach and classical prediction algorithms
for the ’idle’ parameter. Figure 15 presents the errors’ evolu-
tion obtained in this case. As expected, for each algorithm, the
errors are increasing more and more for each new prediction
step. For all algorithms except FA (our new algorithm using
a perceptron in the composition stage) the growth rate is
similar for more than 5 future moments. Best results were
obtained using our new prediction algorithm that uses in the
composition stage a perceptron.

As experimental results emphasize, the multi-step ahead
predictions are no very accurate and the errors are most sig-
nificant than those obtained for the one-step ahead prediction
because they are made using previous predictions, meaning
that the error in the previous step is amplified in the further
step. The accuracy is decreasing with each step of prediction

and at some point it gets to make predictions just based on
previous predictions made, meaning an error amplifier.

Best results were obtained by our approach using a percep-
tron in the composition stage (the orange line in Figure 15).
The improvement compared to the solution using in the com-
position stage consisting the Cascade Correlation architecture
is 32%. Compared to the classical predicted algorithms, we
obtained a great improvement - 73%.

The prediction algorithms based on mean and standard
deviation proved to be unable of accurate multi-step ahead
prediction because of several factors. First of all, it should
be mentioned their static prediction way (due to their fixed
weights, inadequate to the current behavior and tendency of
the system parameter’s values). Also, the results of a (simple
or weighted) mean cannot be greater than the maximum of
the time series. If the time series we want to predict has
a increasing tendency, such an algorithm will provide poor
results because of this limitation. The decreasing situation is
similar; the result of a mean algorithm cannot be smaller than
its smallest input value.

68.08 - e

—MA
Ban6HT —=—WMA
——Random
68.04
—de— Cascor
—o~FA

—— Real

68.02
68.00 -+

67.98
b 2 3 4 5 6 T 8 9 10 11 12

time (s)

Fig. 14. Multi-step ahead prediction results of the ’idle’ parameter

%

0.18
0.16 -
=0O—5MA error
014 1
——EMA error
0.12 -
== WMA error
0.10 <
—— Random error
0.08 4
0.06 - —sh— Cascor error
0.04 —o—FAerror
0.02 - —a—FCerror
a
5 6 7 8 9 10 11 12 13 time(s)
Fig. 15. Multi-step ahead prediction APE errors of the ’idle’ parameter

Taking into account those observation, one can conclude
that a complex architecture and learning algorithm are needed.
Our prediction approach inspired from wave decomposition
offered better results and a great error improvement.

VI. CONCLUSIONS

We proposed a new prediction algorithm inspired from the
decomposition of a complex wave into simpler waves with
fixed frequencies. In the decomposition stage, the time series
is divided with different sampling steps into multiple time
series. For each of these obtained series, we predict the value
using one of the classical algorithms. Then, all these results
are combined into a single value using methods inspired from
artificial intelligence. The experimental results highlighted the
great improvement, discussed in terms of error reduction,
offered by this approach. The errors were significantly reduced
compared to other prediction algorithms and the results are
closer to the real system’s behavior for tests conducted on
real scenarios with data collected form the Alice Experimet.

This paper also presented a monitoring tool needed to pro-
vide accurate information about one system state, information
very useful in a distributed system for a better understating of
its behavior and potential anomalies.

Those monitoring and prediction information can contribute
to improve the functionalities and the performance of resource
management systems in various ways. The immediate use of
our work may be in a prediction based meta-scheduler in
order to improve the scheduling decisions assuring the load
balancing and optimizing the resources utilization.

VII. ACKNOWLEDGMENTS

The research presented in this paper is supported by na-
tional project DEPSYS - Models and Techniques for ensuring
reliability, safety, availability and security of Large Scale
Distributes Systems, Project CNCSIS-IDEI ID: 1710.

REFERENCES

[1] Sac ’08: Proceedings of the 2008 ACM symposium on Applied com-
puting, 2008. Conference Chair-Wainwright, Roger L. and Conference
Chair-Haddad, Hisham M.

[2] Catalin C. Cirstoiu, Costin C. Grigoras, Latchezar L. Betev, Alexan-
dru A. Costan, and losif Charles Legrand. Monitoring, accounting
and automated decision support for the alice experiment based on the
monalisa framework. In GMW ’07: Proceedings of the 2007 workshop
on Grid monitoring, pages 39—44, New York, NY, USA, 2007. ACM.

[3] Peter A. Dinda and David R. O’Hallaron. An evaluation of linear models
for host load prediction. In HPDC ’99: Proceedings of the Sth IEEE
International Symposium on High Performance Distributed Computing,
page 10, Washington, DC, USA, 1999. IEEE Computer Society.

[4] Evgueni Dodonov and Rodrigo Fernandes de Mello. A novel approach
for distributed application scheduling based on prediction of communi-
cation events. Future Generation Computer Systems, (3):241-250, 2009.

[5] Scott E. Fahlman and Christian Lebiere. The cascade-correlation
learning architecture. In Advances in Neural Information Processing
Systems 2, pages 524-532, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publisher Inc.

[6] A.FR. Araujo G.A. Barreto. Identification and control of dynamical
systems using the self-organizing map. IEEE TNN on Temporal Coding,
pages 1244-1259, 2004.

[7]1 Sertan Girgin and Philippe Preux. Basis function construction in rein-
forcement learning using cascade-correlation learning architecture. In
ICMLA °08: Proceedings of the 2008 Seventh International Conference
on Machine Learning and Applications, pages 75-82, Washington, DC,
USA, 2008. IEEE Computer Society.

[8] Iosif Legrand. Monalisa site. http://monalisa.caltech.edu/monalisa.htm,
2010.

[9] Iosif Legrand, Ramiro Voicu, Catalin Cirstoiu, Cos-tin Gri-go ras,
Latchezar Betev, and Alexandru Costan. Monitoring and control of
large systems with monalisa. Queue, 7(6):40-49, 2009.

[10] Florin Pop, Alexandru Costan, Ciprian Dobre, and Valentin Cristea.
Prediction based meta-scheduling for grid environments. In CSCS-
17, 17th International Conference on Control Systems and Computer
Science, pages 128-136, Bucharest, Romania, 2009.

[11] Mahdi Aliyari Shoorehdeli, Mohammad Teshnehlab, Ali Khaki Sedigh,
and M. Ahmadieh Khanesar. Identification using ANFIS with intelligent
hybrid stable learning algorithm approaches and stability analysis of
training methods. Appl. Soft Comput., 9(2):833-850, 2009.

[12] Andreea Visan, Mihai Istin, Florin Pop, and Valentin Cristea. Automatic
control of distributed systems based on state prediction methods. In
ADIS - First International Workshop on Autonomic Distributed Systems,
Cracow, Poland, 2010.

