
Software/Hardware Partitioner
Silviu Horia Baranga

Faculty of Automatic Control and
Computer Science

University ”Politehnica” of Bucharest
Romania, Bucharest

Email: silviu.baranga@gmail.com

Adriana Szekeres
Faculty of Automatic Control and

Computer Science
University ”Politehnica” of Bucharest

Romania, Bucharest
Email: adriana.szekeres@gmail.com

Abstract—The current trend in processor’s design is to add
multiple cores to increase the system’s overall performance
but this is not a solution to increasing the performance of
serial applications. Due to its potential to greatly accelerate a
wide variety of serial applications, reconfigurable computing has
become a subject of a great deal of research. Its key feature
is the ability to perform computations in hardware in order
to increase performance, while retaining much of the flexibility
of a software solution. In this paper, we address the problem
of fully automating the process of selecting the code to be
used for hardware acceleration. We present a software-hardware
partitioning system that transforms Impulse C source code into
blocks of C and VHDL code. The resulting C code will be run
on the CPU, while the VHDL code will be implemented on a
reconfigurable hardware, e.g. a FPGA.

I. INTRODUCTION

There are two ways of implementing an algorithm: in hard-
ware, using an ASIC (Application Specific Integrated Circuit)
or in software, using a microprocessor. An ASIC is very fast
and efficient but it is not intended for general purpose use.
Once designed, an ASIC is optimized for a given computation
and cannot be reconfigured. A more flexible solution is to
implement the algorithm as a set of instructions which can be
executed by the microprocessor. Without altering the hardware,
the microprocessor can be reprogrammed, by changing the set
of instructions. However, the cycles needed to read and decode
each instruction induce a significant overhead.

Reconfigurable hardware has gained much popularity in the
past years, especially in embedded design. It combines the
flexibility of microprocessors with the speed of the ASICs.
The most common reconfigurable devices are the FPGAs
(Field Programmable Gate Arrays). An FPGA contains a
large number of logic blocks which are connected through a
configurable network. The canonical logic block is considered
to be a 4-input LUT (lookup table) that can implement any
4-input logic function.

Reconfigurable hardware is used as a building block for
reconfigurable computing. Reconfigurable computing refers to
the possibility of reconfiguring on-demand a hardware agent
that has previously been configured to carry out a specific task.
With reconfigurable computing came the idea of augmenting
a general-purpose processor with an array of reconfigurable
hardware. In this manner, parts of a software application could
be accelerated in hardware. However, the process of finding

the best parts of an application to fit in the existing hardware
is a very difficult task.

In this paper we address the problem of fully automating
the process of partitioning an application into parts that will
run on a processor and parts that will be implemented in
hardware. Due to the existence of modern hardware de-
scription languages (HDLs) the process of partitioning an
application written in a high-level language, like C, could be
fully automated.

II. PREVIOUS RELATED WORK

Since the development of modern hardware description
languages (HDL), much research has been done towards
achieving an automated hardware/software partitioning sys-
tem. There are two approaches to software/hardware parti-
tioning: fine- and coarse-grain. While fine-grain considers
basic blocks, the other one means that whole functions or
processes are moved from software to hardware or vice versa
in order to find the best hardware/software partition. The
first approaches to automated hardware/software partitioning,
both fine-grained, are the well known VULCANII system [1]
and COSYMA [2]. However, in [3], a new method has been
proposed that dynamically changes the granularity.

The type of the partitioning problem is derived from its
formulation. In the vast majority of cases, the resulting type
of the problem is NP-hard, determining researchers to find
efficient heuristics, [4]. In [5], [6], [7] and [8], the authors
present different ways to search the solution space for the
best possible partition, such as: genetic algorithms, ant colony
optimization, SMT solvers and possibilistic programming.

In this paper, the coarse-grained approach will be considered
with genetic algorithm based exploration of the solution space.

III. CPU-FPGA COUPLING

The most important feature of an FPGA is that it can be
used to create application specific circuits which can greatly
increase the performance over traditional CPUs. However,
today’s applications are often too large to be implemented
directly in hardware. A solution to this problem is to combine
the speed of an FPGA with the complexity of a processor.
This design would be appropriate for executing many modern
applications.



Many such hybrid designs have already been implemented.
One of them, which we also used as the target architecture for
our application, is the MicroBlaze soft-processor implemented
on a Xilinx FPGA. The MicroBlaze processor has three
bus connections - the Local Memory Bus (LMB), the On-
chip Peripheral Bus (OPB) and the Fast Simplex Link (FSL)
interface (Fig. 1).

Fig. 1. MicroBlaze processor

FSLs are high-speed, point-to-point interfaces which can
be used to connect high-speed hardware units (HWU). The
FSL ports on MicroBlaze are accessed via simple get and
put assembly instructions, unlike the LMB and OPB which
are memory-mapped. Each FSL connection contains a master
(write) and slave (read) port. There are maximum 16 FSL ports
available on the MicroBlaze processor (8 master / 8 slave).

IV. SOFTWARE-HARDWARE PARTITIONER

In this section we will describe SHP, our software-hardware
partitioner. SHP searches for the best solution to partition a
given application into functions that will be accelerated in
hardware and functions that will run on a CPU. A partitoner
is very important because the best solutions to this problem
are very hard to obtain, and almost impossible to be deduced
manually because of the very large solution space which must
be searched.

A. Software/Hardware Processes

In order to be partitioned, the input application must be
implemented as a set of communicating processes. Each
process may be compiled as a set of instructions to be run on
a CPU - software process, or may be synthesized in hardware
- hardware process. Software processes communicate with
hardware processes through FSL connections. If a process is
moved from software to hardware, or vice-versa, new/existing
FSL connections may be opened/closed.

With this constraint, we have chosen Impulse C as the lan-
guage in which input applications should be written. Impulse
C provides a C-compatible library that allows applications
written in standard C to be mapped onto coarse-grained
parallel architectures. The next three figures show an example
of a possible input application, written in Impulse C.

Fig. 2. Software Process

The application consists of a software process (Fig.2) and
hardware process (Fig.3), both created in the configuration
function (Fig.4).

Fig. 3. Hardware Process

Fig. 4. Configuration Function

B. Architectural Design

The program is divided into several stages (Fig. 5), which
will be described in detail in this section:

• analyze the given code, to build the process graph
• gather the necessary information for each process
• partition the application into software/hardware parts



1) Code Analysis: In the code analysis stage of the par-
titioning, the process graph is computed. This is done by
analyzing the configuration function of the input program.
The output of this phase is an orientated graph G(V,E), in
which the vertices are processes and the edges are data
streams. The process graph is built by analyzing the calls
co process create for process creation, co stream create for
data stream creation and co process config for the explicit
hardware implementation. This creates an unoriented graph.
To determine the orientation of every edge or data stream, we
analyze the calls to co stream open in order to determine if a
process will write to a stream or read from it. The orientation
of the edge will be from the process that writes data to the
stream to the process that reads data from the stream.

Fig. 5. Architectural Design

2) Data Gathering: The whole partitioning algorithm is
based on some useful information about each process:
• software execution time
• hardware execution time
• space needed (in terms of the number of LUTs and slices

occupied on the FPGA)
After building the process graph, each process is run indi-

vidually on both the CPU, to obtain the software execution
time, and the FPGA, to obtain the hardware execution time
and the space occupied. In order to extract and run a single
process from the entire application, a test function should be
provided. Also, stub functions should be created to replace the
missing parts that communicated with the extracted process.

3) Software/Hardware Partitioning: The software/hardware
partitioner divides the code into hardware implemented pro-
cesses and processes that will run on the local CPU. Most
often, the quickest program will be the one that implements
all its code into hardware. However, because of the space
constraints, only a fraction of the program can be configured

in the local hardware. Because of this, we must run the rest of
the code on the available CPU. For this, we need a partitioner
that will determine what code is best suited to be implemented
in hardware. The partitioning algorithm is described in detail
in the next subsection.

C. Partitioning Algorithm

The partitioning algorithm creates a subset of the vertex
set of the process graph, denoted by HW: the hardware
implemented processes. If G(V,E) is the process graph, V - HW
will be the set of software implemented processes. The input
data is taken from the data collection phase, and consists of the
maximum amount of resources available on the FPGA(slices
and look-up tables (LUTs)),the communication time of each
process, the hardware/software execution time, and the process
graph obtained by analyzing the configuration function of
the input and the process functions. We assume that in the
process graph there is a node which feeds input data to the
application and a node which collects the results. We also
assume that by removing these two vertices from the process
graph, the remaining graph will be acyclic. The partitioning
process must find in the solution space the best solution that
fits our requirements: it must be physically implementable and
must run in a minimum amount of time. Since the presented
problem is a NP-hard one and for an input which consists
of a considerable amount of software/hardware processes, the
solution space becomes very large and an iteration through it
will not complete in an acceptable amount of time. Therefore,
we have chosen to search through the solution space using a
genetic algorithm. The algorithm was implemented using the
GAUL open-source framework. We encode the solution by
using one chromosome. The chromosome contains an allele
for each process. The allele values are boolean, because a
process can be implemented either in hardware or software.

1) Evaluation operator: We evaluate a solution first by
eliminating the chromosomes which are not physically im-
plementable or contain processes which have been selected
to be implemented in hardware but do no have such an im-
plementation. A configuration is not phsically implementable
if the total sum of LUTs and slices of its hardware and
software components are grater then the available number.
If one process is implemented in software, the Microblaze
processor will be configured on the FPGA, and will cost
hardware resources. We define this cost as lutMicroblaze it
terms of LUTs and sliceMicroblaze in terms of slices. We
define the hardware cost function

φ

as such (by P(V) we denoted the set of all partitions of V):



ωLUTP (V )→ N,

ωLUT (X) =
∑

v∈V−X

costLUT (v) (1)

ωSLICEP (V )→ N,

ωSLICE(X) =
∑

v∈V−X

costSLICE(v) (2)

φ : P (V )→ (N× N),

φ(X) =


(ωLUT (X), ωSLICE(X)) if X = ∅

(lutMicroblaze+ ωLUT (X),
sliceMicroblaze+ ωSLICE(X)) if X 6= ∅

(3)

We define maxSLICES and maxLUTS the maximum
amount of slices, respectively the maximum amount of LUTs
of the device. If for a partition X we have

φ(X) = (m1,m2)∧
(m1 ≥ maxLUTS ∨m2 ≥ maxSLICES) (4)

then the design is not physically implementable and will be
rejected as a solution.

If the solution is not rejected, we will use two functions to
compute the fitness of the individual. These fitness functions
approximate the total execution time. The first function, sums
the execution time for all processes:

α1 : P (V )→ N,

α1(X) =
∑

v∈V−X

costSW (v) +
∑
v∈X

costHW (v) (5)

The second function approximates the total execution time
by adding the value of the maximum length path between a
given source and destination to the sum of the execution times
of all software processes that are not on this path (by MLP we
refer to the set containing the nodes on the maximum length
path):

α2 : P (V )→ N,

α2(X) =
∑

v∈MLP−X

costHW (v) +
∑
v∈X

costSW (v) (6)

The maximum length path can be computed in
O(card(V)+card(E)) time, since we assumed that the
graph will be acyclic (by card(X) we denoted the number of
elements in set X).

2) Mutation operator: The mutation operator is imple-
mented by changing one graph vertex from software to hard-
ware or from hardware to software, and therefore preventing
the lack of diversity in the chromosome population. The
mutation operator is applied only if the mutation does not
produce an unacceptable solution.

3) Crossover operator: The crossover operator creates two
new solutions from two existing solutions. The new solutions
will be included in the new generation in the genetic algorithm.
The algorithm uses elitism in order to keep the best solutions.
The crossover operator is implemented by generating a random
cut of the process graph each time the operator is applied. We
then combine the two solutions base on the generated cut by
combining the first partition of the first chromosome with the
second partition of the second chromosome and vice-versa.

V. RESULTS

We tested our solution on an application with eight pro-
cesses. The process graph of the application can be seen in
(Fig. 6).

Fig. 6. Process Graph

The execution time of the data gathering process was very
high, approximately 90 minutes, but it could be diminished, as
we explained in the Future Work section. The results obtained
by the data gathering process can be seen in (Fig. 7).

Fig. 7. Information about each process

The elitism rate in our genetic algorithm, for which we
used a Darwinian scheme with linear selection, was 02. The



population size was 500, and the number of iterations 400. We
processed the input data twice, once for each fitness function.

For the first fitness function we obtained the results shown in
(Fig. 8). The set of hardware implemented processes, HW, was
found to be: {function one, function five, function six, func-
tion eight}. As function six was chosen to be implemented
in hardware, it will execute in parallel with function seven,
giving a total execution time of approximately 7600.

Fig. 8. Solution given by first fitness function

For the second fitness function we obtained the results
shown in (Fig. 9). This time, the set of hardware imple-
mented processes, HW, was found to be: {function two,
function three, function five, function six}. As both func-
tion two and function three were chosen to be implemented
in hardware, all three functions (function two, function three
and function four) will be executed at the same time, giving
a total execution time of approximately 6800.

As expected, the function that considers the maximum
length path yielded the best results, having the smallest total
execution time and increasing the parallelism level of our
application.

VI. FUTURE WORK

There are several possible continuations for the current
work in order to fully eliminate human intervention from the
partitioning process.

First, a recomposition stage can reassemble the full program
after obtaining the result from the partitioner.

Second, a test generation program that will automatically
generate test and stub functions for each process will greatly
decrease the amount of work that is required from the user.

Fig. 9. Solution given by first fitness function

The third continuation possible is the transformation of
software processes into functions that execute asynchronously
in order to optimize the code that runs on the CPU. This is
actually a transition from the process model, which best suits
the hardware to a sequential model which runs much better
on the CPU. This transition is easier to implement than the
inverse transition, from a sequential model to a process model.

Fourth, the data gathering phase execution time must be
reduced. This can be achieved by running the tests in a cluster
or by empirically obtaining the process parameters.

VII. CONCLUSION

We have constructed a hardware/software partitioner that
tries to solve the difficult problem of partitioning an appli-
cation into processes that will run on a CPU and processes
that will be accelerated in hardware. The algorithm used also
considers the parallelization of as many parts of the application
as possible.

The process of analyzing and determining the partition is
fully automated. However, several additions to the architecture
must be made in order to make the entire partitioning process
automated. The resulting implementation can be used in prac-
tice if the execution time of the data gathering phase can be
reduced. Also, the design must be tested on more architectures,
for example one that has a PowerPC processor instead of the
synthesized Microblaze one.

REFERENCES

[1] R. K. Gupta and G. D. Micheli, “System-level synthesis using re-
programmable components,” in EDAC ’92 : Proceeding of the European



Conference on design automation. Brusseles, Belgium: ACM, 1992, pp.
2–7.

[2] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Des. Test, vol. 10, no. 4, pp. 64–75, 1993.

[3] J. Henkel and R. Ernst, “A hardware/software partitioner using a dynami-
cally determined granularity,” in DAC ’97: Proceedings of the 34th annual
Design Automation Conference. New York, NY, USA: ACM, 1997, pp.
691–696.

[4] P. Arató, Z. A. Mann, and A. Orbán, “Algorithmic aspects of hard-
ware/software partitioning,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 10, no. 1, pp. 136–156, 2005.

[5] M. Yuan, X. He, and Z. Gu, “Hardware/software partitioning and static
task scheduling on runtime reconfigurable fpgas using a smt solver,” Real-
Time and Embedded Technology and Applications Symposium, IEEE,
vol. 0, pp. 295–304, 2008.

[6] D. Wang, S. Li, and Y. Dou, “Collaborative hardware/software partition
of coarse-grained reconfigurable system using evolutionary ant colony
optimization,” in ASP-DAC ’08: Proceedings of the 2008 Asia and South
Pacific Design Automation Conference. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2008, pp. 679–684.

[7] G. Stitt, “Hardware/software partitioning with multi-version implementa-
tion exploration,” in GLSVLSI ’08: Proceedings of the 18th ACM Great
Lakes symposium on VLSI. New York, NY, USA: ACM, 2008, pp.
143–146.

[8] I. Karkowski and R. H. J. M. Otten, “An automatic hardware-software
partitioner based on the possibilistic programming.” in EDTC ’96:
Proceedings of the 1996 European conference on Design and Test.
Washington, DC, USA: IEEE Computer Society, 1996, p. 467.


