
Reevers: Providing Non-Reentrance Immunity
Cristina Basescu

Automatic Control and Computers Faculty
University Poliltehnica of Bucharest
Email: cristina.basescu@cti.pub.ro

Razvan Deaconescu
Automatic Control and Computers Faculty

University Poliltehnica of Bucharest
Email: razvan.deaconescu@cs.pub.ro

Abstract—Non-reentrance immunity is a property by which
a program, once afflicted by a failure due to a non-reentrant
function, will attempt to provide a reentrant version of that
routine. This is done so as to gain immunity to crashes that
calling the non-reentrant routine would lead to. We propose
Reevers, a program that detects whether an application written
in C crashed while or after reentrantly calling a non-reentrant
function. The detection process consists of a static and a dynamic
phase attempting to improve accuracy, while keeping the result
false negative free. We further propose some techniques for
achieving immunization, making Reevers a complete tool.

I. INTRODUCTION

A function is reentrant if, while it is being executed, it
can be reinvoked by itself or by any other routine, without
producing data corruption. By contrast there is the definition of
a non-reentrant routine as one that is not recursive and cannot
be shared by more than one task unless mutual exclusion is
ensured either by using a semaphore or by disabling interrupts
during critical sections of code.

In single-threaded programs, there is only one control flow,
so the only possibility a routine could be re-entered is when
it is recursively called. The programmer is usually aware
of this situation, so this is an unlikely bug cause. However,
the situation is different concerning concurrent programs, as
it is more difficult to take into account all possible thread
interleavings. In this case, the application would not provide
consistent results and also may crash. Another aspect that
could cause problems is signal generation and handling.

The problem that arises is that non-reentrant routines appear
frequently in programs. A typical example is a code that was
ported either from a platform that protected the process from
this kind of bug or from a single-threaded environment to a
multi-threaded one. Also it might be the case of using third
party libraries which contain non-reentrant routines.

Moreover, the kind of bugs that non-reentrant routines
develop is difficult to detect, since they may not appear until
the code is executed by a large number of threads on a multi-
threaded machine. However, not all non-reentrant routines
generate bugs, some of them might always be executed in
a safe manner. Others could simply produce erroneous output
without crashing, thus it is beyond the purpose of this paper
to detect all such routines.

In this paper we introduce the notion of non-reentrance
immunity, which enables failure detection caused by non-
reentrance and provides a base for non-reentrance immu-
nization. In the rest of the paper present related work (II),

provide an overview of Reevers, a mixed static and dynamic
analysis tool for non-reentrance detection (III), describe the
analysis phases (IV), evaluate it (V) and finally future work
and conclusions are discussed in (VI).

II. RELATED WORK

Taking into account the fact that we are heading to a parallel
world, important research efforts are underway in the field of
concurrent programming, especially regarding race conditions
and atomicity. The main reasons for employing paralleliza-
tion include achieving low latency and high throughput and
scalability [4]. However, we believe reentrancy is at least as
important as the issues mentions before, as it not only ensured
thread safety, but also provides secure signal handling and
recursion.

The paper [5] presents a taxonomy of concurrent bug
patterns, which they use to create timing heuristics so as to in-
crease the probability for concurrent bugs to occur. Their tool,
ConTest, helps debugging concurrent programs by combining
a replay algorithm with different thread interleavings, altered
by the heuristics mentioned above. Although their solution is
useful in finding bugs before they manifest, it doesn’t offer
alternatives for protection against them.

Atomicity is a stronger property than race conditions when
it comes to ensuring correctness of concurrent programs [6].
The authors developed an instrumented semantics that checks
whether the current execution and also some other similar
executions are reducible to an equivalent serial execution i.e.
they search for evidence of atomicity violations. Although
their dynamic approach also works without programmer an-
notations, in order to reduce false alarms they eventually need
that. Implementation and testing focus on Java programs.

The problems that arise from signal handling are pointed
out in [7], where the authors propose a purely static technique
to detect them. Also [8] suggests the problem of lacking
well defined protocols for device drivers should be addressed
by using a formalism made of state machines. We find this
approach prohibitive, as programmers usually do not want to
add anything else to their code.

III. REEVERS OVERVIEW

In this section, we define the problem and present the goals
(II.A), describe the high level architecture to accomplish them
and shortly review the components (II.B) and illustrate how it
works on an example (II.C).

A. Problem Definition and Goals

Programs augmented with non-reentrance immunization de-
velop antibodies to prevent them failing i.e. crashing, due
to previously encountered non-reentrance bugs. This paper
addresses the first phase in providing this kind of immunity,
more specifically non-reentrance detection. Such a technique
should satisfy some major requirements. First, it should have
a low false positives rate, i.e. not mistakenly detect a crashing
cause as being a non-reentrance issue. Registering many false
positives would cause high unneeded immunization overhead,
which would further lead to unnecessary slowdown. Second,
no false negatives are accepted in the detection phase i.e. it
should detect all non-reentrant routines that lead to crashes;
this way, the program’s resistance to non-reentrance is surely
augmented in time.

The main objective of Reevers is to provide coarse grained
i.e. function level immunization against non-reentrancy, which
by definition also provides thread safety. This should en-
sure correct program behavior offering a solution fast, but
for performance enhancement further modifications by hand
may be needed e.g finer grained immunization depending on
the failure’s cause. However, as immunization supposes first
registering a crash, approaching safety-critical systems is not
one of Reevers’ goals.

B. System Architecture

In order to provide non-reentrance which lead to crashes
detection for general-purpose applications, we employ both
static and runtime analysis techniques. Not only does this
hybrid detection technique guarantee a low false positive rate,
but also ensures no false negatives.

Figure 1 illustrates the high-level architecture of Reevers.
The system has two main entities: a component which instru-
ments the target application, represented by the red block in
the figure, and some gray blocks, which do not interact with
the target application while it is running. Furthermore, the
latter can be classified into blocks that are executed before or
after the target application runs; we call the first class before
analysis and the second one after analysis.

As shown in the figure, the Aspect Oriented Programming
(AOP) block instruments the target application while running
and saves in a file the call stacks of the threads that executed
the application, namely Threads Call Stacks file. However,
a reason for not using a core dump at this step is that we
are interested in all the functions the threads called, not only
in the ones that were still executing when the application
crashed. Also, a second reason is that our realm of interest
extends upon the order of function calls and their interleaving
in different threads. Switching to Static Analysis block, its role
is to determine which routines from the application are non-
reentrant and might lead to crashes, provided that it has as in-
put a set of already known non-reentrant library functions, e.g.
printf from stdio.h, gethostbyname from netdb.h or strcpy from
string.h. The input and the output are stored in the files Po-
tentially Non-Reentrant Functions and Library Non-Reentrant
Functions respectively. Making the initial assumption that the

application does not crash, Static Analyzer will first run after
such a crash was encountered. However, as this component
needs to be executed just once, it will be further available
to all subsequent crashes, as a result we can consider it a
before analysis component. Finally, if the application finishes
abnormally e.g. crashes, we apply at least one post analysis
task. Having the Threads Call Stacks and the Potentially Non-
Reentrant Functions files available, we first apply Analyze
While-Call Crash, which determines whether the function that
was executing when the crash happened was actually non-
reentrant, but used as reentrant by the application at runtime.
In addition, if this step does not provide cogent results, we
employ a second post analysis component, Analyze Post-call
Crash. This is usually necessary, because the common case
for a non-reentrant function is to cause problems after its call
ended, e.g. due to data corruption. More specifically, this step
attempts to find a non-reentrant function reentrantly called
sometime in the application’s runtime history that could have
caused the function where the application crashed to have this
behavior.

C. Example

We present here a sample program which crashes due to
non-reentrancy issues, that we will use as an example to
illustrate the interaction between components in Figure 1.

int *v[DIM];
int length = -1;

void baz() {
int i;
for(i = 0 ; i < DIM ; i++)

line1: printf("line %d ", *v[i]);
}

void bar(void *matrix) {
/* make a new location in v point to a line

of the liniarized matrix */
length++;

line 2: sleep(1);
v[length] = (int*)(matrix + length * DIM);
// when v is filled, call baz
if(length == DIM-1) baz();
else bar(matrix);

}

void *foo(void *matrix) {
sleep(1);
bar(matrix);
pthread_exit(NULL);

}

int main() {
int matrix[DIM*DIM];
// all locations in v point to NULL
// initialize matrix
// create threads
for (i = 0 ; i < NUM_THREADS; i++)
pthread_create(&tid[i], NULL, foo,

(void *)matrix);
for (i = 0 ; i < NUM_THREADS ; i++)

pthread_join(tid[i], NULL);
}

Fig. 1. High-level architecture of Reevers

The code fragment above shows a sample C code including
a non-reentrancy bug, where two threads cooperate to make
a vector’s locations point to the lines of a matrix. Static
Analyzer determines that function bar() is non-reentrant, as it
uses global variables v and length, and also function baz() is
non-reentrant, using global variable v and non-reentrant library
function printf. At runtime, threads t1 and t2 simultaneously
enter functions foo() and bar(), due to the sleep() call in
both of the functions. Moreover, bar() is possibly reentered
by the same thread, as both threads cooperate and recursively
call bar() to fill vector v. However, due to the sleep() call
from line2, some locations from v would not be initialized
and would still be pointing to NULL, therefore causing a
SIGSEGV at line1 in baz(). Besides this pieces of information,
Threads Call Stacks also states that at runtime baz() will
sometimes be reentrantly entered, but not always; all these are
saved in the file mentioned above as 〈threadId enter/exit
functionName timestamp〉. In the former case, Analyze
While-Call Crash will detect baz() as responsible for the
crash, as it is non-reenrant, reentrantly called and receives
SIGSEGV. However, in the latter case, further analysis is
needed from Analyze Post-Call Crash, which would see that
bar() was previously reentered without being reentrant and,
more important, it uses the same global variable as baz(),
namely v, so it will state bar() as being the crash cause.

IV. DESIGN

This section describes in depth the detection technique used
by Reevers. First, we provide an overview on the tools used to
cope with the challenges (III.A) and then we present the algo-
rithms employed by each component (III.B). We also propose
an immunization technique (III.C) for avoiding non-reentrant
functions that lead to crashes, leaving the implementation for
the latter as future work.

A. Tools

In order to employ static analysis in our tool, we use
Clang[1], a C language family frontend for LLVM. LLVM[2]
is a compiler infrastructure, containing a compilation strategy,
a virtual instruction set, a compiler infrastructure, suitable for

language-independent analyses and optimization and exten-
sive interprocedural analysis, amongst others. LLVM’s static
analysis access is done at a low level e.g. load and store
instructions, therefore we used Clang, which creates a new C,
C++, Objective C and Objective C++ front-end for the LLVM
compiler, at a higher level. Of interest for us was the support
for static analysis clients, providing access to instructions and
all their successors and predecessors, as well as finer grain
access to the components of an instruction and their typer e.g.
the variable declared and its storage type. These are compiled
in so called clang plugins, basically shared objects, which are
applied on the target application using clang-cc compiler.

Moving to the runtime analysis, we chose Aspect Oriented
Programming so as to populate Threads Call Stacks file, more
precisely the ACC[3] implementation. The next few lines
provide a short introduction in AOP. The key concepts of AOP
are aspects and advices. AOP uses load-time weaving in order
to add functionality, which is represented by an advice. An
aspect refers to certain places in the code that are interesting
for the problem. AOP needs to know where exactly to apply
the advices and this can be achieved by identifying arbitrary
events in the runtime system. There are several reasons for
which I think AOP is the best choice. First, it is a lightweight
solution for solving the problem in a non-intrusive manner
and second, aspects can be deployed and undeployed during
runtime, which is useful for adding functionality on-the-fly.
ACC requires access to the target application’s source files,
but we consider this not being a problem, as Reevers’ intended
usage is to help developers cope with non-reentrance problems
before shipping applications to clients.

B. Algorithms

A reentrant routine either uses local variables or protects its
data when global variables are used. There are some conditions
a reentrant function should meet [9], [10], [11], [12]:

• It doesn’t hold static data over successive calls
• It does not return a pointer to static data; all data is

provided by the caller of the function
• It uses local data or ensures protection of global data by

making a local copy of it

• It must not call any non-reentrant functions
Static Analyzer analyzes each statement from each function,

searching for breaches of at least one of the rules mentioned
above and stores them, as we already mentioned, in Potentially
Non-Reentrant Functions file, one function name on each line.
Regarding the last rule, it is applied only to those functions
that call a function whose name is in Library Non-Reentrant
Functions file, which also stores one function name on a line.
To clarify this, we take as example a function f1(), which
calls non-reentrant function f2(). If there are no other reasons
for f1() to be non-reentrant other than calling f2(), then a
crash might appear only because f2() is reentrantly entered,
so it is enough to store f2() as non-reentrant. However, if f2()
is a library function, this action makes sense because for the
future immunization step, described in the next subsection, it
is easier to modify f1(), whose source files ACC has access
to.

Moving on to AOP code, the aspects consist in identifying
the before/after execution of each function events, with the
advices of storing into Threads Stack Traces file the id of the
thread performing the operation, a value meaning whether it
enters or exits the function, the name of the functions and a
timestamp. In addition, another aspect/advice pair is needed
in order to register a signal handler for SIGSEGV before
executing main(). Its role is to write in an auxiliary file the
id of the thread that received the segmentation fault signal, so
as to be able to distinguish which of the last functions from
each stack trace actually received SIGSEGV.

After the program finishes execution, if the exit code
indicates that an error had occurred, Analyze While-Call Crash
is the first post-analysis component that tries to detect whether
the failure was caused by a non-reentrancy issue. First, it
sorts the entries from Threads Call Stacks file by timestamp
value, keeping them in memory as a map having as key a
thread id and as value a list of 〈enter/exit functionName
timestamp〉 pairs, and then applies an algorithm similar to
finding nested closed intervals. For instance, if thread t1 enters
f() at time11 and exits it at time12, with time12 > time11

and thread t2 enters f() at time21 and exits it at time22,
with time22 > time21 and the intervals [time11,time12] and
[time21,time22] intersect, then f() is reentrantly called. Notice
that in the case of a recursive call, t1 = t2. Moreover, the
names of these reentrantly called functions will be stored in
an auxiliary file, so that they are also available for Analyze
Post-Call Crash, if needed. Next, Analyze While-Call Crash
will determine the function that was interrupted by the seg-
mentation fault signal, looking at the last called function by the
thread whose tid is stored in the auxiliary tid file mentioned in
the previous paragraph. Finally, if this function is reentrantly
called, but is also found in Potentially Non-Reentrant Func-
tions, the detection phase ends here. Otherwise, Analyze Post-
Call Crash will detect which of the reentrantly called functions
from the auxiliary file, that also are non-reentrant i.e. stored
in Potentially Non-Reentrant Functions, use the same global
variables as the function that received SIGSEGV. The reason
for doing so is that those global variables may be left in an

inconsistent state by the non-reentrant function, which further
causes the receival of segmentation fault. Consequently, these
functions are issued by the detection phase.

C. Immunization Technique

We have thought of an approach to generate and apply a
reentrant form for the function detected by the previous step.
In order to do this, the detection phase should put in a table
all the non-reentrancy reasons for the functions it outputs. In
addition, a table with already known reentrant forms should be
available, which usually contain a ” r” added to the function
name in the nonreentrant form [12]. Examples are most of the
string functions in C, like strtok and strtok r from string.h.

This phase may imply multiple attempts in order to reach
the reentrant form, if this is possible. Every attempt means
also holding some rollback information, such as the old non-
reentrant function, so as if several attempts are necessary,
rollback can be performed so each attempt can start form the
original state of the program.

A first choice that has to be made is whether to modify the
function’s interface or not. Although modifying the interface
so as the caller provides all the data the function works
on should be good in most cases, this also means a lot of
changes in the source code and backward incompatibility.
Consequently, we decided not to modify the interface when
another solution exists. If the interface is changed, we should
keep a copy of the old signature of the function, the reason
for this being explained in the subsubsection Avoiding Non-
Reentrant Routines.

In the first attempt, we generate the reentrant form by using
some heuristics:

• If the bug’s cause is the fact that the function returns a
pointer to static data, a solution is to return dynamically
allocated data instead, which holds the same information
as the static one. It is the caller’s task to free the memory.

• If the function uses static variables to keep data over
successive calls, the interface needs to be changed. The
caller should use a local variable that holds the same data
as the static variable and pass it to the function.

• All global variables that the function uses should be
declared volatile.

• If the bug is caused by a function that relies on singleton
resources, the access to those resources should be seri-
alized. A way to do that is by using mutexes. However,
this approach is more likely a thread-safety one and does
not guarantee the result.

• Sometimes signals can cause non-reentrant behavior of
the functions, so the patch is that the caller saves the
current set of signals and mask the signal set with the
unwanted signals before it makes the call. After the call
returns, the caller resets the signal set.

The second attempt, which is performed when the first
attempt also leads to bugs or it was not possible to be
applied (e.g. the source code wasn’t available), is a more time
consuming one. The solution is that a thread rebuilds the state
of the program before the first entrance in the non-reentrant

function, based on a richer in information Threads Call Stacks
file (which should also provide line numbers) and then calls
the function to see what its effect should be. In oder to build a
reentrant function that has exactly the same effect, we suggest
using the functional programming paradigm, as it uses only
referentially transparent functions, which are also reentrant,
and then convert the code into our language, C. The advantage
of this approach is that it gives information on the cause of
the bug. However, the tradeoff is that the patch cannot be
automatically generated.

1) Avoiding Non-Reentrant Routines: We find Aspect Ori-
ented Programming to be the best choice here as well, having
as aspects functions’ name and as advices the reentrant form,
kept in a table. If the solution consists of more pairs of
aspect/advice, they should only be applied together.

An important thing is that the generated patch applies only
in the place that generated the bug i.e. the line numbers issued
in Threads Call Stacks file. As a matter of fact, it would be
inefficient to search all the calls of that function in order to
generate aspects for them. Moreover, sometimes this is not
necessary, as there may be some calls that are executed in
a guaranteed single-threaded manner. An interesting aspect is
that even though we have patched a function and it does not
fail in a given amount of time, rollback information still needs
to be kept, as bugs may still appear later.

V. EVALUATION

We present in this section several non-reentrancy patterns
detected by the Static Analyzer. Below there is a code excerpt
having some non-reentrancy issues, which become obvious
when imagining a thread enters function f() when another
thread is already executing it and has reached different points
inside it.

static int a = 2;

int* f(int* param) {
1: static int z = 7;
2: z += *param;
3: int *w = &z;
4: a += *w;

5: int y = *param;
6: if(y==7)
7: printf("y points to %d\n", *y);

8: w = param;
9: *w = 2;

10: if(a == 2)
11: return &z;

12: return NULL;
}

• At lines 1, 2 and 11 static variable z is incremented
with the value of param and then its address is returned.
There are several problems here. First, param is possibly
a reference parameter and we cannot be sure what value
it will point to; as a matter of fact, at lines 8 and 9 we can
see param changing its initial value to 2 and if some other

thread does this while the current thread already entered
f() but didn’t reach line 2, z will have another value than
the one expected. Second, returning z’s address means
several calls to f() will store their results at the same
location, overwriting anything was there before.

• At lines 3 and 4, the value of the global variable a is
changed to z’s value, which, as explained earlier, is uncer-
tain, so at line 10 the comparison will almost certainly not
do what it should do. Moreover, a’s value when entering
f() depends on how many times the function was entered
before.

• At lines 5 and 6 we use param’s value to make a
comparison, but again param’s value may not be the one
intended, as explained earlier i.e. due to it’s change at
lines 8 and 9.

• At line 7 the non-reentrant function printf is used, making
f() also non-reentrant.

All these problems lead to receiving SIGSEGV when any
of the variables implied would, due to an arbitrary thread
interleaving, point to NULL. For instance, if the caller of f()
stores z in a variable result1, returning at line 11, and from
another thread another caller does the same with result2, but
the function return at line 12 NULL, then using the value
pointed by result1 would receive segmentation fault. This
situation is detected by Analyze Post-Call Crash.

VI. FUTURE WORK AND CONCLUSIONS

In this section, we first introduce the future work, with some
remarks on signal handling extending the ideas presented in
III.C, and then conclude.

The special problem that signals pose is that the handler can
be called asynchronously and this could happen, for example,
when the process was executing a non-reentrant function or
processing global data. Some heuristics may prove useful here
e.g. making global variables accessed by a handler volatile.
However, it is rather probable that human intervention will
be needed in order to modify the handler, so the best effort
here, besides applying the heuristic described in section III.C,
is to detect the handler that caused the bug. This can be done
by inspecting the Threads Call Stacks file, which should also
keep the executed signal handlers.

In Analyze Post-Call Crash it would be interesting to detect
the connection between the functions using either the current
restriction, to use the same global values, or using variables
that alias. However, we shall see whether the overhead brought
by performing an alias analysis is worth. Another interesting
idea is to make a difference between using a variable and
modifying it. For example, if a function just uses the value of a
global variable, but does not modify it, then this is not a reason
for classifying it as non-reentrant. The problem here is that
these modify chains might have a significant computational
overhead, especially when pointers are used.

We have presented Reevers, a non-reentrance immunity tool,
that targets deadlock bugs in general-purpose applications.
First, it statically detects possible non-reentrant functions.
Then, Reevers uses runtime information to detect if a crash

is due to non-reentrancy issues. The proposed detection tech-
nique is fast and fairly accurate, but it is not throughly
tested as it seems to be a challenge to find applications
that fit Reevers’ target. However, enhancing Reevers with
immunization capabilities will make it an attractive tool and
broaden the spectrum of application Reevers can be applied
on, for instance for replacing library non-reentrant function
with their already known library reentrant versions.

REFERENCES

[1] (2009) clang: a C language family frontend for LLVM [Online]. Avail-
able: http://clang.llvm.org/

[2] (2009) LLVM: Low Level Virtual Machine [Online]. Available:
http://llvm.org/

[3] (2008) ACC: The AspeCt-oriented C compiler [Online]. Available:
http://research.msrg.utoronto.ca/ACC

[4] D, Dig; J. Marrero; and M. D. Ernst, How do programs become
more concurrent? A story of program transformations, Report from
Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, 2008

[5] E. Farchi; Y. Nir; and S. Ur, Concurrent bug patterns and how to test
them, In IPDPS 03: Proceedings of the 17th International Symposium on
Parallel and Distributed Processing, page 286.2. IEEE Computer Society,
2003

[6] C. Flanagan and S. N. Freun, Atomizer: A dynamic atomicity checker
for multithreaded programs, In Annual Symposium on Principles of
Programming Languages: Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, Venice,
Italy , Pages: 256 267, 2004

[7] J. R. Diamant; W. Satterfield; and K. C. Wong, US Patent 5822589 -
Method for locating errors in a computer program, 1998

[8] L. Ryzhyk; T. Bourke; and I. Kuz, Reliable device drivers require well-
defined protocols, Proceedings of the 3rd workshop on on Hot Topics in
System Dependability, p.3-es, Edinburgh, UK, 2007

[9] (2008) IBM Systems Information Center [Online]. Available:
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=
/com.ibm.aix.genprogc/doc/genprog/writing reentrant thread safe code.htm

[10] (2008) IBM developerWorks [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-reent.html

[11] (2008) The GNU C Library [Online]. Available:
http://www.delorie.com/gnu/docs/glibc/libc 493.html

[12] (2008) SUN Developer Network [Online]. Available:
http://developers.sun.com/solaris/articles/multithreaded.html

