
AVR32 port of the OKL4 microkernel

Adriana Drăghici, Marius Sandu-Popa, Andrei Voinescu
Automatic Control and Computers Faculty

University Politehnica of Bucharest
Bucharest, Romania

Email: adriana.draghici@cti.pub.ro, sandupopamarius@gmail.com, voinescu.andrei@gmail.com

Abstract—The present study addresses the differences
in architecture between AVR32 and ARM from a micro-
kernel’s point of view. Different topics are discussed and
an approach to handling the differences in architecture
for each of these topics is proposed.

Keywords-microkernel; avr32; port;

I. INTRODUCTION

The demand for more complex functionality has
pushed embedded systems towards more powerful plat-
forms, 32-bit (sometimes even 64-bit) general-purpose
processors. Such devices have requirements (real-time
properties, reliability, security) that are quite different
from classical embedded systems, and can only be
supported by a well designed operating system.

The L4 micro-kernel provides a minimal and effi-
cient basis for constructing operating system software
for a broad range of embedded devices. Originally
implemented as a highly tuned Intel i386-specific as-
sembly language code, the L4 micro-kernel has seen
extensive development in a number of directions, both
in achieving a higher grade of platform independence
and also in improving security, isolation, and robust-
ness.

One of the most important L4 implementation for
embedded devices is the OKL4 micro-kernel developed
by Open Kernel Labs company. It offers a range of
features and capabilities: virtualization, small memory
footprint, extensible and maintainable, real-time capa-
bility and low performance overhead, freely available
source code.

The OKL4 currently targets ARM systems, sup-
porting both v5 and v6 architectures and 926, 1136,
920, XScale platforms. We aim to port this micro-
kernel to the AVR32 architecture. Similar to ARM, the
AVR32 architecture is based on a RISC instruction-set,

includes a Memory Management Unit (MMU), Java
hardware acceleration and supports operating systems
like Linux.

Porting the OKL4 micro-kernel to a new architecture
requires the following implementation stages:

• implement the architecture-specific code in arch/
• implement the platform-specific code in platform/
• implement the necessary device drivers
For our test architecture we chose Atmel’s NGW100

platform with an AVR32B microprocessor from the
AP700x family.

In this paper we describe in detail the stages of port-
ing the OKL4 micro-kernel, the differences between
ARM and AVR32 architectures and the impact these
differences have on the micro-kernel’s performance.

II. DIFFERENCES IN INSTRUCTION SET

ARCHITECTURE

The AVR32 Architecture bears great resemblance
to the ARM architecture in general, being a 32-bit
load/store architecture. The difference lies however in
details, details that make the AVR32 architecture to be
easy to use by software running on top of it.

The architecture is made of instructions of variable
instruction length, leading to great decreases in code
size. Most of the instructions take one cycle to execute
as well, making the AVR32 architecture a good setting
for code that is both fast and small.

A. General Purpose Registers

Both instruction sets are completely orthogonal, with
15 general-purpose registers. Although each of these
can be used in instructions involving registers, three of
these have a special meaning:

• R15 is also PC, the Program Counter.



• R14 is LR, the Link Register (holds the address
to which the code must return.

• R13 is SP, the Stack Pointer.
Additionally, R12 is considered to hold the return

value of a subroutine on AVR32, while on ARM R0
is used for that purpose. To maintain coherency we
mirrored the use of explicit register numbers (R12 →
R1, R11 → R2, and so on).

B. Privileged and Unprivileged Modes

Privileged modes are organized differently: On
ARM, we have User and Supervisor mode, along with
Abort, Exception and Undefined. For interrupts there
are two possible modes, either normal interrupt or Fast
Interrupt Mode (FIQ). FIQ has at its disposal several
banked registers (R8-R13), so that an interrupt handler
need not worry about saving these registers on stack.

On AVR32 additional modes are available. Interrupts
can have one of four possible levels and priorities
between these levels along with assignment can be con-
figured through a set of system registers. The Archi-
tecture allows for banking of R0-R12 in each interrupt
mode, but the processor family used in this study only
has banked registers for INT3 interrupt level, registers
R8 through R12. This effectively transforms INT3 into
the equivalent of FIQ.

C. Register File

Each operating mode on ARM has its own set of
special registers, SP, LR and PC. On AVR32, transition
between modes is considered more important than
modes, such that there are two special registers in the
privileged modes (any except Application/User Mode),
RSR and RAR, that retain the Program Counter and the
Status register of the previous mode.

As such, transition between modes is easier on the
AVR32 due to the well-defined mechanisms for entry
and exit made available by the architecture. Transition
to Supervisor mode, for example, can only be made
through the ’scall’ instruction, which saves the current
PC in RAR SUP and SR in RSR SUP and modifies
the SR to mirror the change in operating mode.

Also a notable difference is the existence of a
common register stack pointer for all privileged modes,
which permits code in Exception Mode for example
to manipulate the system stack transparently, without
need for temporary switches between modes.

Below is an example of how this switch to supervisor
mode is no longer necessary in AVR32 in the case of
IRQ exception. In addition,

srsdb r13_svc!

(save return stack with decrement before) is no longer
needed because the status register and link register
from application/user mode are saved automatically in
RAR EX and RSR EX.

BEGIN_PROC_TRAPS(arm_irq_exception)
sub lr, lr, #4
srsdb r13_svc!
/* Enter supervisor mode */
cps svc_mode
sub sp, sp, #PT_SIZE-8

/* save user - banked regs */
stmib sp, {r0-r14}ˆ
/* Indicate IRQ to
soc_handle_interrrupt() */

mov r1, #0

BEGIN_PROC_TRAPS(avr32_irq_exception)
sub lr, 4

sub sp, PT_SIZE-8
/* save user - banked regs */
stmts sp, r0-r14
/* Indicate IRQ to
soc_handle_interrupt() */

mov r11, 0

D. Addressing modes

Both architectures support direct, indirect and in-
dexed addressing modes. ARM splits indexed mode
into pre-indexed and post-indexed, the difference being
the use of the modifications on the indexing register.
AVR32 replaces this by allowing certain instructions to
post-increment or pre-decrement the indexing register,
handling the most common cases. AVR32 also has
specific instructions for PC-relative and SP-relative
loading and storing, instructions that are faster (the
result is available after one cycle regardless of data
dependencies) and occupy less space (half-word in-
structions in both cases).



III. CACHE CONTROL

Cache control on the ARM architecture is handled as
writes to registers in an on-chip control co-processor.
In stark contrast, on AVR32 there is a single dedicated
instruction ’CACHE’ that can perform all operations
(clean, invalidate, flush, lock) on one of four possible
caches (on the processor family used in this study,
only two caches are available, an L1 instruction cache
and an L1 data cache). Cache control is therefore
greatly simplified in AVR32. Draining the write buffer
is handled by a single instruction as well (sync).

Op[4:3] Op[2:0] Operation Parameter
00 000 Flush Flush mode
00 001 Invalidate Virtual Address
00 010 Lock Virtual Address
00 011 Unlock Virtual Address
00 100 Prefetch Virtual Address
00 101 Reserved N/A
00 110 Reserved N/A
00 111 Reserved N/A
Other xxx Reserved N/A

For example, the following represents the cache
flush of the data cache on ARMv5, using writes to
the system co-processor CP15:

word_t zero = 0;
__asm__ __volatile__ (

ERRATA_NOP
"mcr p15, 0, %0, c7, c14, 0\n"
ERRATA_NOP
ERRATA_NOP
"mcr p15, 0, %0, c7, c10, 4\n"

:: "r" (zero)
);

On AVR32, as stated, they are reduced to ’cache’
instructions:

__asm__ __volatile__ (
"mov r11, 4 \n"
"cache r11[0], 8 \n"
"sync 0 \n"

::: "r11"

IV. SYSTEM CALL CONVENTION AND TRAP

HANDLING

System calls in OKL4 under ARM are made using
the swi instruction. The syscall number is not passed as
a comment in the swi instruction as expected, instead
it is passed in the SP register, while the stack register
is saved in the IP (a scratch register). All registers
that are not part of the parameter passing convention
are saved on the stack, along with the link register
(to be popped out into PC after the syscall). This
convention has been preserved in our AVR32 port,
with the appropriate switch to using registers grouped
around R12 for passing parameter and return values.

Furthermore, AVR32 uses the scall instruction for
switching to privileged mode, and it does not support
any arguments, being a half-word instruction.

We will now present an example of a syscall wrapper
for the L4 Mutex syscall, written for AVR32. Certain
syscalls require object dereferencing before jumping
into privileged mode, this however is an example of
the simplest of wrappers, where no such preparation is
required. The wrapper saves the registers that are not
part of the call (R12 and down are parameters/results),
together with the link register, saves the stack and puts
the syscall number in the stack register.

LABEL(L4_Mutex)
stm --sp, {r0-r7, lr}

mov r1, sp
mov sp, #SYSNUM(mutex)
scall

ldm ++sp, {r0-r7, pc}

A. Syscall Trap

On the kernel side syscall handling is very similar,
both have exception tables where a syscall-specific
entry is found. While we generally followed the
ARMv6 implementation, here AVR32 is more similar
to ARMv5, in that saving the user status register and
program counter is done automatically on enter and
restored on exit (scall and rets instructions).

B. Interrupt Traps

Handling IRQ/FIQ traps is straightforward, the con-
text is saved on the system stack then the platform



dependent soc handle interrupt is called. The registers
saved differ based on what registers are banked, from
one processor family to another, as well as from one
interrupt level to another (IRQ/INT0 has no banked
registers, while FIQ/INT3 has 4).

V. MEMORY MANAGEMENT

Both architectures provide a Memory Management
Unit responsible for mapping virtual to physical ad-
dresses. This translation process uses a TLB cache and
a page table system.

The okl4 kernel provides a MMU interface for both
v5 and v6 versions of ARM architecture, which are
different in terms of page sizes, access permissions
and other page control issues. The methods and classes
from pistachio map the hardware structures and pro-
vide page handling functionalities. A port of this code
for the avr32 architecture implements the interface in
a similar manner, rewriting it at at a structural and
functional level. While on ARM the page table organi-
zation and its handling are implemented in hardware,
on AVR32, these must be implemented at the OS level.
Therefore, functionalities not included in OKL4, like
page tables management, had to be written. In the next
paragraphs we will briefly describe the way we chose
to implement these MMU components.

The page tables are organized on two levels as
discribed in Figure 1, the first one keeping references
to second level tables that contain page entries. The
virtual address consists of a 10 bit offset in the level
1 table(hence 1024 entries) followed by offsets in
the level 2 table and in the page. The pages have
four possible sizes 1 kB, 4 kB, 64 kB and 1 MB,
complicating the addressing process of the l2 tables:
there is no way to know when how many bits should
when fetching the L2 offset from the virtual address.
The solution we consider is to have multiple entries in
the l2 table for the same page. For example a 1 kB
page requires just one entry, while a 4Kb page will
have 4 entries. In this way, using a 12 bit offset from
the virtual address we can match any page entry. The
ARM architecture [4] provides a two level organization
too, but it maintains page entries on both levels, with
a different entry structure for each page type and no
bitfield for the page size. For AVR32 we chose a
simpler approach, we used only one entry type, having
2 bits assigned for the page size.

Figure 1. Page Table Structure.

The format of the entries is the one suggested in the
architecture document [1], and it is perfectly mapped
on the bits of TLBLO (TLB Entry Register Low Part)
register. The data from this register is loaded into the
TLB using one of the TLB handling instructions.

VI. DRIVERS

OKL4 provides a System on Chip Software De-
velopment Kit (SoC SDK) that facilitates porting to
a new system-on-chip. Besides the API, it contains
the necessary components to build a new SoC module
that combined with the core kernel generates the final
system image. The developer’s task is to implement the
two header files of the SoC API: soc/soc.h and soc/in-
terface.h. The first one contains functionality required
by a SoC implementation, providing an interface to the
hardware platform. The methods of the second header
are implemented in the kernel and used by the SoC
functions of the first header.

The soc.h’s functionality can be categorized as:

• Versioning
• System Start Up
• Interrupt configuration and control
• Timer
• Cache Operations
• Debug support
• System error
• Platform specific

For Atmel’s AP7000 it is necessary to implement all
these components, except Cache Operations because
there are no caches that are not CPU specific.



Having as a model the ARM platforms’ SoC im-
plementation, we divided our code into several files,
one for each component (eg. interrupt.c). In addition
to these, we implemented auxiliary data structures
and methods necessary for controlling the peripherals
through their registers.

Porting the Interrupt configuration routines proved to
be easier than for ARM platforms, AP7000’s Interrupt
Controller allowing control on 4 levels. Therefore,
interrupts are grouped into 4 priority levels, and can
be masked directly from the status register, and not
from interrupt lines registers.

In addition to SoC API implementation, drivers for
real time clock and usart(Universal serial asynchronous
receiver/transmitter) must be implemented. Even if this
seems separate from the rest of the SoC code, in fact
these drivers are part of the SoC-specific implemen-
tation of OKL4, because timers, the realtime clock
and serial interfaces are on-chip. These drivers follow
a pattern, each implementing the following functions
(presented for a timer driver for platform x),

device_setup_impl(
struct device_interface*,
struct x_timer *,
struct resource*)

device_enable_impl(
struct device_interface*,
struct x_timer *)

device_disable_impl(
struct device_interface*,
struct x_timer *)

for setup, enabling and disabling the device. The
setup callback deals with allocating memory needed
for buffers, while functionality of the enable and
disable functions is straightforward. Each driver has
also operation-specific callbacks, such as get tick or
set tick for timers, or do rx for serial drivers. There
is a callback for interrupt handling as well, all the
functionality for the peripheral is in this driver, the
main code from the SoC code just calls it.

VII. COMPILER SUPPORT

While on ARM several compilers are available (and
OKL4 is compatible with 3 of them), on AVR32 only
a gcc version is available (not an official port yet),
which supports inline assembly in the same way that
the ARM branch of gcc does.

VIII. CONCLUSION

This study has presented the key issues that need
to be addressed when porting OKL4, or a microkernel
in general, from ARM to AVR32. Unfortunately, this
paper could not be accompanied by a functional port
of OKL4, and results could not be shown. However,
bits and pieces of the core functionalities have been
detailed and should be taken as a starting point by the
interested reader.

REFERENCES

[1] Atmel, “Avr32 architecture document.”

[2] ——, “Avr32 ap technical reference manual.”

[3] ——, “At32ap7000 preliminary.”

[4] ARM, “Arm architecture manual.”

[5] ——, “User’s manual s3c2410a.”

[6] O. K. Labs, “Okl4 microkernel reference manual - api
version 03.”

[7] ——, “Okl4 soc developers manual.”

[8] G. Heiser, “Virtualization for embedded systems.”


