
Memory Mapped Files on MINIX

Claudiu-Dan Gheorghe and Andrei Faur
Politehnica University of Bucharest

{claudiu.gheorghe, andrei.faur}@cti.pub.ro

Abstract

Most modern operating systems provide support
for memory mapped files, which allow users to
treat files using pointer arithmetic, thus avoiding
the usage of expensive system calls. MINIX 3 is
a UNIX-like, recently developed operating system
that recently got virtual memory support, opening
the opportunity for memory mapped files. This
article describes the design and implementation of
memory mapped files on MINIX, and highlights the
specific details of MINIX’s microkernel particularities.

keywords: MINIX, mmap, memory mapped files

1 Introduction

Minix 3 is a recently developed operating system de-
signed to be fault-tolerant, reliable and secure, with
minimal intervention from the user. While prior ver-
sions of Minix have existed since 1987, Minix 3 is
viewed as a complete overhaul, meant to be a full-
fledged operating system and not just an educational
tool. Development of Minix has seen renewed interest
with the arrival of Minix 3, since it still lacks many
of the features that modern operating systems have,
such as virtual memory support which has been im-
plemented only two months prior to the writing of
this article. With the arrival of virtual memory, many
new features have now become possible to implement,
among them being memory mapped files.

Memory mapped files provide a mechanism by
which a file can be accessed just like regular memory
by mapping the file into a process’s address space.
Afterwards, the contents of the file can be accessed
using pointer arithmetic, rather than read/write sys-
tem calls.Thus they create transparency between files
and the adress space of a process, letting applications
treat files present on disk as a primary memory area.
Memory mapped files are not a new concept and they
are mentioned in the POSIX standard,being imple-
mented in almost every modern operating system be-
cause they improve performance, ease of use and they

create further concurrency opportunities. This arti-
cle presents the implementation of this mechanism in
MINIX 3.

2 MINIX operating system

Minix is an open-source, microkernel-based operating
system first created by Andrew Tanenbaum in 1987.
The latest version, Minix 3, aims to be an operat-
ing system that is ”reliable, self-healing, multiserver
UNIX clone”. Having this in mind, the code running
in the kernel has to be minimal, while the processes,
memory and file-related tasks are delegated as device
drivers running as separate user-space processes. Re-
liability and self-healing come from the ideea of imple-
menting a part of the system called the reincarnation
server. This server monitors other drivers and when
they fail or malfunction in some way, they are shut
down and replaced by a new copy. More than that,
the reduced kernel size and restricted access to kernel
functions and I/O ports improve the reliability of the
operating system.

interrupts, MMU, scheduling, IPC

driver driver driver

VFS MFS Network Memory

Shell Compiler User

Kernel 

mode

User 

mode

OS

separate processes

Figure 1: MINIX architecture

The architecture of Minix 3 is divided into four
seperate layers, as it can be seen in Fig. 1. The
bottom layer is the microkernel, which handles inter-
rupts, scheduling and message passing. It is impor-
tant to specify that all communications between pro-
cesses are made with messages, which are handled by

1



3 Memory mapped files 3.1 The Virtual Memory (VM) server

the kernel. Message handling requires that the kernel
verify that the source and destination are valid and
also find the exact location in physical memory of the
send and receive buffers. In addition, the bottom layer
also contains a clock task, which only interfaces with
the kernel, and interacts with hardware that generates
timing signals, plus a system task which contains the
implementation of a set of privileged kernel calls to be
used by drivers and server from the upper layers.

The upper three layers can be considered as being
part of only one layer, because of the uniform way the
kernel treats them. However, their functionality, and,
more important, their access rights, make it possible
to further divide the layer into the three we have in
the picture above. For example, a server process never
has to access the disk directly, so it does not have the
privilege to make such an attempt, as oppsed to the
actual disk driver which handles all such requests.

The second layer contains device drivers, each run-
ning as a separate process that controls different I/O
devices. Note that these drivers do not have direct
access to the I/O port space and cannot issue I/O in-
structions directly. The way they interact with the
I/O is through the system task, by making special re-
quests to read data from or write data to I/O ports
on their behalf. The kernel’s role is to check the au-
thorization of the driver making the request.

The next layer contains server processes, and this
is where all the operating system services reside. The
most important of these are the process manager and
the file system (FS). The process manager handles all
system calls that involve starting or stopping process
execution as well as signals that can potentially alter
process states. In order to open, close, read and write
files, processes from the upper layer have to send mes-
sages to the FS server. The FS server sends messages
to the disk driver, which actually controls the disk.
Another recently implemented server resides at this
layer too, the virtual memory (VM) server. This and
the FS server have been augmented with our imple-
mentation, in order to provide memory mapped file
support.

The final layer is where all user processes reside,
such as a shell, window manager, different utils. It
is for the correct functioning of this layer that the
bottom three layers have to work together.

3 Memory mapped files

Memory mapped files are a very useful technique in
modern operating system, for two reasons:

• They improve performance by reducing accesses
to incredible slow hard drives and especially to
moving file cursor around the content of the file.

• They make possible for multiple processes to
share the in-memory content of the same file, thus
reducing the overall physical memory usage.

The best example is the shared library. Any exe-
cutable needs at least one shared library as GLIBC,
so when it will have to load it from the disk in a phys-
ical memory region. Imagine that tens of processes
will need to do exactly the same thing, wasting lot of
physical memory with duplicate data.

As it makes usage of both files and memory, imple-
menting memory mapped files implies dealing with the
MINIX’s system processes concerned with this tasks.
The latest MINIX version is 3.1.5, released on Novem-
ber 2009. Regarding memory management it provides
Virtual Memory (available from 3.1.4) and regarding
file systems it provides also Virtual File system (avail-
able from version 3.1.3). We will take a quick tour over
these system processes (Virtual Memory server and
Virtual File system server) to introduce the imple-
mentation details, especially because Virtual Memory
is not documented at all.

3.1 The Virtual Memory (VM) server

VM is the system process that manages each processs
virtual address space. So whenever we need to allo-
cate memory, to create a mapping or any operation
related with memory management we have to send an
appropriate message to the VM server.

The distributed manner of the MINIX operating
system lead to the existence of separate special pro-
cesses (system processes) for managing user processes
resources on behalf the kernel. Comparing to the
Linux kernel, where running a system call caused a
trap that switched the system from user mode to ker-
nel mode, here a system call is translated to an appro-
priate message for a specific system process (server),
which all it does is to listen for request messages and
serve them. Also all the data structures kept by the
kernel for each process to handle them are not cen-
tralized, so each system process has a specific global
table of data structures that contain all the relevant
information for each user process, identified by a nu-
merical id, called endpoint number. For example, in
the VM server the process info table is called vmproc
and the data structure is struct vmproc, or in the VFS
server is called fproc and the structure is struct fproc.

As the VM is not documented at all, we will shortly
take a tour of the data structures and concepts used
inside it.

The address space for each process is described in
the struct vmproc data structure and it is organized
as a simple linked list of regions. A region represents
a virtual memory range and its described in struct

2



3 Memory mapped files 3.1 The Virtual Memory (VM) server

vir region data structure. It has a start address (vir-
tual address), a length and it is annotated with spe-
cific flags. The virtual memory region is the basic
unit used for mappings, so the flags include informa-
tion relevant to the memory mappings. Each virtual
region contains a sequence of other memory repre-
sentation structure called physical region, described
in struct phys region data structure. For improving
lookup speed for such regions, MINIX uses AVL tree
for storing them.

The key for a physical regions is the offset from
the start of virtual memory region, but there is also
additional information stored which helps the system
to step from virtual addresses to physical addresses.
So, each physical region is linked to a parent virtual
region using a many-to-one relationship, and its also
linked to another data structure called physical block
using a one-to-one relationship. The physical regions
are also part of another data structure, which is a
linked list of physical regions that reference the same
physical block.

The physical block is described in the struct
phys region data structure. It contains a length which
is the number of bytes of the contiguous memory area
that it represents, a reference count which is the num-
ber of physical regions that reference this physical re-
gion, the first element of the linked list of physical
regions discussed earlier, and the most important, a
physical memory address. Having the intermediate
representation of the memory as physical region and
not directly as a physical block permits the system to
easily share pages of memory between different physi-
cal regions, virtual regions and address spaces belong-
ing to different processes.

struct vir_region

struct vir_region

struct vir_region

struct vmproc

phys_region

phys_region

phys_region

phys_region

phys_region

phys_region

phys_block

Figure 2: Virtual memory in MINIX

All the information from these data structure is kept
only by VM server, but the data structure used for
translating virtual addresses to physical addresses by
the processors MMU is the page table. So any modi-
fication in the address space is made visible only after
synchronizing the changes with the content of the page
tables. MINIX has a hierarchical page table with one

page directory of 1024 entries (10 bits) and is imple-
mented only on the i386 architecture.

The free physical memory ranges are stored also
in VM using a global AVL tree queried each time a
number of memory pages are needed. All the memory
allocations are deferred as much as possible in the
same manner as they are in the Linux kernel, and
they are managed by efficiently handling the memory
pagefaults. From the VM server point of view, the
pagefaults are also normal messages received from the
kernel process.

The VM doesnt serve only user processes. As the
Linux kernel needs a lot of data structures for keep-
ing track of processes and other internal things, the
system processes from MINIX (that include the VM
itself) also do need them. The approach is merely the
same as in Linux and a slab allocator is used.

The slab is a data structure used for handling mem-
ory allocations of small objects as a struct vir region
for example. What it is inefficient at memory alloca-
tions is not simply finding a hole in the free memory,
but the initialization process. So this is the purpose
of the slab: to maintain a pool of certain fixed size
objects that are ready to be used without doing any
initialization.

minsize

slabsize

slabs_full

slabs_partial

slabs_full

slab

slab

slab

page

page

page

header objects

Figure 3: Slab allocator

The primary key for the slab allocator is the size of
the object. It keeps a fixed set of slabs for a range
between a minimum (now in MINIX we have e mini-
mum size of 8 bytes) and a maximum size (SLABSIZE
macro, defined as 60 bytes now) in a table that is in-
dexed using as offset the size of object. Each slot
from the slab table is described in struct slabheader
and it contains pointers to the heads of three lists:
LIST FREE the list of free slabs, LIST USED the
list of partial free slabs, and LIST FULL the list of
slabs filled-up by objects. A slab itself spans over a
single page of memory, and is composed from a header,
described by struct sdh data structure, and the re-
maining part to the page size is used for storing data
objects. The lists are implemented as a double linked
list which makes for a slab to migrate from one list to
another in constant time.

3



4 Design and implementation 4.1 Message flow

3.2 The Virtual File system (VFS)
server

The VFS was introduced from the 3.1.2 release of
MINIX and its presented in the Gerofis masters the-
sis [3], so we will just present a quick overview of the
architecture. The VFS is an additional abstraction
layer over the file system implementations. Due to
the distributed and multi-server MINIX architecture,
the VFS lives as a separate process and it interacts
with the underlying file system implementations that
are also separate processes for each mounted parti-
tion. The communication with the FS processes is
performed synchronous and the VFS server waits until
the response comes for each request. The MINIX VFS
implementation is different compared with the mono-
lithic implementations where the communication be-
tween different components of the operating system
is done simply through functions calls, and especially
because the MINIXs principles are reliability and se-
curity.

4 Design and implementation

The entry point for implementing memory mapped
files by POSIX standard is the mmap() call, together
with munmap() and msync(). As it is in Linux,
the mmap() library call is translated in a dedicated
system call.

In the current version of MINIX the mmap() and
munmap() system calls exist and they are partial
implemented in the VM server to support only anony-
mous mapping, used for memory allocation and for the
address space mapping techniques offered by virtual
memory. The implementation of memory mapped files
involves a message passing session between the VM
server and the VFS server and has also to deal with
inconsistency problems that will further be explained.

4.1 Message flow

The system call for mmap() is routed to the VM
server which creates a virtual region in the address
space of the process on behalf the system call is made
and annotates it with a special flag that makes this
region observable as a file mapping - VM MMF. Also
additional information has to be stored in order to
handle further requests, like the inode number. In the
first place, the VM doesnt make further actions like
sending request to VFS for loading data or mapping
the physical blocks to pages and defers them simi-
larly with the demand-paging mechanism. Anyway,
the VFS must be notified that a process is mapping
the certain file and at least the reference count from
struct filp must be incremented.

The harder part will come when a page fault will be
caught in the page fault handler. If the page fault is
detected and it seems to be a file mapping, then a page
is allocated and a new physical region is added inside
the virtual region, mapping it to the physical block
that contains the newly allocated page. Once we have
this access-ready memory we send a message to the
VFS server to load the needed content from the hard
disk. The request is similar with a read() request. The
message is sent synchronous and the VM waits until
VFS finishes the request. The VFS obtains the struct
filp structure associated with the open file by using the
given file descriptor on behalf the process who made
the file mapping. After that it issues a message to the
process responsible for the mounted partition which
contains the file for reading the content of the file in a
given buffer. Suppose that the files content is not in
memory, then it will be brought from disk to the file
system implementation buffer cache. After that the
content will be copied to the given memory address,
and the responses are chained back till we are again
in VM. Now we have files content needed for the user
request.

By far anything looks fine, but the previous sce-
nario works only with MAP PRIVATE mappings. If
we have shared mappings, we need to take additional
actions. For that we need some way to keep a list of
the user processes that mapped our file (identified by
the struct filp structure and not by the file descrip-
tor which is a per-process resource). The list will be
stored in VM, but the link to it (a unique mapping
id) will be stored in the struct filp structure. So when
having a shared mapping, in the first step of creating
the mapping, the VM must contact the VFS to ob-
tain the mapping id from the struct filp structure and
add the user process on behalf the mapping is made
to the mapping lists. When a new page is allocated
it must be mapped on the same offset in all the other
processes that are mapping the same file. This way
different address spaces regions will point to the same
physical page.

At munmap(), the address space region is searched
and it must be erased, after all the modified content
of the file (pages with write access) has been written
to disk. For MAP SHARED mappings, the VM must
firstly check the shared mappers list and delete the
process on behalf the munmap() call is performed.
Only if the list is empty after this operation the con-
tent should be sent to the disk. Also the reference
count from struct filp must be decreased.

Also when creating a new mapping we use copy-on-
write and we duplicate the content of virtual region
from one of the shared mapping processes. Anyway,
copy-on-write happens only for private mappings, be-
cause at shared mapping we dont need separate mem-

4



6 Conclusions and future work

user 

process

kernel VM

VFSFS

Driver

page fault

do_pagefault

load

read

continue

Figure 4: Messages sent on pagefault

ory pages.

4.2 Inconsistency concerns

Mapping files into memory brings inconsistency is-
sues between the memory operations made on the
mapped region and read/write system calls made on
the same open file. In Linux these problems are grace-
fully solved using the Page Cache [2], but in MINIX
we don’t have it.

When read/write system calls arrive in the open file
structure, if it appears to be mapped, we must see if
the [offset, offset + length] range where we should
perform the request is included in the shared map-
ping region, and more than that, if there is a physical

page allocated for this range, which means at least
a READ memory access was performed in this range
and the page was fetched from disk. This check must
be performed in VM, and if it is true, we must per-
form the data copy directly using the found physical
memory. If it is not, we must emit the request to block
IO underlying layer, as normally. So basically is like
using the mappings as a page cache, when mapping is
present on the open file.

This should resolve conflicts between read/write
calls and MAP SHARED mappings. As it is stated
on POSIX standard it is unspecified whether mod-
ifications to the underlying object done after the
MAP PRIVATE mapping is established are visible
through the MAP PRIVATE mapping, so eventually
can be inconsistencies with this kind of mappings.

5 Related work

Memory mapping has become quite a common feature
for most modern operating systems. The Single UNIX
Specification details the exact behaviour and inter-
face that the mmap system call should have. Linux
and Solaris, among others, try to conform as much
to this standard as possible, and our implementation
tries that as well. While the exact details of the im-
plementation differ between different OSs, it is impor-
tant to provide a common interface so that userspace
programs using it are portable.

For example, in Linux, memory mapped files are
implemented using the Page Cache, where the ker-
nel stores page-sized chunks of files. In a regular file
read, the kernel must copy the contents of the page
cache into a user buffer. When using file mapping, the
kernel maps the program’s virtual pages directly onto
the page cache. This technique is not only specific to
Linux, but to Windows and Solaris as well.

6 Conclusions and future work

In this paper we presented an implementation of mem-
ory mapped files support in the MINIX 3 operat-
ing system. This is a small step towards making
MINIX 3 an operating system capable of providing
all the features that recent operating systems pro-
vide. Our implementation only provides support for
MAP PRIVATE, and the next step is establishing
and creating a solution ready to be integrated in the
MINIX mainline repository.

5



References References

References

[1] Andrew S Tanenbaum, Albert S Woodhull. Oper-
ating Systems Design and Implementation. Pren-
tice Hall, 3rd edition, 2006. ISBN-10: 0131429388

[2] Daniel P. Bovet and Marco Cesati. Understand-
ing the Linux Kernel. OReilly Publishing, 3rd
edition, 2005. ISBN: 0-596-00565-2.

[3] Balazs Gerofi. Design and implementation of the
MINIX Virtual File system. 2006

6


	Introduction
	MINIX operating system
	Memory mapped files
	The Virtual Memory (VM) server
	The Virtual File system (VFS) server

	Design and implementation
	Message flow
	Inconsistency concerns

	Related work
	Conclusions and future work

