
ANTIS: Another Tool for Identical or Similar
Code Detection

Automatic Control and Computers Faculty, University “Politehnica” of Bucharest, Romania
bogdan.ghit@gmail.com, matei.gruber@gmail.com

Abstract—The goal of this project is to develop an application
able to detect the plagiarism in programming assignments by
identifying similar code sections. The evaluation process is real-
ized by comparing source code in the abstract syntax trees (AST)
representation. Detecting similarity between programs involves
finding the maximum sub-graph that can be matched in both
trees. The AST is a relational structure that provides a better
understanding of the code. We may easily reduce this challenge
to the well known tree matching problem, which has been proved
to be NP-complete, as there is no deterministic algorithm able to
compute the maximum match between two trees. In consequence,
we developed several algorithms based on structural analysis of
the abstract syntax trees and certain heuristics which are going
to be explained in the following sections of the article. The aim of
this work is to provide new approaches in the field of code source
plagiarism detection that are going to increase both efficiency and
accuracy of the matching process.

Keywords

Code Plagiarism, Abstract Syntax Tree, Tree Matching Problem,
Longest Common Sequence, Hash Encoding

I. INTRODUCTION

Verifying source code similarity has an important role in
the evaluation of programming assignments in universities.
The fact that many programs are graded based on the results
produced, with optionally a brief analysis of the source code,
provides a relatively low risk environment for a student to
conduct plagiarism. But, for a typical entry level class, there
may be over 300 submissions per assignment which means
that checking for plagiarism can easily become an extremely
time consuming task.

There are several methods adopted by current tools which
we are going to discuss, but none of them offers a complete
and suitable application. Our intention is to analyze the fea-
tures and the characteristics of these algorithms and to explore
and develop some new approaches in this field.

During the following sections of this paper we describe the
techniques used by existing software in this field, we present
our system’s architecture with details regarding each major
component and then we move the focus over the algorithms
that we have developed in order to implement our metrics
for comparison. A various set of test cases is analyzed and
compared for the metrics that we have implemented. In the
end, we draw the conclusions and we establish the next target
of the project.

II. RELATED WORK

This section contains a presentation of existing plagiarism
detection tools and emphasizes their strengths and weaknesses.

There are many methods by which a program can be
transformed into another with similar runtime behaviour. The
most common ones are represented by lexical changes and
structural changes. The former, does not require knowledge of
the language and is related to adding or removing comments,
modifying identifier names or changing formatting. The latter
is much more interesting, and it is easy to notice that it is
language dependent, because it requires modifying functions,
by adding, removing or reordering instructions, but with the
requirement of keeping the implementation’s consistency.

The most common techniques used for plagiarism detection
in source code use the n-gram algorithm. The idea is to divide
the initial document into contiguous substrings of length n
(with each character of the document as the starting point
of a new n-gram) and to compute hashes for each of them.
Then a certain subset of the hashes will be selected in order to
define the program’s fingerprint. If there some identical values
for fingerprints are detected in the two documents, it is very
likely that they share at least one n-gram element. This idea
led to many approaches with the goal of increasing both the
accuracy and efficiency.

MOSS is a software tool for plagiarism detection that goes
further with this algorithm by offering an improvement to
ensure that any substring is matched as long as a certain
guaranteed threshold t is detected. The idea is to define a
window of hashes of size w = t − n − 1 and to chose the
minimum value or the rightmost occurrence if there is more
than one hash value equal with the minimum. A complete
description and evaluation of this algorithm is presented by
Saul Schleimer, Daniel S. Wilkerson and Alex Aiken in [7].

Even though it has remarkable results, MOSS has its lim-
itations which are more obvious in object oriented languages
where the textual analysis cannot cover anymore particular
programming techniques like encapsulation, polymorphism,
inner classes etc. Moreover, the tool is not really useful when
checking programs implemented in different programming
languages.

JPLAG was designed by Lutz Prechelt, Guido Malpohl and
Michael Philippsen and it is based on a known algorithm called
Greedy String Tiling. All programs are converted into token

Fig. 1. ANTIS Architecture

Fig. 2. AST for Hello World program

strings which are going to be compared by trying to cover one
token string with substrings called tiles taken from the other
as well as possible.

A detailed pseudocode and also a critical analysis of per-
formance are provided by its creators in [5]. Although the
experiments done for Java programs proved to be successful,
the authors confess that the results obtained might apply to a

lesser degree for C and C++ and they might also be weaker
for differently structured or larger programs.

In [9] Wuu Yang describes an algorithm for tree match-
ing based on dynamic programming which can be used for
identifying syntactic differences between two programs. It is
inspired from the well known Longest Common Subsequence
algorithm which is generalized from a sequence of tokens to
a sequence of trees. Based on a matrix W with values of 0
or 1, depending on whether the tree at index i from the first
sequence is similar to the tree at index j from the second
one, a dynamic programming scheme is applied to find the
number of pairs in a maximum matching between the two
trees. The problem is that this algorithm does not handle well
transformations such as method or instructions reordering and
the comparison time depends on the amount of differences
between files and the places where they occur. The heuristics
used for reducing the processing time, such as comparing
only methods with identical names, are very simple and most
probably less efficient, since one of the most common code
transformation is renaming identifiers.

In article [3] Matt G. Ellis and Claude W. Anderson describe
a method of coding the parse tree associated to a program by
generating a string during a pre-order traversal. The plagiarism
can be identified by using the Greedy String Tiling algorithm.

Jason T. L. Wang and Bruce A. Shapiro propose in [8]
an algorithm for finding the largest approximately common
substructures of two trees. An interesting approach for trees
comparison based on bio-inspired algorithms is presented by
Olfa Sammoud, Christine Solnon and Khaled Ghedira in [6]
and a performance analysis of three algorithms for maximum
common sub-graph detection on a wide database of graphs is
realized in [2] by D. Conte, P. Foggia and M. Vento.

III. SYSTEM ARCHITECTURE

This section presents the architecture of our plagiarism
detection tool and offers a detailed description of each compo-
nent illustrated in figure 1. As we have developed the detection
tool based on abstract syntax trees comparison, we make
a brief description of the first stages of any compiler, we
introduce the programming language that we have used for
testing our algorithms, we define the targets of the detection
engine and we end this section with the description of the
interface used for displaying the results.

Our interest was to study and explore new ideas for the
problem of plagiarism detection in source code, with the aim
of reaching some language agnostic techniques. Considering
the fact that our main concern was related to the algorithmic
part of the project, we decided to develop this software for a
small programming language designed for teaching the basics
of compiler construction to undergraduate CS majors.

In spite of its simplicity, the Classroom Object Oriented
Language, presented by Alexander Aiken in [1] as COOL,
retains many of the features of modern programming lan-
guages including objects, inheritance, static typing and au-
tomatic memory management. Another reason for choosing

COOL was the fact that it is object oriented, because we also
wanted to offer a better solution to other plagiarism detection
tools which proved to be inefficient with this programming
paradigm.

Listing 1. Hello World program in COOL
c l a s s Main i n h e r i t s IO {

main () : SELF TYPE {
o u t s t r i n g (” H e l l o World !\ n ”)

} ;
} ;

We illustrate a simple program written in COOL and the
associated abstract syntax tree generated according to the
COOL grammar in figure 2. Further details will be given
during the following sections of the article.

A. Parsing Framework

Lexical analysis breaks the source code text into small
pieces called tokens. Each token is a single atomic unit of the
language, for instance a keyword, identifier or symbol name.

The token syntax is a regular language, so a finite state
automaton constructed from a regular expression can be used
to recognize it. This phase is also called lexing or scanning,
and the software doing lexical analysis is called a lexical
analyzer or scanner.

Syntax analysis involves parsing the token sequence to
identify the syntactic structure of the program. This phase
typically builds a parse tree, which replaces the linear sequence
of tokens with a tree structure built according to the rules of
a formal grammar which define the language’s syntax.

The parse tree is often analyzed, augmented, and trans-
formed by later phases in the compiler.

Semantic Analysis is the phase in which the compiler
adds semantic information to the parse tree and builds the
symbol table. This phase performs semantic checks such as
type checking (checking for type errors), or object binding
(associating variable and function references with their defi-
nitions), or definite assignment (requiring all local variables
to be initialized before use), rejecting incorrect programs or
issuing warnings.

Semantic analysis usually requires a complete parse tree,
meaning that this phase logically follows the parsing phase,
and logically precedes the code generation phase, though it is
often possible to fold multiple phases into one pass over the
code in a compiler implementation.

B. AST Reduction

One of the project challenges is to ensure a stable frame-
work able to detect similarities between programs imple-
mented in different programming languages. In order to ac-
complish this we have to introduce an intermediate stage
between the parsing process and the actual detection layer
of the architecture, which will be able to bring the abstract
syntax trees generated from different grammars (for example
COOL and C) to a simplified canonical representation. This
means, that after applying a certain set of transformations,
the two trees will have the same layout, which will make
the detection tool a language independent application. This

is a theoretical layer, so in this article we will focus on
the algorithms that we propose for plagiarism detection and
we present the experiments that we have done with COOL
programs.

C. Detection Layer

The system architecture is composed of several plug-ins
which represent a powerful detection tool able to identify
various structural modifications of the source code. We have
developed and analyzed five methods: three of them may
be considered blind, because they rely on a pure structural
comparison of the AST, one of them is a brute-force algorithm
which led us to the last and our most important algorithm
representing a new approach in the field of tree structural
comparison: hashing tree matching.

As we have mentioned before, the detection tool will
identify plagiarism in sources that use the following basic
methods of transformation from simple to more complicated
techniques:

1) Comments. Add, remove or change comments is a very
simple transformation which must not be neglected since
the plagiarist could manipulate the size of the program
only by editing the explanations attached to different
parts of the original code.

2) Renaming. A plagiarist will certainly change the name of
identifiers including class names, method names and also
variable names, transformations which do not change at
all the structure of the original program.

3) Reordering. Moving field variable declarations from the
top of the source to the bottom, changing the order of
the methods, represent a type of transformation which
modify the appearance of the code source and might
induce in error a naive analyzer.

4) Splitting. A big chunk of code can be easily broken into
two or even more methods, each of them implementing a
small part of the desired functionality. Experienced pla-
giarists may restructure the program’s layout by splitting
the content of different methods, which means that the
original code is kept without significant transformations,
but its position in the program is changed.

5) Inlining. The opposite of the splitting method is method
combination or in-lining methods. Grouping code to-
gether in separate methods makes a program easy to
understand and follow, but replacing method invoca-
tions with the proper code, will definitely complicate
programs structure.

6) Rearranging. This transformation implies that differ-
ent independent program statements can be rearranged
without altering the functionality of the original code.
Even though it is similar with the reordering trans-
formation, code rearranging is a much more difficult
technique, since it is applied to a lower level regard-
ing the program’s structure (reordering operates with
methods, while rearranging moves instructions) and the
plagiarist should be very careful in order to ensure the
functionality of the program.

7) Inserting code. A plagiarist may add pieces of code
to the program with irrelevant side effects to the main
algorithm, in order to make sections of the program to
look different. This may include adding assignments to
new variables, adding invariant mathematical operations
and so on.

Besides these basic types of plagiarism techniques, also
mentioned by J. Hamilton in [4], our algorithm will be able to
detect other language specific techniques which we are going
to present and explain in the results section.

D. GUI Layer

A convenient and conventional way of comparing source
code is using a visual diff tool which shows two files at once
in vertically split window. We have decided to follow this
approach and present the results in a browser window, with
each source file in its own half.

For a friendly display of the identical code, we have
exported the compared files in HTML and we have marked
the portions of code of the reference program that have at
least one match in the other one. When selecting a marked
expression, the corresponding expressions from the other
file are emphasized with a different color. This component
represents the graphical user interface illustrated in the
system’s architecture picture.

IV. ALGORITHMS AND METRICS

In this section we present the evolution of our project, by
analyzing each feature that we have developed in order to
achieve the previous mentioned purpose. We describe several
algorithms and metrics and we prove their impact and rele-
vance in detecting similar source code. We also make a critical
analysis, by demonstrating the complexity of each algorithm
used, by emphasizing the strenghts and weaknesses for each
technique and by illustrating their behavior on different test
cases.

In the following sections we consider the comparison be-
tween two programs P1 and P2, with the associated ASTs
T1 and T2, having n1, respectively n2 number of nodes and
having the heights h1, respectively h2.

A. Euclidian Distance

Considering the fact that our analysis is mostly based on
structural comparison, we will introduce several representa-
tions of the source code.

A straightforward approach would be to consider programs
as points in a vector space, where each component of the
vector is represented by a software metric for the given
program:

• number of methods
• number of variables
• number of loops
• number of conditionals
• number of methods calls

Then, we’ll expect that the more similar programs the
programs will be, the closer they’ll be to each other in terms
of a metric norm.

We quantify the similarity of the sources by computing the
Euclidian distance between the two vectors associated to the
compared programs.

Having x and y the representations of two programs,

x = (x1, x2, . . . , xn) (1)

y = (y1, y2, . . . , yn) (2)

we calculate the distance between them with the following
formula:

d =

√√√√ n∑
1

(xi − yi)2 (3)

We interpret the value obtained as the syntactic difference
between the programs. The lower the distance is, the higher
is the probability that the programs are similar and vice-versa,
the higher the distance is, the lower is the probability that the
programs are similar.

Complexity is proportional to the length of the input, as the
metrics can be computed in a single pass, after AST reduction.
This leads to an optimal algorithm in terms of speed.

This method succeeds when the programs are very similar
and most of the transformations used by the plagiarist are
variables, methods and independent statements reordering.
The following techniques cannot be detected with this simple
metric: declaration of dummy variables, splitting methods in
two or more other methods with same functionality as the
original one, insertion of dead code.

The limitation of this method is obvious now, considering
the fact that a simple transformation as adding several dummy
variables (for instance, 100), will lead to a high value of the
distance between two programs which share most of the code.

We may also state that two programs might have the same
structure in terms of number of variables, number of methods,
number of loops etc, but the semantic and even the statements
are very different. In the context of programming assignments,
there is a good chance that some homeworks are designed
after a certain pattern which the students will follow, so in this
situation this metric will detect a huge set of identical sources,
but most of them will probably prove to be false positives.

Another disadvantage is that we can not detect and indicate
the segments of code that are identical in both programs so this
method offers only a blind global estimation of the similarity
between two programs.

B. Global AST Comparison

A dynamic programming approach for this problem is mo-
tivated by the apparent resemblance of the task of comparing
two source files to the task of computing the Levenstein
distance between two strings. The major difference though,
is that the Levenstein distance, which is trivially computed
by dynamic programming doesn’t apply directly to the more
complex changes used by plagiarists.

1

2

3

Fig. 3. Tree String Representation

The first algorithm that we have designed for identifying
structural similarities between the abstract syntax trees of two
programs is based on the intuitive observation that two trees
can be considered similar if they have similar number of nodes
per each level of its height.

There are three basic steps of this algorithm:
Step 1. First, we compute the number of nodes per each level

of the compared trees with a level-order traversal algorithm
which has a linear complexity: O(ni).

Step 2. We thus generate a vector representation for each
AST, where for a vector v, vi is the number of nodes in the
i-th level of the three.

Step 3. Third we apply the LCS algorithm for the vectors
generated at step 2 v1 and v2 of lenghts l1 and l2 and the
result is a vector that represents the best match between the
compared trees regarding their levels layout.

This vector quantifies the similarity between the two trees
according to the formula 4:

s =
len (LCS (v1,v2))

max (l1, l2)
(4)

For instance, in figure 3 the associated representation of the
tree is the the vector v = (1, 2, 3).

LCS algorithm’s complexity is also polynomial depending
on the lengths of the two strings: O(l1l2).

The final complexity is composed of the complexity of
computing the number of nodes per each level of the AST
for both programs and the complexity of finding the longest
common sequence between the two trees codifications:

C = O(n1) + O(n2) + O(l1)O(l2) (5)
Since l1 and l2 are bounded by the number of nodes in each

tree, the complexity is trivially O(n1n2)

The previous inequality results from the observation that
the number of levels of a tree is always less or equal than the
number of nodes: the limit case is a tree with one node per
each level, so that the total number of nodes is equal with the
tree’s height.

This algorithm has the ability of detecting similar patterns
between two tree layouts. A tree layout is defined as the
number of nodes per each level and a pattern represents the
maximum set of tree levels with identical layouts.

Even though this algorithm provides a better analysis of the
syntactic structure of the programs, it is still a blind method,
since it does not make any difference between the nature and
type of AST nodes, and this may lead to false positives.

C. Local AST Comparison

In order to reduce the false positives that we have mentioned
before, we decided to apply the same algorithm at a lower level
in the AST structure. In this manner, we apply the previous
algorithm for each pair of methods of the compared programs.

Suppose that each program has m1 and m2 methods, we
build a matrix W of size m1m2, where the element wij

represents the percentage of similarity between the method
i from program P1 and the method j from program P2.

In this manner we determine the best fit for each method
k as the maximum value in line k of matrix W . A global
value of similarity of the two programs can be calculated as
the medium value of the highest percentages on each line of
the matrix.

s =
∑m

i=1 max(wi)
m2

(6)

A property of this approach is that a method in the second
program may be potentially matched against several methods
in the first one. This might seem like a disadvantage at first,
but it addresses the plagiarism technique of splitting a method
into pieces.

This is a better approximation of the structural similarity
between trees T1 and T2 because the false positives are not
propagated between different methods and they remain limited
only to the current compared method.

D. Brute-force Tree Matching

As we have noticed, the previous algorithms are global
and they do not provide methods for identifying the similar
segments of code, they can only estimate a percentage of
similarity of the programs regarding their AST layouts.

The purpose of a plagiarism detection tool is to identify
those portions of code that are identical or very similar in
both programs.

Adding the restriction that two expressions are matched if
and only if they are exactly the same, a brute force algorithm
will try to compare each expression from P1 with each
expression from P2 recursively until two different elements
are found. If there are no differences, that pair of expressions
is a match.

Each node of the AST is a pointer to a COOL expression
and also a root of a sub-tree. In other words, a node that
contains a terminal (object, integer, string etc.) will match only
a node with the same type of terminal, and a non-terminal node
will match another node if two conditions are met:

1) both must have the same type (conditionals, loops,
assigns etc.)

2) their child trees must be identical
For instance, let’s analyze the case of comparing two

conditional expressions. According to the COOL grammar,
a conditional expression can be represented as a tree with
the root containing a keyword that indicates the expression’s
type and three children: condition, then-clause and else-clause.
So, two conditional expressions match if they have the same
condition, the same then-clause and the same else-clause.

This algorithm’s complexity is exponential, and this makes
it unacceptable, but there are actually three conditions that
have to be respected in order to make this algorithm fail:
the programs should be very big, a high percentage of their
code should be identical and there should be many levels of
imbrications.

As we have described the algorithm, it is recursive and it
stops when two different nodes occur, which means in certain
situations when the programs don’t share a big portion of
their code and the copied segments are not represented by
expressions with many levels of imbrications, the algorithm
succeeds.

In spite of this, the many restrictions that we have indicated
are difficult to control and the exponential complexity does not
recommend this algorithm. The importance of this algorithm
is given by the idea of matching identical expressions, which
represents the base of the next algorithm.

E. Hashing Tree Matching
This algorithm guarantees the fact that our tool is an invari-

ant to all the plagiarism techniques that we have mentioned. In
addition, it allows us to identify exactly the portions of code
that are identical in both sources and it is very efficient, fact
which is going to be proved soon.

The tree matching problem, also known as the maximum
common sub-tree problem, is NP-complete, so there is no
deterministic algorithm able to compute the maximum match
between two trees.

As we have seen in the global AST comparison, a good
heuristic is to associate a codification to the trees and to try
to identify similar patterns in those representations.

The codification that we propose at this point is to apply
a hash function for the tree so that the resulted value will be
an identifier for that kind of tree. We have agreed that each
node of the AST is actually a pointer to a COOL expression
and can be also viewed as a root of a sub-tree that dominates
another expression.

The idea is to assign to each node of the AST a hash value
which represents an identifier for that particular kind of tree.
The comparison between two trees is immediately reduced to a
simple comparison between hash values. Two trees are going

to be considered identical or similar if they have the same
hash value stored in their roots.

The algorithm signals those expressions from program P1

that have at least one match in program P2 and has the
following steps:

Step 1. The first step is to compute a hash function for each
tree node, and then store these values in a hash table. A node
in an AST is a COOL expression.

The hash function should be chosen in such manner that
it reflects both the relationship between tree nodes (parent-
children) and also the type of the expression that it points
to. We associate for each type of AST node (class, method,
conditional, loop, assign, let, object, integer, string, bool etc.)
an unique code, which is an integer value.

The hash value of a tree t is obtained by applying a function
that combines the hashes of the children, and another function
that combines the resulted value with the code of the hashed
node as we can see in formula 7.

hv(t) = f(code(t), g(child1, child2, .., childn)) (7)

where t is a node of the tree, code(t) is a function that
returns an integer value acording to the node’s type and
child1, child2, . . . , childn are the node’s children.

In order to compute the hash values for each node, a
preorder traversal of the AST is required.

Algorithm 1 hash(n)
h := e // identity element of g

for all c in children(n) do
h := g(hash(c), h)

end for

h := f(code(n), h)
T[h] = T[h] ∪ n

return h

Two types of collisions may occur in the hash table during
generation:

1) Identical sub-trees with the same hash value (trivial
case). This cannot be avoided and we do not want that
anyway, because they belong to different expressions
from the tree.

2) Different sub-trees with the same hash value. This type
is less probably to appear and can be avoided with a
proper hash function.

After executing these operations for both T1 and T2 we ob-
tain two hash tables H1 and H2 representing the codifications
associated to the compared programs.

Collisions are solved by chaining, as it is shown in the
algorithm.

Step 2. At this point, the natural move is to compare the
codifications generated at previous stage for the programs.

Fig. 4. Hash Encoding Example

This means that the algorithms iterates one of the hash tables
and tries to find identical key values in the second one.

The number of key values in the hash table is lower or equal
than the number of nodes in the tree, because there can be at
most n different kinds of sub-trees in a tree with n nodes.

We therefore need to match trees with same hash values in
both the tables. A tree in the the first table may match one in
the second if they have the same hash values and:

1) The trees should be identical, which means that if the
second type of collisions appear, we have to reject the
tree as a suspect. A very simple heuristic help us manage
this situation: a pair is marked as match if both trees
have the same number of nodes and the same type of
roots.

2) If the current list of suspects already contains a tree
which is an ancestor of the analyzed tree, it will be
ignored, because we want to keep only the maximum
match between two expressions.

3) If the current list of suspects contains children of the
analyzed tree, it will be marked as suspect, but not before
removing all its children.

All basic methods of code plagiarism and more others are
detected by this algorithm, fact which is going to be analyzed
in the Experimental Results section.

An important observation is that by having g be a commu-
tative function, the plagiarism technique of reordering pieces
of code is addressed

Another interesting feature of this algorithm is that is allows

us to define equivalent expressions which may be very useful
in a complex programming language like C: for instance, a
while with a for. This can be achieved by ensuring that the
hash function provides the same value when it evaluates those
types of expressions.

The efficiency of the algorithm can be easily proved by
demonstrating the complexity:

• the phase of generating hash values for each node of
the AST is done during a pre-order traversal of the tree,
which means the complexity is linear O(n1) + O(n2).

• the matching process between hash tables keys needs
maximum n1n2 comparisons, because a table’s size is
lower than the number of nodes of the AST.

The final complexity is the same as the one of the Global
AST Comparison algorithm: O(n1n2). We succeeded in
providing a better heuristic, with more accurate results on
various types of code plagiarism, but more important, the
algorithm is also very efficient.

V. IMPLEMENTATION DETAILS

In this section we provide several details regarding the
implementation of the tool, including the technologies used,
information about the AST structure, an example of hash
function that we have used for testing and the way we display
the results in html.

The parsing framework was developed in ANTLR and
JAVA, the detection algorithms in JAVA and the GUI in HTML
and JAVASCRIPT.

The hash values are computed during a post-order traversal
of the AST, as we can notice from the pseudocode illustrated
in algorithm 1. Each distinct hash value becomes the key of
a table which stores a list of nodes that are identified by that
hash value.

The hash function that we have used for testing has the
following form:

hv(t) = code(t) + M

n∑
1

code(childi) (8)

where M is a prime number which ensures the dispersion of
the table.

In figure 4 it is illustrated the hash encoding for the
AST associated with the Hello World program. For instance,
the hash values of the terminals SELFTYPE and String are
identical with their associated codes: 1 and 2.

For the dispatch node we obtain the hash value by calculat-
ing the sum of the children’s hashes which is 3, multiplying
it by 7 (which is the prime number from the above formula)
and finally by adding the node’s code which is 3. The hash
value resulted is 24. In the same manner we obtain the block
node’s hash equal to 179 and so on.

In order to mark a tree as a suspect, we need the whole
list of its ancestors, because according to the last conditions
specified in the previous section, we have to check if either
its ancestors, or its children have already been marked.

TABLE I
LIST OF TESTED TRANSFORMATIONS

Test Transformation
1. Change variable names
2. Reorder independent instructions
3. Insert dead code
4. Change loop condition
5. Split a method in more methods
6. Change method prototype, by adding dummy parameters
7. Add dummy variables as class members
8. Extend a class with a dummy interface
9. Exchange two variables names

10. Split a complex expression in multiple expressions
11. Replace equivalent operators
12. Change methods order in class
13. Change classes order in program
14. Code inlining
15. Additional instructions to an identical segment of code
16. Identical programs
17*. Alternative algorithm: iterative and recursive versions

For this, a level-order traversal is required and at each step,
the visited node stores a list containing an identifier and the
list of identifiers from its direct parent. In this way, the chain
of ancestors are propagated to the leaves of the tree.

Regarding, the abstract syntax tree, this is implemented with
an array of pointers to their children, fact which makes all
tree traversals that we have used to execute in linear time. An
AST node contains complete information about its type (what
kind of COOL expression represents), the line number where
it occurs in the parsed file, the list of its ancestors and the list
of its children and also the most important element of our last
algorithm, the hash codification.

We also developed a very convenient visual tool for com-
paring source files. The tool takes as input the annotated token
stream along with the hash values computed for each program
element.

Since the hash matching algorithm is local, we already have
information about the matching pieces of code, which can be
displayed by simply hovering the mouse over the interesting
sections of code. This is big advantage over global metrics,
since it allows manual inspection of the reported plagiarism
cases.

The pretty-printing is realized by intercepting the tokens
flow resulted from the parser phase of the program. The tree
structure of the parsed program is simulated with html span
tags having as id attribute the unique integer value associated
to each AST node during the pre-order traversal. In the
same time, the identifiers of the matched nodes are passed
to a javascript that handles mouse events and highlights the
identical elements of the programs.

VI. TEST SCENARIOS

In this section of the article we present a large set of
tests that we have used for the evaluation of ANTIS and we
illustrate and explain the results obtained.

We have tested the application on programs containing a
large list of transformation usually used by plagiarists. These

are enumerated in table I. ANTIS has an excellent behavior
on this these methods of plagiarism and detects the copied
instructions even if the code is rearranged or is masked with
equivalent operators.

The last record of the table is marked with a star because
it represents a special case of test, when we tried to imple-
ment algorithms in different ways, for example an iterative
method and a recursive one. These tests prove that the tool
is well guarded against false positives, since they cannot be
considered similar because they use a different programming
technique.

The results obtained on a set of 24 tests with programs
of different sizes transformed according to the techniques
specified in I are presented in table II.

The file size is given in number of lines (nol) and the
similarity between two files is given as a percentage which
represents the number of matched nodes from the AST of the
reference file.

In test 1 we modified a program by reordering the clauses
of two conditional expressions. The rest of the file remains the
same, so that the similarity is almost 90% and the execution
time is 114 ms.

Two identical programs with large sizes (over 400 lines),
but with methods order changed represent test number 2. The
similarity is maximum and the execution time is around 700
ms. The same technique is applied in test 16 too with the same
results.

Test 3 sustains the fact that the tool is not tricked by false
positives, as we coded the same algorithm with two different
techniques: recursive and iterative. The similarity is around
47% because of the small size of the programs 24 and 32
lines, but the only matched segments of code are the Main
methods.

Test 4 contains another common transformation, which
changes the loop direction. In spite of this, ANTIS detected
the identical code placed in the loop instruction in 89 ms, so
that the percentage of similarity is very high: 81%.

Test 5 starts with a method that generates the prime numbers
and modifies it by splitting different parts of it in other
methods such as: checkCondition, executeLoop. The execution
time is insignificant and the similarity is almost 90%.

A similar strategy is applied in test 9 with the same good
results. The same operations are realized on a bubblesort
algorithm in test 14.

In test 6 we combine three techniques: we add a dummy
method, we change the methods order and we insert a method
invocation into an identical segment of code. The execution
time is very small and the similarity is exactly how we expect
to be: 79%.

Test 7 inserts a set of dummy class variables, transformation
that is detected by ANTIS which highlights the whole program
as being identical with the other one.

Test 8 uses an object-oriented technique called upcast:
instead of instantiating a certain class, we instantiate a dummy
class that inherits from the original one. ANTIS returns

TABLE II
PERFORMANCE

Test Files Size (nol) Execution Time (ms) Similarity (%)
1. 48/48 114 89
2. 427/407 710 100
3. 24/32 10 47
4. 83/83 89 81
5. 41/54 12 89
6. 24/32 57 79
7. 50/70 11 100
8. 353/368 114 100
9. 24/31 9 75

10. 70/90 15 79
11. 265/320 15 79
12. 103/105 23 82
13. 427/435 214 97
14. 166/166 84 93
15. 416/420 122 100
16. 196/197 45 97
17. 144/143 31 100
18. 53/58 10 85
10. 416/420 163 100
20. 11/20 6 53
21. 52/52 8 100
22. 35/44 8 87
23. 957/1078 277 82
24. 556/1078 446 95

a maximum similarity between the two programs and the
execution time is around 350 ms.

Test 10 inserts dead code in the original program, but
this proves to be an unsuccessful method too, because our
tool marks immediately the identical segments, returning a
similarity of 80%.

In test 11 we applied another object-oriented method, by
adding an unused interface to the original class, while in test
12 we added some dummy parameters to the methods. In both
cases, ANTIS displays a similarity close to 100% with a very
small execution time too.

Test 13 we modify a large program with more than 400
lines, by using a recursive algorithm for computing factorial,
instead of an iterative one in a certain method. The rest of
the program remains unchanged and ANTIS highlights it as
identical, while the factorial function remains unmarked. The
similarity is close to 100% and the execution time is 214 ms.

In tests 16 and 17 we rename different variables and
methods and the similarity is maximum.

In test 18, instead of having a method and calling it, we
simply replace the invocation with its code. In this case the
method’s code is still matched and the similarity is 85%.

Other tests using equivalent operations, expression split,
loop split or even identical code had the same good results
as the previous ones.

Tests 23 and 24, which represent comparisons between large
programs that combine the complete set of transformations
that we have suggested in the previous tests, are meant to
confirm the efficiency of the algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We have developed a set of heuristics that offer a new per-
spective in the field of source code plagiarism. Our ideas and
algorithms are analyzed in terms of correctitude, complexity
and efficiency and are supported by a large set of tests that
cover the most common techniques used for modifying the
programs.

We also present the evolution of our project, by analyzing
each feature that we have developed in order to achieve the
previous mentioned purpose. We describe several algorithms
and metrics and we prove their impact and relevance in
detecting similar source code. A critical analysis is done
by demonstrating the complexity of each algorithm used, by
emphasizing the strengths and weaknesses for each technique
and by illustrating their behavior on different test cases.

After studying other tools for detecting plagiarism, we
realized that most of them make a textual analysis of the
sources, fact which might not reflect the complex and non-
linear structure of a programming language. The AST is a
relational structure that provides a better understanding of the
code, fact which convinced us to make a tree based comparison
of the programs.

At this point, we have easily reduced the challenge to the
well known tree matching problem, which has been proved
to be NP-complete, as there is no deterministic algorithm
able to compute the maximum match between two trees.
In consequence, we developed several algorithms based on
structural analysis of the abstract syntax trees and certain
heuristics to identify identical sub-trees.

As future work we plan to extend the parsing framework
in order to test the tool on C and JAVA programs and we
also want to explore the idea of finding a canonical AST
representation that will allow us to compare programs written
in different programming languages.

REFERENCES

[1] A. Aiken. Cool: A portable project for teaching compiler construction.
ACM Sigplan Notices, 31(7):19–24, 1996.

[2] D. Conte, P. Foggia, and M. Vento. Challenging complexity of maximum
common subgraph detection algorithms: A performance analysis of three
algorithms on a wide database of graphs. Journal of Graph Algorithms
and Applications, 11(1):99–143, 2007.

[3] M.G. Ellis and C.W. Anderson. Plagiarism Detection in Computer Code.
2005.

[4] J. Hamilton. Static Source Code Analysis Tools and their Application to
the Detection of Plagiarism in Java Programs.

[5] L. Prechelt, G. Malpohl, and M. Philippsen. Finding plagiarisms among
a set of programs with JPlag. Journal of Universal Computer Science,
8(11):1016–1038, 2002.

[6] O. Sammoud, C. Solnon, and K. Ghedira. Ant algorithm for the graph
matching problem. Lecture Notes in Computer Science, 3448:213–223,
2005.

[7] S. Schleimer, D.S. Wilkerson, and A. Aiken. Winnowing: local algorithms
for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, page 85. ACM, 2003.

[8] J.T.L. Wang, B.A. Shapiro, D. Shasha, K. Zhang, and K.M. Currey. An
algorithm for finding the largest approximately common substructures
of two trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(8):889–895, 1998.

[9] W. Yang. Identifying syntactic differences between two programs.
Software - Practice and Experience, 21(7):739–755, 1991.

	Introduction
	Related Work
	System Architecture
	Parsing Framework
	AST Reduction
	Detection Layer
	GUI Layer

	Algorithms and Metrics
	Euclidian Distance
	Global AST Comparison
	Local AST Comparison
	Brute-force Tree Matching
	Hashing Tree Matching

	Implementation Details
	Test Scenarios
	Conclusions and Future Work
	References

