
An adaptive scheduling approach
in distributed systems

Olteanu Alexandra
University of “Polytechnics” Bucharest

olteanu.alexandra@gmail.com

Abstract—Choosing a good scheduling approach is an impor-
tant issue for the performance of an application launched onto
a distributed systems environment. Many scheduling algorithms
have been proposed, studied and compared, but there are few
studies comparing the performance of scheduling algorithms
considering at the same time the distributed system structure on
which we want to schedule the tasks, the type of directed acyclic
graph (DAG), in which graph nodes represent tasks and graph
edges represent data transfers, and the type of tasks, for example
CPU-bound vs. I/O bound. Choosing the best known scheduling
algorithm can improve performance of an application if all the
aspects previous enumerated are considered. This paper wants to
propose a method for choosing, in a dynamic manner, the most
appropriate scheduling algorithm for a particular distributed
system, which is analyzed.

Index Terms—Grid scheduling; Communication to Computa-
tion Ratio; scheduling algorithms; adaptive scheduling; System
resources taxonomy;

I. INTRODUCTION

Due to the NP-complete nature of scheduling problems, the
quality of schedule solutions produced by existing scheduling
heuristics cannot be guaranteed. Scheduling is the process
of allocating a set of resources to tasks or jobs to achieve
certain performance objectives satisfying certain constraints.
When considering a system, a programmer must decide which
scheduling algorithm will perform best for the use system
is going to see. Unfortunately, there is no universal best
scheduling algorithm. Choosing the best known scheduling
algorithm can improve performance of an application if aspects
like the distributed system structure on which we want to
schedule the tasks, the type of directed acyclic graph (DAG)
and the type of tasks are considered.

This paper proposes a method for choosing, in a dy-
namic and automatic manner, the most appropriate schedul-
ing algorithm for a particular distributed system, which is
analyzed. This approach can bring significant improvements
for the application execution, because scheduling algorithms
take decisions considering different methods to calculate the
allocation of resources to tasks, prioritizing in various ways
the costs.

Similar approaches proposed by research community like
[3] describe different criteria for evaluation of algorithms,
considering a different way to classify applications: concur-
rent, pipelined and parallel. In classic approaches, usually
is presented only one new scheduling algorithm, which is
compared with a set of well known scheduling algorithms,

using a set of specific experimental tests, usually regarding
just one type of resources, homogeneous or heterogeneous.

II. A NEW SCHEDULING APPROACH

In realistic cases, a scheduling algorithm needs to address
a number of issues. It should exploit the parallelism by
identifying the task graph structure, and take into consideration
task granularity (amount of computation with respect to com-
munication), arbitrary computation and communication costs.
Furthermore, we should also consider the system homogeneity
which can be determinate using the standard deviation of re-
sources CPU power, memory and bandwidth (in simple terms,
it shows how much variation there is from the ”average”) and
system resources structure.

A. Used terms

Therefore, we will introduce some terms that will help us
in our analysis:

• CCR(Communication to Computation Ratio)
Definitions found in the literature usually assume CCR
defined as the average edge weight divided by the average
node weight. With the help of CCR, one can judge the
importance of communication in a task graph, which
strongly determines the scheduling behavior. Based on
CCR we will classify graph tasks considering:

– CCR < 1 - coarse grained graph
– CCR = 1 - mixed
– CCR > 1 - fine grained graph

• Granularity
Depending on its granularity, which is a measure of
the communication to computation ratio, a DAG can be
coarse grained (the computation dominates the commu-
nication) or fine grained (the communication dominates
the computation). Granularity of a DAG is defined as:

g(G) = min(cn(x)/max(c(x, i))), (1)

where cn(x) - is the computation cost of node x
c(x, j) - the communication costs from node x to
node j
x, j - represents the nodes and can take values from
1 to the number of nodes

So we can conclude:
– I/O bound term is equivalent with fine-grained
– CPU-bound term is equivalent with coarse-grained

System
Resources

heterogeneous

homogeneous

same cluster

shared
communication

complete

same memory

same CPU power

shared comm

same cluster

same cluster

same cluster

shared comm

shared comm

Fig. 1. System resources taxonomy

Intuitively a graph is coarse-grained if the amount of
computation is relatively large with respect to commu-
nication.

• RCCR (Resources Communication to Computation
Ratio)
Resources can be also analyzed considering a parameter
very similar with CCR, but while CCR represent the
needed Communication to Computation Ratio, this pa-
rameter represent the available Communication to Com-
putation Ratio.

• Heterogeneity
Numerous heuristics have been proposed for scheduling
DAGs both for heterogeneous and for homogenous com-
puting environment. Consequently, some scheduling algo-
rithm work better on one environment type than another.
We determined the system heterogeneity or homogeneity
using the standard deviation function.

• Communication medium
Another important aspect that should be considered when
scheduling DAGs is the available amount of communica-
tion bandwidth.

B. System classification

Our approach aim is to take into consideration all of the
enumerated terms, and based on their definitions and the brief
descriptions given above to find a realistic system taxonomy.
We first classified the applications based on tasks type, using
CCR and task granularity. This classification can be seen
below in Fig.2:

mixed

CPU bound

I/O bound

Application

Fig. 2. Application taxonomy

Fig.1, highlights the system resources taxonomy, which
consider the last two terms previously presented. It can be
observed that heterogeneous systems are divided into three
categories described by the calculated values of standard
deviation functions for CPU power and memory. If both values
are quite high compared to zero, the system is considered
complete heterogeneous. On the other hand, if only one value
is satisfying this consideration, the system is considered to
be heterogeneous because of a single value, CPU power or
memory. In addition, another observation can be made about
the classification according to communication environment: re-
sources are coupled via a dedicated or shared communications
medium.

Lastly we should make one more classification considering
RCCR parameter, which will be correlated in our tests with
CCR parameter (needed vs. available resources communica-
tion to computation ratio). This classification also divides the
system in another three categories depending on the difference
from the value 1: lower, higher or equal.

C. System analyzer

Furthermore, we designed a method for choosing, in a dy-
namic manner, the most appropriate scheduling algorithm for
a particular distributed system considering all this elements.
Our method is composed from three major steps:

• Step 1: gathering the data about the system, using a
system monitor, and starting the system analysis

• Step 2: analyzing the system from three point of view:
– analyze system resources structure - here we consider

RCCR parameter and the resources heterogeneity
(classification is based on the resources taxonomy)

– analyze DAG type (application parameters) - for this
we use CCR parameter

– analyze DAG tasks type - this represent the task
granularity, but in this version we included this
analysis in the DAG type analysis

• Step 3: choosing the best algorithm considering the
analysis results

Starting
system analysis

Analyze
resource
structure

Analyze
DAG
type

Analyze
tasks
type

Choose the best
algorithm considering
the analysis results

Schedule

Fig. 3. System analyzer diagram

These steps are also presented in the below figure:
This approach take into account that, in general cases,

scheduling algorithms are designed considering a limited num-
ber of system types, so we can assume that there is no universal
best in terms of scheduling algorithms.

III. DESIGN AND IMPLEMENTATION FOR MONARC II
The MONARC II is a simulator for large scale distributed

systems, having as a purpose the modeling and simulation
of distributed systems, with the goal of predicting general
performances of the applications running on these systems
[10]. MONARC is built based on a process oriented approach
for discrete event simulation, which is well suited to describe
concurrent running programs, network traffic [8].

For modeling the new scheduling concept previously pre-
sented, the MONARC simulator had been extended with
simulation components for analyzing the system, and this is
highlighted in the figure Fig.4. First, the default behavior of the
simulator does not consider the selection of an algorithm (the
most appropriate scheduling algorithm) from a set of schedul-
ing algorithms, which are known by the system. Therefore, we
extended the default behavior of the simulator so that it can
simulate a selection mechanism based on an analysis, which
takes into account all the elements that we have presented in
the previous section: resource structure, DAG type, task type.

The System Analyzer Component is implemented not only
for analyzing the current system, but also to provide an
algorithm selection method. Therefore, it is composed of
two parts: system monitor and system analyzer. The system
monitor receives all necessary data and computes them to
determine a series of parameters. It maps the first two steps of
the presented method. The last step it is mapped by the system
analyzer which analyze the set of parameters and decide what
scheduling algorithm should be used.

IV. EXPERIMENTAL METHODOLOGY

A. DAG generation

To obtain the application DAGs we use a graph generator.
This generator builds the graph, level after level. For each

level, excluding level 0, it is looking for a number of parents
for each node, in the above level.In graph construction are
taken into account the parameters defined in the configuration
file (number of nodes, number of task levels, processing power,
links complexity, communication costs) presented below:
TaskGen configuration file
Number of tasks
dioTasksNumber = 100
Number of task levels
dioTaskLevels = 10
Links complexity
dioLinksComplexity = 4
processing time
dioMinProcessingTime = 9
dioMaxProcessingTime = 90
communication costs
dioMinCommunicationCost = 90
dioMaxCommunicationCost = 195

B. Costs

For the costs analysis we use CCR (Communication to
Computation Ratio) parameter:

CCR =

∑
x,j

c(x, j) ∗ number of nodes∑
x

cn(x) ∗ number of edges
(2)

where cn(x) - is the computation cost of node x

c(x, j) - the communication costs from node x to node j
x, j - represents the nodes number and can take values
from 1 to the number of nodes

C. Resources availability

For resources analysis we consider three important param-
eters:

1) Heterogeneity: To decide if a system is homogeneous or
heterogeneous we use the standard deviation formula for CPU
power and memory:

pd =

√
1

N

∑
x

(p(x)− p) (3)

where p - average links cost
p(x) - the communication costs from node x to node j
x - represents the nodes number and can take values from
1 to the number of nodes

md =

√
1

N

∑
x

(m(x)−m) (4)

where m - average links cost
m(x) - the communication costs from node x to node j
x - represents the nodes number and can take values from
1 to the number of nodes

Task Task Task

Job Job
Job

Job

Activity Activity Activity

DAG Job
Scheduler

CPU CPU CPU
DAG Scheduler
 Algorithm

Job
 DAG
Rescheduler

 Fault
Simulator

 Status
Catalog

Monitor

System
Analyzer

Fig. 4. MONARC II arhitecture

2) Communication medium: For this parameter we also use
the standard deviation to decide if we have a shared or a
dedicated communication medium:

cd =

√
1

N

∑
x,j

(c(x, j)− c) (5)

where c - average links cost
c(x, j) - the communication costs from node x to node j
x, j - represents the nodes number and can take values
from 1 to the number of nodes

3) RCCR(Resources Communication to Computation Ra-
tio):

RCCR =

∑
x,j

cr(x, j) ∗ number of CPUs∑
x

cnr(x) ∗ number of links
(6)

where cnr(x) - is the available computation for CPU x

cr(x, j) - the available communication from CPU x to
CPU j
x, j - represents the nodes number and can take values
from 1 to the number of available CPU

D. Used algorithms

I. MCP (Modified Critical Path) - algorithm based on lists
with two phases: the prioritization and selection of resources.
Parameter used to prioritize nodes is ALAP (As Late As
Possible)

II. CCF (Cluster ready Children First) dynamic schedul-
ing algorithm based on lists. In this algorithm the graph is
visited in topological order, and tasks are submitted as soon
as scheduling decisions are taken. The algorithm considers
that when a task is submitted for execution it is inserted
into the RUNNING-QUEUE. If a task is extracted from the
RUNNING-QUEUE, all its successors are inserted into the

CHILDREN-QUEUE. The running ends when the two queues
are empty.

III. ETF (Earliest Time First) - algorithm based on keeping
the processors as busy as possible. It computes, at each step,
the earliest start times of all ready nodes and selects the one
having the smallest start time.

IV. HLFET (Highest Level First with Estimated Times) -
use a hybrid of the list-based and level-based strategy. The
algorithm schedules a task to a processor that allows the
earliest start time.

V. Hybrid Remapper PS (Hybrid Remapper Minimum
Partial Completion Time Static Priority) is a dynamic list
scheduling algorithm specifically designed for heterogeneous
environments. The set of tasks is partitioned into blocks so
that the tasks in a block do not have any data dependencies
among them. Then the blocks are executed one by one

V. EXPERIMENTAL RESULTS. INTERPRETATION

For taking the best decision about choosing the best schedul-
ing algorithm for a given system we made a number of 165
tests. After analyzing the data gathered from the comparison
of the scheduling algorithms performance we decided which
algorithm from our scheduling algorithms set is recommended
for a particular distributed system. All our tests were done only
using the MONARC II simulator. It provides a low cost testing
tool compared with a real system. Therefore, it is a very useful
tool.

For testing we tried to design a series of relevant config-
uration files to describe different types of system resources.
Correlated with this, we also create input files with different
CCR values. All this resulted in 7 configuration files and
7 input files, used for testing and comparing all known
algorithms.

Our decisions are based on the results presented in three
tables that can be seen below. Each table is correlated with one
of the algorithms that have proven to offer the best scheduling

for at least one system type. As a result TABLE I is for CCF
algorithm, TABLE II for HLFET algorithm and TABLE III for
Hybrid Remapper algorithm. Therefore, we analyze the tables
and try to find a system pattern for each algorithm.

For the tables we made the following notations:
• Res: 0 - homogeneous system; 1 - complete heteroge-

neous; 2 - heterogeneous with the same memory; 3 -
heterogeneous with the same CPU power

• Comm: sh - shared communication medium; cl - same
cluster (dedicated communication medium)

• CCR - Communication to Computation Ratio
• RCCR - Resources Communication to Computation Ratio
Can be noted that for most system types that our tests have

covered, from the set of available algorithms, CCF algorithm
obtained the best results. The system patterns, that we have
observed in TABLE I, are:

• homogeneous, same cluster, RCCR ≈ 1
• complete heterogeneous, shared communication medium,

RCCR > 1
• heterogeneous with the same memory, CCR ≈ 1,

RCCR < 1
• complete heterogeneous, CCR ≈ 1, RCCR < 1
• shared communication medium, CCR ≈ 1, RCCR < 1
• complete heterogeneous, same cluster, RCCR < 1

Nr Res Comm CCR RCCR
0 1 2 3 sh cl < = > < = >

1 * - - - - * * - - - * -
2 * - - - - * - * - - * -
3 * - - - - * - - * - * -
4 * - - - * - - * - * - -
5 - * - - - * * - - * - -
6 - * - - - * - * - * - -
7 - * - - * - - * - * - -
8 - * - - * - * - - - - *
9 - * - - * - - * - - - *
10 - * - - * - - - * - - *
11 - - * - * - - * - * - -
12 - - * - - * - * - * - -

TABLE I

The second scheduling algorithm, for which our results have
proven that it offers the best results for three system types, is
HLFET algorithm. The system pattern that we have observed
in TABLE II is:

• CCR > 1, RCCR < 1

Nr Res Comm CCR RCCR
0 1 2 3 sh cl < = > < = >

1 * - - - * - - - * * - -
2 - * - - - * - - * * - -
3 - * - - * - - - * * - -

TABLE II

Last, but not least, is Hybrid Remmaper algorithm, which
obtained the best results for six system types, TABLE III. The
obtained system patterns are:

• shared communication medium, CCR < 1, RCCR < 1
• heterogeneous with the same memory, same cluster,

RCCR < 1
• shared communication medium, heterogeneous with the

same memory, RCCR < 1

Nr Res Comm CCR RCCR
0 1 2 3 sh cl < = > < = >

1 * - - - * - * - - * - -
2 - * - - * - * - - * - -
3 - - * - * - * - - * - -
4 - - * - * - - - * * - -
5 - - * - - * * - - * - -
6 - - * - - * - - * * - -

TABLE III

After we have compared the obtained patterns we discov-
ered the most powerful parameters associations that decide
what scheduling algorithm should be used for one case or
another:

• CCF algorithm - CCR ≈ 1, RCCR < 1
• CCF algorithm - heterogeneous with the same memory,

CCR ≈ 1, RCCR < 1
• HLFET algorithm - CCR > 1, RCCR < 1
• Hybrid Remapper algorithm - heterogeneous with the

same memory, CCR > 1, RCCR < 1
• Hybrid Remapper algorithm - heterogeneous with the

same memory, CCR < 1, RCCR < 1

Using these results we obtained faster execution times by
up to 12%.

VI. CONCLUSION AND FUTURE WORK

In this work, we have compared the performance of sev-
eral algorithms that represent alternative major approaches
to scheduling a large set of different Grid environments and
applications. Our experiments also show how the performance
of the scheduling algorithms can be affected by different
factors in a Grid computing environment.

We find some system patterns, different sets of factors that
indicate us which algorithm we should use. This confirmed
our expectations, because scheduling algorithms are designed
considering a limited number of system types they will provide
good results just on these cases.

This research covers only a part of the types of system
that we have obtained through our classification. Therefore
our future work will cover all cases that remained untested.
After finishing the analysis on all system types, we intend to
implement this new approach on real systems.

As a last conclusion, we demonstrated the efficiency of
our proposed adaptive scheduling approach for distributed
systems and obtained some interesting results such as the
behavior of Hybrid Remapper algorithm, which gave the
best results for homogeneous environments although it was
designed especially for heterogeneous environments.

REFERENCES

[1] Yu-Kwong Kwok and Ishfaq Ahmad, Benchmarking and Comparison of
the Task Graph Scheduling Algorithms,Journal of Parallel and Distributed
Computing, March 17, 1999.

[2] Yang Zhang, Charles Koelbel and Ken Kennedy, Relative Performance of
Scheduling Algorithms in Grid Environments, Houston, Rice University.

[3] Ravi Chidansh Hema, A Grid system with different scheduling strategies
and dynamically choosing an appropriate scheduling strategy , 6 Septem-
ber 2004.

[4] Andrei Radulescu and Arjan J.C. van Gemund, On the Complexity of List
Scheduling Algorithms for Distributed-Memory Systems,The Netherlands:
Delft University of Technology.

[5] Zhifeng Yu and Weisong Shi, An Adaptive Rescheduling Strategy for
GridWorkflow Applications, Wayne State University.

[6] Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu and Wei Shu, Automatic
Parallelization and Scheduling of Programs on Multiprocessors using
CASCH.

[7] Alberto Forti, DAG Scheduling for Grid Computing systems, PhD thesis,
University of Udine - Italy, 2006.

[8] Florin Pop, Optimization of Decentralized Schedulind Strategies in Grid
Environ- ments, PhD thesis, University of “Polytechnics” Bucharest,
2008.

[9] Alexandra Olteanu, Reschedulind and Error Recovering Algorithm
for Grid Environments, License thesis, University of “Polytechnics”
Bucharest, 2009.

[10] MONARC II, http://monarc.cacr.caltech.edu, Accessed 30 June, 2009.

