
Distributed Hybrid-Storage Partially Mountable File System

Abstract: We have extended the classical approach of a disk partition to a distributed environment. In this way,
a NetFS partition is composed out of several storage fs nodes that are stored on different type of media and/or
computer systems. The file system can be partially mounted, meaning that mounting can be done using only a
subset of the fs nodes. Due to the design of this kind of system, a partition can be dynamically extended or shrunk
while it is mounted without any data loss. Our paper presents the implementation of this file system using FUSE
(which in term offers some advantages – usage of library functions, stability, portability), the problems encountered
and some future work yet to be done.

Key–Words: distributed, file system, hybrid-storage, copy-on-write, extensible, memory, network, partial mounting

1 Introduction

File systems are one of the core components of any
modern computer system. This allows users to store,
organize and retrieve their data. Nowadays, comput-
ers aren’t anymore the only ones using file systems.
Mobile phones, PDA’s, portable media players start-
ing with the very simple $10 player to the very famous
iPod have storage organized using computer file sys-
tems and partitions.

Moreover, today computers do not work alone
anymore. Almost any smart electronic device, com-
puter, PDA, mobile phone etc., is connected to a net-
work, usually to the Internet. The amount of data
that it needs to store and process has increased signifi-
cantly over the past years. If some years ago watching
a movie on a computer was great, today most of the
mobile phones are capable of this. A lot of research
has been done in creating and improving the way in
which large amounts of data can be stored distributed
over several storage devices [6].

The file system that we propose, NetFS, is a dis-
tributed, hybrid-storage and partially mountable user
space file system. There are several file systems that
use concepts similar with NetFS. During the following
paragraphs we shall focus only on few examples.

UnionFS [4] is a service that implements a union
mount for different types of file systems, providing
a unified view for all of their files. Those file sys-
tems are known as branches. NetFS is not mounted
on top of other files systems, but uses the same con-
cept of files stored on different storage devices known

as fs nodes. Like UnionFS, NetFS supports dynamic
insertion and removal of fs nodes (or branches).

Even if NetFS is implemented in user space,
which makes it slower than kernel based UnionFS, it
has several advantages over UnionFS like flexibility
and partial mounting option.

4.4BSD Union Mounts [7] is a file system-
namespace management tool. It merges several file
systems into one virtual system. Union Mounts has
some similarities to UnionFS and as UnionFS it al-
lows to dynamically add and remove the top branch. If
we compare the features of Union Mounts with those
offered by UnionFS or NetFS, we will notice that there
are some features which it does not implement yet. It
does not permit for any nodes to be dynamically added
and removed from the system while it is mounted.
Also it cannot have multiple writable branches, only
the file system at the top of the union stack can be
modified.

MRAMFS [2] is an in-memory file system. It
uses for meta data and data storage the non-volatile
RAM (NVRAM). This file system offers performance
improvement over a disk based file system. Un-
like NetFS, MRAMFS only uses memory for storage,
which means that it is very limited in terms of avail-
able space. To compensate this limit, MRAMFS uses
data compression. The data compression mechanism
is applied to meta data structures and to file blocks.
Because NetFS is a hybrid system that can use storage
adapted to the size of the data to be stored, the im-
plementation of data compression cannot be justified
under current circumstances.

During the paper, we will present our implemen-
tation solution, the way we have solved several distri-
bution problems (conflicts, error-handling, etc.) and
some tests that we have performed on the system.

2 Architecture

2.1 Overview
The goals that we wish to achieve with this file system
are listed below.

1. A NetFS partition is distributed over several in-
dependent parts, called fs node;

2. The fs nodes belonging to a partition can be of
several types (stored on different types of media
– RAM, file, network, etc.);

3. The fs nodes of a NetFS partition can be mounted
independently or in subsets;

4. All the meta data about the NetFS partition and
its files will be stored only on its fs nodes, no
additional control files or storage systems will be
used;

5. The meta data about files will not be replicated
among the fs nodes, meaning the inodes struc-
ture will not be duplicated in any way;

6. The files will be partially accessible (meaning
only the blocks that are on the currently mounted
fs nodes are available) if they are present in a
folder which is on one of the currently mounted
fs nodes;

7. The system needs to be extensible, meaning that
new file storage types may be added without
changing the file systems source code.

Distribution The NetFS partition is split into several
independent fs nodes. Each node contains enough
meta data about the partition so that it can be mounted
separately and also allow the extension (adding nodes)
or shrinking (removing nodes). This is very useful
when used in a network environment where several
fs nodes of the partition can be split over the network
computers. Moreover, it also allows the combination
of storage space on several removable media (USB
drives, CD-ROMs, CD-RAMs, etc.).

Hybrid NetFS partition fs nodes can be stored on dif-
ferent type of media. The system will function the
same, no matter what kind of storage media is be-
ing used for the fs nodes. Storage examples are files,

RAM memory, physical disks, removable media, net-
work computers, etc. By the time of writing of this
paper, we used the first two and the last one.

Partially Mountable The novelty of this file system,
is the ability to mount partially. This means that not
all the fs nodes have to be available at all time. One
can read the files which have the meta data (dirent)
and part of the data (inodes) on the currently mounted
fs nodes and may write files in the limit of the avail-
able space. Moreover, new fs nodes may be added on
the fly with certain conditions.

User Space The goals of this type of file system can
be best achieved by implementing it in user space.
This means that even if it might not be as fast as a
kernel space file system, it is able to implement more
functions. We are talking here about the ability to
use network connections, virtual memory and provide
more stability to the system. In case of failure, the
system kernel will not be affected.

Extensible As stated before, NetFS is a hybrid stor-
age file system, fs nodes being able to be stored on
different media. Due to its construction, support for
new storage types may be added without changing the
code of the entire file system. As an example, we have
added an improved RAM memory storage system,
which assures persistence. The files from memory can
be backed-up on disk while the system is mounted if
the CPU has an average load less than 2%. When this
fs node is remounted the data are restored from the
disk.

Due to the complexity of the file system, we
have chosen a layered architecture inspired by the OSI
model. This makes the development and maintenance
very easy. Layers can be changed without affecting
the other file system components.

The internal organization of NetFS is inspired by
MinixFS [8]. Consequently the file system meta data
are stored in inodes, directories are stored using clas-
sic dirent structures and each fs node contains a su-
perblock. The main difference is that data blocks ad-
dresses contain the fs node id besides the block id.

Building the file system driver in user space
means actually building a normal program. This was
possible by installing a the FUSE [3] kernel module
which redirects system calls to the file system into this
program, and forwards the responses to the system’s
virtual file system. This approach makes the operating
system more stable as crashes of the file system will
not affect the kernel.

Surprisingly, as our tests will show later on, there
is no performance loss due to the system calls for-
warding. Moreover, using the cache features of the
kernel module, the file system might even be faster.

2.2 NetFS Layers

NetFS is designed using three layers: File Manager,
Partition Manager and Read/Write Modules. Each
layer provides functions for the layer above and uses
the functions provided by the layer below. They ba-
sically communicate using a standard interface, so
changing one layer does not require changes into the
others. The schematics of the architecture is illus-
trated in figure 1.

Fig. 1: NetFS Structure

We will discuss now each layer in detail, pointing
out the main features of each one.

2.3 File Manager

The File Manager is the top most component of
NetFS. Its main purpose is to provide the interface
with the user programs, keep track of the partition’s
meta data (inodes) and manage files (create, modify
and delete). It receives all the system calls redirected
by the kernel module to the file system.

The File Manager relies on the Partition Man-
ager for interaction with the distributed file system.
This means that it will send requests for meta data al-
location, modification and deletion, and reading and
writing requests for data. From the point of view of
the File Manager, the file system is not distributed, it
looks like any normal partition.

2.4 Partition Manager

2.4.1 Overview

The middle layer of NetFS is the Partition Manager. It
implements most of the key features of the file system:
distribution, partial mounting and file system manage-
ment. It is the core of the file system.

2.4.2 Distribution

One of the most important feature of NetFS is the dis-
tribution. The file system is able to transparently dis-
tribute a single partition on several fs nodes of differ-
ent storage types (memory, file, USB stick, network,
etc.).

The partition’s files have to be distributed across
the fs nodes. This implies distributing file blocks and
directory entries. Depending on the file system’s us-
age, NetFS supports several algorithms:

• Closest space - if it is possible, new file blocks
will be distributed on the same fs node as the
inode of the file, if not another fs node will be
chosen randomly, first from the locally stored
fs node, and than from the fs nodes stored on the
network and, as a last resort, from RAM stored
fs nodes.

In this case, we have a classic file system, which
uses the distribution just in case it runs out of
space. The local stored fs nodes are chosen first
due to speed considerations and high availability
(they will persistent and most probably available
all the time, regardless of the computers con-
nectivity). The second choice are the network
stored fs nodes, as they are persistent, but not al-
ways available. The last solution are the RAM
fs nodes. They are always available, but not per-
sistent, so data will be deleted on shut down.

• Priority - to each fs node is given a priority, so
new blocks will be distributed starting with the
highest priority fs node which has free available
space.

This could be useful for systems where a parti-
tion is distributed over several persistent storage
devices with different speeds. The fastest device
will have the fs node with the highest priority,
while the slowest device will have the fs node
with the lowest priority. For instance, small lap-
tops with solid state hard drives (usually a small
and fast one and a large and slow one) could use
this system.

Another usage of this system would be a combi-
nation between some read-only media (with no
free available disk space) and writable media. It
is similar to the approach of Union-FS used on
Live CD’s.

• Equal distribution - new blocks will be dis-
tributed in such a way that they fill up the cur-
rently mounted fs nodes equally. The fs node
with the largest free available space will be cho-
sen first.

This leads to a uniform distribution of data. This
system is similar to implementing a partition
over several hard drives using RAID without any
redundancy.

2.4.3 Partial Mounting

Our file system is able to be mounted using only a sub-
set of its fs nodes. Moreover, no centralized meta data
about the entire file system is stored, meaning that the
only meta data available regarding the partition is the
one stored on the mounted fs nodes. This however
creates several consistency and redundancy problems.

The first problem that arises due to distribution
and partial mounting is creating and deleting fs nodes.
Each fs node is identified by a numeric id. As fs nodes
can be mounted separately and at different times and
no centralized meta data about the partition is kept, an
fs node cannot know for sure how many fs nodes the
file system has. This is due to the fact that an fs node
might have been added while the current fs nodes
have not been mounted. Consequently there is no way
of knowing which one is the following fs node id.

The solution that we propose is based on the di-
vide and conquer method. Each fs node has a unique
id stored on 32 bits. We allocate to each fs node an
empty fs node space, which composed out of the list
of id’s that an fs node might give to a new fs node.
This is stored on each fs node as a bitmap. When a
new fs node is mounted, the Partition Manager will
merge its bitmap with the rest of the bitmaps obtain-
ing the allocation space of the current mounted set.

Each time a new fs node is created, it receives a
proportional amount of the free empty id’s of the set
of fs nodes which where mounted at the time of its
creation.

Using this algorithm, each mounted set of
fs nodes will know how many free fs nodes it can cre-
ate. This is also a method of knowing approximately
how much of the file system is mounted.

Another problem that we have encountered is du-
plication of folders and files. Since each fs node may
be mounted separately or in subsets, it may be possi-
ble that a folder or file having the same name and path
to be created on more than one fs node. In case of
folders, the solution is very simple; the content of the
folders will be merged. The problem still remains for
the files. We have applied here the solution of sym-
bolic links.

If a file with the same name exists in the same
folder on different fs nodes, two virtual folders will
be created, having a special name, representing each
fs node on which the file is located. The original files
will be located in the virtual folders. The file dis-
played in place of the conflicting file is a symbolic

link towards one of the two files (chosen by one of the
data distribution priority algorithm, described in the
section above) in the virtual folder. The symbolic link
has been chosen instead of a hard link, so that soft-
ware designed for NetFS would be able to recognize
the conflict.

2.4.4 File System Management

Standard file systems provide special tools for man-
agement (creating, formatting, deleting and querying
for information). This is usually done by accessing
directly the device files associated with the physical
media. This is rather hard to do with NetFS, as it’s
fs nodes stored over multiple media types.

Our approach for this problem is using special file
stored on the NetFS partition. The reading and writing
into these special files using certain parameters per-
forms actions over the partition. The main advantage
of this solution is that fs nodes can be managed dy-
namically, without the necessity of being unmounted
(on the contrary, they have to be mounted). In this
way we can add, modify or delete fs nodes while the
system is working. This is a very important feature
if the file system is used in production environments,
where downtime is not acceptable.

2.4.5 Copy-on-write Function

A very important function of the partition manager is
copy-on-write. This concept is borrowed from the vir-
tual memory system. This allows very fast file copy-
ing inside the partition. This means that copying a file
will actually result in creating a copy of the original
file’s meta data and marking all the file data blocks as
copy-on-write. Each time one of the two files needs
to be modified (the original or one of the copies), the
system will check if the data block is marked. If so, it
will create a copy of it and them modify the copy.

The blocks bitmap of each fs node stores two bits
for each block, instead of one. The number stored is
the number of files that point to that respective inode.
If this number is greater than 1, the block is considered
marked as copy-on-write. Each time a write request is
issued for this kind of block, the system creates a copy
of it and decrements the number in the bitmap. The
copy-on-write functions has though a limit of maxi-
mum three files copies. When this limit is reached,
the next copy request will perform an actual copy of
the block.

This function also applies to entire fs nodes. If
an fs node is read only and marked as copy-on-write,
any write access to the file will be done by creating a
copy-on-write copy of the file on another fs node (if
possible). Once the new file is created, due to the fact

that copy-on-write fs nodes have smaller priority, fur-
ther accesses will be considered accesses to a dupli-
cate file (described in the previous section) and, based
upon access algorithms, the newly created file will be
used instead of the read only one.

2.5 Read/Write Modules

The last layer of the file system is represented by the
Read/Write Modules. This layer is actually composed
out of several modules which perform reading and
writing of bytes from and to different media. This in-
cludes from simple RAM reading and writing to com-
plicated socket engines which retrieve and store data
located on other computers.

Each mounted fs node has an associated
read/write module.

As stated before, on of the goals of our file sys-
tem is to be easily extensible. Read/Write modules are
implemented as dynamically shared linked libraries.
They behave like plug-ins. This allows us the extend
the set of usable storage devices on-the-fly, without
even recompiling the file system’s source code. In this
way, anyone may extend the file system’s storage ca-
pabilities without having any knowledge at all about
the file system’s structure.

The modules have no knowledge of what kind
of data they read or write. They communicate with
the Partition Manager through a very simple interface
composed out of the functions:

• read - reads data from the storage media;

• copy - copies data from a location to another;

• write - writes data to the storage media;

• flush - assures that data are completely written to
the storage media;

• mount - mounts a new storage media;

• unmount - unmounts a storage media.

The Socket Engine is used for communication
between network fs nodes. It uses TCP connections
that are established on-demand when the need to talk
to a remote node appears. The TCP connections are
only terminated upon shutdown. The data received
from the File Manager or from a remote Socket En-
gine are stored in circular buffers.

Data for writing is tagged with numbers. Upon
issuing a write command with a certain tag, all other
commands for the same tag will be delayed until a
response is received from the same tag.

This module also implements a rudimentary
cache: a circular buffer is kept with write commands

and their data. If a read command arrives that can be
satisfied by only looking in this write cache, no other
request will be made, and the reply will be copied (or
assembled from the data in multiple writes) and the
read will be finalized.

Upon detecting a lost connection to a remote
node, the Socket Engine will keep retrying the re-
quests that are already in its buffers, for a certain time.
During the retries, further requests received with a
tag on the node that seems to be down will be in-
stantly answered with an error. If the connection is
re-established before the time is up, pending opera-
tions will be satisfied. If the connection is not estab-
lished, pending operations will be discarded, and they
will return errors to the issuing module.

3 Evaluation
NetFS is still under development, so we have per-
formed only a few performance tests until now. We
have used the file system on a Debian distribution and
on OpenSolaris 2008.11. The tests consisted on copy-
ing files to NetFS having the storage in the memory
and to RAMFS. Solaris tests results are inconclusive
as the Solaris port of FUSE really misbehaves on high
load. As Sun Microsystems states, it is still under de-
velopment. Only Linux tests will be described further
on.

The first test that we have performed was copying
an audio file (3 MB) and a video file (40 MB) into the
both file systems. As expected, RAMFS performed
better.

Fig. 2: Video File Writing

Further on, we have performed tests by increasing
the number of files that where copied. As depicted
in figure 3, the higher the file number, the better the
performance of NetFS over RAMS.

The measurements have been performed several
times using the time command. The copying was per-
formed using the cp command. The tests results are an
average of several successive tests. It must be said that
tests where performed on initial versions of NetFS and
performance parameters might change due to changes
in the implementation.

Fig. 3: 52 Audio Files Writing

4 Future Work
The research for NetFS is only at the beginning.
We are already taking into account the improvement
of the file system by creating much more efficient
Read/Write network storage modules, which would
be able to perform optimal caching functions.

Another important feature that we are looking
into is redundant data storage using the Read/Write
modules. In order to protect data integrity, we are
planning to create persistent storage Read/Write mod-
ules which would be able to store data redundantly,
thus simulating full RAID behavior.

For the moment, an fs node can be mounted only
into one file system at a time. As further work, we
considered a peer-to-peer approach [1]. In the next
version of NetFS a partition could be mounted par-
tially on several computers at the same time. The
new system will have to offer location transparency,
as all participating peers must see the same directory
structure. Because we will use a peer-to-peer storage
infrastructure, some policies must be defined which
will specified how the storage space will be managed
between peers.

Another very important improvement that we are
looking into is a better handling of concurrent sys-
tem calls. For now, calls that modify the fs node’s
inodes or data blocks bitmaps are serialized, which
leads to performance loss on heavy load.

Background data migration is another feature
that we would like to implement. If the Closest space
distribution algorithm is used, data are written to the
closest space available. In time, space may become
available closer. In this case, if the system is idle, the
file system should move data blocks closer. This func-
tion could be thought of as a defragmentation exten-
sion.

5 Conclusion
We have presented in this paper a distributed, hybrid-
storage partially mountable file system. We believe
that this approach is very important for the develop-

ment of data storage. Computers need to take advan-
tage as much as possible of all storage devices, regard-
less of their type making it transparent to the user.

Partial mounting is another advantage of our file
system, as parts of the file system can be dynamically
mounted, unmounted, created or deleted. There is no
downtime involved, making it perfect for usage in a
production environment.

Due to its modular implementation, upgrades and
extension to the file system can be create very easily.
As Read/Write modules are implemented as dynamic
shared linked libraries, the storage capabilities of the
file system can be extended without having to stop the
file system.

References:

[1] A.R. Butt, T.A. Johnson, Y. Zheng and
Y.C. Hu, Kosha: A Peer-to-Peer En-
hancement for the Network File System,
http://people.cs.vt.edu/ butta/docs/sc04.pdf.

[2] N.K. Edel, D. Tuteja, E.I. Miller and
S.A. Brandt, MRAMFS: A compress-
ing file system for non-volatile RAM,
http://ssrc.cse.ucsc.edu/Papers/edel-
mascots04.pdf.

[3] Filesystem in Userspace,
http://fuse.sourceforge.net/.

[4] P. Gupta, H. Krishnan, C.P. Wright,
M.N. Zubair, J. Dave, and E. Zadok,
Versatility and Unix Semantics in
a Fan-Out Unification File System,
http://citeseer.ist.psu.edu/old/702953.html.

[5] F. Isaila, G. Malpohl, V. Olaru, G. Szeder and
W. Tichy, Integrating Collective I/O and Coop-
erative Caching into the ClusterFile Parallel File
System, Proceedings of the 18th annual inter-
national conference on Supercomputing, Malo,
France, 2004, pp. 58-67.

[6] The OceanStore Project, UC Berkeley,
http://oceanstore.cs.berkeley.edu/.

[7] J.-S. Pendry and M.K. McKusick, Union
mounts in 4.4BSD-lite, Proceedings of the
USENIX 1995 Technical Conference New Or-
leans, Louisiana, 1995, p. 3.

[8] A.S. Tanenbaum and A.S. Woodhull, Operating
Systems Design and Implementation, 3/E, Pren-
tice Hall, 2006

