
HybFS: Adding multiple organizational views
through a virtual overlay file system

Abstract—Traditional hierarchical file systems offer a single
organizational view of the data, thus making file searching
and browsing cumbersome in situations when only incomplete
information is available. On the contrary, in a semantic file
system, the navigation is based solely on the additional metadata
associated with files, ignoring the original hierarchy. In this paper
we suggest a non-intrusive method of adding semantic capabilities
to the hierarchical file organization through a virtual overlay
file system, thus making it accessible from any user application.
This is done by tagging files with additional metadata, like tags
that can have associated values. The user can organize files in a
hierarchic way through the original file system operations but in
the same time having access to advanced search capabilities and
operations on multiple sets of files. The results of the search are
listed through virtual directories which are generated at runtime.

Index Terms—file systems, semantic desktop, tags

I. INTRODUCTION

In a hierarchic file system, files can be categorized in only
one way, by specifying their location. However, this approach
is not well suited in all situations anymore, especially when
dealing with a great number of files that are spread in a
multitude of directories on the disk. Deciding how to organize
files in the classic hierarchy is frustrating when there can be
many possibilities to categorize the same file. Documents,
music, images and movies are files that are always hard to
manage. For example, a picture can be organized by the date
and the place, by its content (it describes the city, or the
landscape, or maybe it’s a portrait), or its context (a long hol-
iday, a weekend, or maybe a relaxing afternoon) but the user
can choose only one file path to express all these attributes.
To address this problem, applications for file indexing and
semantic file systems are trying to offer navigation based on
additional metadata associated with files But the hierarchical
organization of a file system is not something to be eliminated
because remains a logical and in the same time a unique way
of identifying a file. One can still feel the need to organize the
files in this way, but in a full semantic file system, the user
has no idea how to identify the data. That is why the semantic
file systems cannot replace the existing organization, but they
can provide an additional extension to it.

In this paper we present a user-mode overlay file system
that tries to combine the ideas used by previously semantic
file systems in a non-intrusive method for file organization. We

named our file system HybFS (Hybrid File System) because
it offers both a semantic and a hierarchical view of the files.
The file system can be mounted over a directory specified at
mount time and, when accessing the mount point, the user can
assign keywords to files and/or modify them, or issue search
queries. Also, common tasks like extracting metadata directly
from files or transferring the metadata between two HybFS
mount points are accessible through an additional application.
The file view provided by HybFS maintains the hierarchical
representation because it is a good way of identifying files
both uniquely and logically, and in the same time, when
someone would want to create or move a file from our file
system, will know exactly the original file organization from
the underlying file system. Moreover, by not modifying the
original file structure, this could be considered as an extra
precaution in case something happens to the metadata storage
to permit the user to continue working easily with the files.

This paper is organized as follows. The next section outlines
the previous work on which we based our design while Section
3 presents the HybFS features. Section 4 deals with the
design and implementation details and Section 5 describes the
evaluation of our solution. In the end, we draw the conclusions
and some future directions of development in Section 6.

II. RELATED WORK

In this Section we will present some of the more important
attempts of adding a semantic organization to the file storage.
These solutions are not only at the file system level, but
there are also desktop applications, each of these having its
own advantages and drawbacks. Desktop applications are non-
intrusive because most of them don’t affect the file storage and
they keep the additional information separate. Moreover, they
can be accessible for the user, allowing advanced indexing
configurations, but, in the case you change the application, all
the work organizing the files is lost. Also, any other software
from the system not only that will not be advantaged by this
extension, but interfacing it with the desktop application will
require changing parts of the software itself. Therefore, in
parallel with the development of such desktop applications,
efforts have been made to design file systems that integrate
the same capabilities in an interface available from any user
application.

A. Desktop Applications

Beagle [1] is a desktop search application that supports the
indexing of file content and format and it also provides the
capability to search inside IM conversations, mails, documents
and web pages. It includes a GUI tool, an API for integration
with other applications and a daemon for real-time indexing.
For this purpose it uses the inotify interface provided by
the Linux kernel to update in real time the information
about the indexed files. Another well-known and used desktop
application is Spotlight [2], a feature provided by Mac OS
X. Spotlight it is based on a Metadata Server daemon that
monitors the file system and responds to the search requests
received from the clients. Besides the basic file information,
the daemon can also index the file content based on additional
plug-ins. Also, queries that support the boolean operators
can be performed. Other semantic search tools, like Google
Desktop Search, Windows Desktop Search or Yahoo! Desktop
Search follow the same model and also parse and index the
file content, offering advanced search capabilities.

B. Semantic file systems

The first concept file system that implemented the idea
of semantic file systems was described by David Gifford et.
al. [3] and afterwards led to a large amount of derivative work,
including the semantic file systems and desktop applications
recently developed. The main concept represented the adding
of attribute-value pairs to the files from the hierarchical
file system, attributes extracted from files with the help of
transducers. The search result is returned as a directory created
on the fly, also called virtual directory. Another interesting
paradigm was implemented in the Logic File System [4], which
treats paths like logic formulas. Also, files are indexed at
creation, by using transducers. And, since tagging files with
additional attributes doesn’t explain the relationship between
different set of files, the Linking File System (LiFS) [5] came
with support for attributed links between files.

Other file systems that preceeded them, like Tagfs [6],
Semfs [7], Orion [8], Insight [9], Tagsistant [10] start from the
same ideas and don’t take the original file path in consideration
when performing queries, and not allowing the search request
to be issued in an arbitrary directory from the file system
(thus completly disconsidering the original hierarchical orga-
nization). Another solution, more oriented to a relational data
storage approach was Windows Future Storage (WinFS) [11].
It was designed to allow users to find files using a structured
query language, and it relies on a SQL Server layer. However,
the real problem with semantic file systems is the fact that
when creating a new file the user has no control of the real
path.

A different approach, wich we also considered in our design,
is presented by Deepak Garg et al. in WSFS [12]. They
introduced the file path as a separate attribute-value pair.
However, their implementation was incomplete and allowed
only manual tagging by the user.

III. HYBFS SEMANTICS

With HybFS one can have access to tag information from
the interface of a file system, specify paths for multiple
directories and index the files through a separate console
application with plugable modules. As an example, we can use
the EXIF plugin for the images directory and the MP3 plugin
for the music directory. However, for now the file indexing is
not automated and we must specify the file or the directory to
be parsed.

Additional attributes can be added to existent files or to the
newly created ones. These are called tags, or keywords and
can be extracted directly from the file content or added by the
user through the file system interface. The tags can be simple,
or can have an associated value that is used to granulate even
more the description. In this case, the attribute represents the
criteria of description and the value - the subcategory. If the
tag doesn’t receive an associated value, a default one,called
”null”, will be assigned. Any combination of multiple tags,
and/or tag-value pairs is seen as a virtual directory that has
the same name as the search query itself. We call it ”virtual
directory” because it only exist as an abstraction exported by
HybFS and created at runtime. An entry can be seen as a
symbolic link to a file that match the current search pattern,
or it can be a virtual directory that describes the other tags,
or tag:value pairs assigned to the file, for further refining the
query. In order for the user to have a hierarchic view, we define
a directory with the name ”path:” for the original mount point.
This is desired for a better granularity. As an example, one
can organize the pictures in directories based on the location
where they were taken and refine the search with the aid of
tags related to dates, people names, camera model and other.

The common file system operations are the same as in a
normal file system but without support for symbolic and hard
links. HybFS also supports operations like add, replace or
remove for the file tags. The navigation in HybFS resembles
the navigation through a normal hierarchic file system, except
that the file path can be also based on the tag information
associated with the files. From the application point of view,
the result of a query is seen as a directory.

A. Query syntax

A query can be composed from:

• A tag, or a tag and value pair: (picture), (picture :
autumn)

• A conjunction, disjunction or negation of tags: (picture :
autumn + myself), (picture : autumn|picture :
winter) or (!myself)

• One or many conjunctions, disjunctions or negations of
queries: (q1 + q2), (q1 | q2) or (!q1) , where q1 and q2

are simple or composed queries.

B. HybFS operations

We describe the common HybFS features in terms of shell
commands because they are user oriented and well known.

cd: The equivalent of a change directory is a refine query.
The resulted query is applied to the files that match the current
query, or, if the path has a real component, to the files from
the resulted path.

ls: This command will list all the files that match the
conjunction from the current query and the specified query, or,
if a real path is specified, all the files that are in that path and
match the query. When listing the root directory, we will see
all the tags and values from the file system, and the special
directory path:. Also, virtual folders to refine the results of
the navigation are added. Thus we solve one drawback of a
full semantic file system in which one doesn’t receive any
suggestions when navigating through the virtual directories
as it would have received in a hierarchical file system. For
example, when listing all the pictures that have been taken in
the year ”2008” and are in the real directory ”My Pictures”,
or in its sub-directories, virtual directories are created from
additional tags of the files already found that are not included
in our query:

$ls ’path:/My Pictures/(year:2008)’
IMG_6577.JPG IMG_6590.JPG
IMG_6578.JPG IMG_6639.JPG
IMG_6579.JPG IMG_6662.JPG
(picture:autumn)
(picture:winter)

rm: This keeps the original syntax: it will delete the file
uniquely determined by the specified path. Also, it can be used
to delete sets of files that match certain queries, by specifying
virtual directories.

mv: The move operation has a special syntax, because it
can be used for changing the set of tags for a file, or a
set of files. The renaming of files keeps the original syntax.
If the destination file path contains a virtual directory, then
it will try to do a tag operation based on the queries that
form the virtual directory path. Also, the queries that specify
the new tags to be assigned must be based on conjunctions
only. This is happening because a different syntax will be too
ambiguous. If there is more than one query in the path, then
the operations will happen in the specified order. The syntax
of the destination query is:

• (tag0 + tag1 + tag2 : value2 + ...): all the tags for the
files depicted by the source query and/or directory are
removed and the tags tag0, tag1, ... are added. If a tag
doesn’t have a value specified, then the ”null” value will
be assigned.

• (|tag0 + tag1 + tag2 : value2 + ...) All the tags for the
files resulted from the source query and/or directory are
kept, the new tags are added.

• (!tag0 + tag1 : value1 + ...) It removes all the pairs
tagi : valuei for the files resulted from the source query.
If the value is not specified, than it removes the pair,
indifferent of the tag value.

For example, the command mv ′q0/ ∗′ ′/path :
/dir path/q′1 will execute the operation on tags described
by q1 for the files that match the query q0 and, in the same
time, these files will be moved in the directory ”/path :
/dir path/”.

cp: The copy operation will not assign the existent tags of
the source file to the destination file. However, tag assignment
can be explicitly specified, by adding to the destination path
the conjunction query that contains them. To properly copy a
file in the HybFS file system, or between two HybFS mount
points, we designed a similar tool to cp.

Other file system common operations that are applied to
files can be valid only when the path has a real component
(the path can have a virtual component also, when the files
are the result of a query). The create operation is somehow
different, because it will interpret the virtual component of the
path as a request to add new tags to the new file. Therefore,
the query must be formed only from conjunctions, to prevent
an ambiguous request.

IV. DESIGN AND IMPLEMENTATION

The implementation of HybFS consists of three modules
as described in Figure 1: the user-space file system, a library
designed with the purpose to offer an uniform interface to
the metadata storage and an application that allows loading of
multiple plug-ins for extracting metadata from files, getting
statistics about tags for testing purposes and transferring
files between two HybFS mount points, together with their
metadata. The plug-in support is represented through a generic
interface that can be extended by each new plug-in sub-
module. For further developing purposes, the library adds
support for multiple instances of the back-end interface, called
’virtual directory branches’, each one of them having its own
database connection. However, for now, this can be useful only
for the HybFS application.

A. Front-end Module

The front-end is represented by the HybFS file system
interface. We implemented our file system with the FUSE [13]
toolkit for user-level file systems in Linux, which is in turn
based on the Virtual File System Layer (VFS). In this way,
we structured HybFS as a layer of extended-content around
an already existent location on the file system. The HybFS
file system application implements the common file system
operations needed to provide basic functionality. Also, it
is responsible for initializing the back-end interface for the
mounted directory, parsing the paths and passing the results
to it. The abstract flow of a simplified request is described as
follows:

1) A file system operation is issued (e.g. create, rename,
unlink) by the user’s application and it is passed by the
VFS to the FUSE file system driver and which in turn
calls the appropriate HybFS function.

2) In HybFS, the provided file path is parsed and the
resulted queries and the real file path (if any) are packed
in an internal representation used afterwards to issue
operations to the metadata database.

3) In the case of a tag operation or a query, the metadata
from the database is accessed and, possibly modified.

4) The results are returned to the HybFS core.

Fig. 1. HybFS Design

5) Based on the results obtained, and if needed, the HybFS
interface passes the operation to the underlying file
system.

B. Backend Module

The backend module is represented by a library used to
access the metadata database from the file system interface and
our application. This provides a uniform interface to the query
parsing and the database access internal methods, allowing the
future development of other metadata indexing solutions.

For indexing the semantic attributes of the files, we use
a relational database. This allows any search query to be
directly mapped on a SQL query. The database is implemented
using Sqlite, which is linked in the application as a library.
The database contains three tables with information about the
tagged files. The first table contains the file inode number, the
file mode and the real path relative to the mounted directory.
Also we keep all the tags assigned for a file in a separate field,
for issuing search queries faster. The second table is for storing
the tag and value pairs, together with a unique id and the last
one keeps the association between a file id and a tag:value
id. The last two tables can be used for tag statistics from the
HybFS Control Application. For simple tags (that don’t have
a value), we assign the ”null” value. The metadata directory
is set in each mount point, with the name ”.hybfs”. The main
database is kept in the file ”.hybfs main.db”, thus all the tables
are in the same file.

C. HybFS Control Application

The HybFS Control application provides an interface to
define tagging behaviors for different mounted directories.
This will allow the user to tag automatically files based on
their types and the existing supported tagging modules. For
now we support tag extraction for MP3’s and JPEG files. The
application allows specifing multiple HybFS mount points and

for each mount point a different set of plugins can be loaded.
For example, if we have the /fs1 and /fs2 as the directories
in which HybFS was mounted, we can load the MP3 plugin
for /fs1 and both the MP3 and EXIF plugins for /fs2. When
indexing a directory from /fs1 only the mp3 files are parsed
and their information loaded into the appropriate database
while from a directory that is found in /fs2 both mp3 and
picture files are processed.

The application can also be used for special file operations
like copy and move. When files are copied between different
HybFS mount points, their tags are also transfered between
the two databases. Even if there wasn’t any HybFS file system
mounted for a specific location, that location can be defined as
a mount point in the application and a new database is created
in order to permit copy/move operations to/from the new
defined location. This allows the transfer of files together with
their additional tags. The operation needed for this implies the
defining of the directory where the files will be copied as a
mount point using the HybFS Control Application on both
the source and the destination. When defining an additional
directory as a mount point, the application will initialize the
database storage for tagging information, if it is not defined
already.

V. EVALUATION

HybFS is an overlay file system implemented in user-
space, meaning that will imply an aditional overhead for file
operations. This overhead is also due to queries made to
the metadata storage. [11] and [8] use an external database
server for indexing the file information. Unlike them we chose
Sqlite3, because is an embeddable database and it removes the
process of running a database manager all the time.

We evaluated HybFS in terms of usability and we mea-
sured the average time for locating and copy files which
are identified based on a criteria. There are cases in which

Fig. 2. File transfer rate for HybFS compared to the Hierarchical File System
beneath.

the tag navigation is not necessary. For instance, there are
files that are well identified by their name and the directory
structure in which they are found is very simple and logic.
This usually happens when dealing with file types that are
weakly represented or all the files are well grouped in very
few locations. But even for these files, a certain improvement
can be obtained by combining the hierarchical approach with
the semantic one. If the user knows where certain types of files
are located, he can navigate to that location in the classic way
and then use tags to provide a more insightful description. This
is the case for a well organized folder structure, where the user
is presented with very strong clues when browsing through the
file structure. But the storage capacity has increased recently
and the folder structure exceeds easily 8-9 levels of hierarchy,
seldom with repetitive folder names being present in the path.
Moreover, many files don’t have a suggestive name in order
to be found easily just by reading it and not opening the file.

To exemplify the usability of HybFS we will present the
following use case. We start with the assumption that we
have a file system whose directory structure is 6 levels deep.
Among the numerous files of various types, there are also
around 500 photos. These pictures are already organized by
the place where they were shot and the people involved. But
there are also some files that are first organized based on the
location and as we go deeper into the folder structure based
on the person who made them, while others are organized by
the date they were shot first, and second based on location.
Not to mention that there can be cases where some files are
organized based on location, date and location again, maybe
files that were transfered in a hurry from the camera. This is
how a normal hierarchical file system usually looks like.

These files can be tagged automatically based on EXIF
information (year, month, camera model, description) with

TABLE I
AVERAGE TIMES FOR A FILE COPY SCENARIO.

Nr files HybFS Hierarchic FS
1 0.49s 0.09s
10 0.72s 0.65s
55 4.23 3.82s
100 12.22 10.81s
200 25.13 22.87

HybFS control application. More than that, for certain groups
of files, tags were added manually by using the cp command
with the appropriate syntax. In order to ease this process
HybFS permits to add/remove tags from groups of files from
a certain directory or obtained from a query.

Using these tags we can improve the file searching process a
lot, especially when knowing the date, location, camera model
or the characters that have something to do with the file. For
example, one wants to search for a picture that he or she knows
that it was shot in France, more exactly in Paris near Sena
river and it shows Bob as the central character. In the folder
structure in the photos/ directory there is a folder France/. For
this, by using HybFS the following steps could be taken (but
they are not necessary, other combinations of steps can exist):

1) browse in a real directory: In order to find this picture,
one can browse to photos/France/

2) list the files that have a combination of tags: Follow
the next scenario, represented as shell commands, but also
followed from any file browser:

$cd path:/photos/France/
$ls ’(sena+character:bob)’
(camera:Canon_DIGITAL_IXUS_75)
(paris:null)
(type:image)
(month:april)
Paris/Bob/Sena.JPG
(year:2008)

3) do something with the result: Maybe the files need to
be moved somewhere else. This can be done with the mv
’(sena+character:bob)’/* path:/temp command.

The classic scenario for this could involve more than three
commands (or steps) if the files are scattered in several
directories, a simple action like ’move all the files that have
the character Bob and are taken on Sena’. And if the files
are not named accordingly you would certainly have to open
them. For example if someone will want to search for all the
photos that have flowers in them all that has to do is to follow
the next steps:

$cd ’(flowers)’
$ls
photos/19_may/Vannes/Vannes&Auray2.jpg
photos/2007_contry_side/P1010078.JPG
photos/France/Paris/Anca/Flori.JPG
photos/France/Paris/Dan/Mar/1.JPG
(location:vannes)
(location:dersca)
(location:paris)
(location:marseille)
(camera:C750UZ)
(author:dan)
(color:blue)

(color:yellow)

These are all the images with flowers alongside their other
tags. After that, they can be further refined: to see the pictures
that contain blue flowers, a new filter can be added:

$ls ’(color:blue)’
photos/France/Paris/Dan/Mar/1.JPG
photos/France/Paris/Anca/Flori.JPG
(author:dan)
(location:marseille)
(location:paris)

In a normal file system, this shurely could have involved more
than one browsing step.

HybFS was also tested in terms of efficiency. We measured
the time for copying several files identified through a query
and we compared it to the time for copying the same number
of files in a hierarchical file system (the average size of a file is
1.8 MB). For the time measurement we used the time system
command and we present the average values in Table I.

As we can see, the overhead in terms of execution time
is around 10%-15% for HybFS when having over 1000 files
indexed in the database. There is also an isolated case where
the overhead is over 500%, but this is only for copying one
file. The average time for the execution of a query is between
0.1 and 1 second, time that considerably affects the execution
time in the case of a single file copy. Moreover, to uniquely
identify a single file, the query that was issued was a more
complex one. But this is considered acceptable in terms of
user efficiency and knowing that by using tags the operation is
practically a search through the whole file system. We present
in Figure 2 the relative HybFS speed of file transfer(copy).
The transfer speed on HybFS is compared to the speed of the
underlying hierarchical file system, which we consider to be
the maximum value of 1.0. We can notice that the transfer
speed of HybFS starts at about 0.2 the speed of the system
beneath for 1 file and it stabilizes at around 0.9 as the number
of files increases.
Using HybFS is not a matter of file transfer throughput, but
one of a solid search method that will improve the user’s
browsing experience.

VI. CONCLUSIONS

In this paper we presented an virtual overlay file system
that provides semantic capabilitites to normal hierarchic file
systems, thus allowing advanced file searching and tagging
from any user application. All the additional metadata is kept
sepparate and with this aproach we don’t modify the original
file structure and we allow reverting to the old view at any
time.

For now, to use the HybFS Control Application, the user
must run the application and issue commands from the con-
sole. Further work is being done to split the application in
two modules: a deamon that runs in background and takes
care of the module loading and file parsing and a set of tools
so that one can have access to special HybFS functions from
anywhere. Also the application can be improved by automating
the parsing of files and adding a possible integration with

indexing solutions used by popular applications. How the
solution was tested on Linux, the next steps will be porting it
to other operating systems. We plan to replace of the FUSE
interface with a similar solution for Windows and Mac OS X.
In the end, allowing collaborative file tagging and searching
by integrating HybFS with a peer-to-peer file system will be
the next challenge.

REFERENCES

[1] “Beagle,” http://beagle-project.org/Main Page.
[2] “Spotlight,” http://en.wikipedia.org/wiki/Spotlight (software).
[3] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’toole, “Semantic

file systems,” in Communications of the ACM, 1991, pp. 16–25.
[4] Y. Padioleau and O. Ridoux, “A logic file system,” in USENIX Annual

Technical Conference, 2003.
[5] A. Ames, C. Maltzahn, N. Bobb, E. Miller, S. Brandt, A. Neeman,

A. Hiatt, and D. Tuteja, “Richer File System Metadata Using Links
and Attributes,” in Mass Storage Systems and Technologies, 2005.
Proceedings. 22nd IEEE/13th NASA Goddard Conference on, 2005, pp.
49–60.

[6] S. Bloehdorn, “Tagfs - tag semantics for hierarchical file systems,”
in In: Proceedings of the 6th International Conference on Knowledge
Management (I-KNOW 06, 2006, pp. 6–8.

[7] P. Mohan, S. Venkateswaran, M. Raghuraman, A. Siromoney, and
I. Chennai, “SemFS: A Semantic approach to File Systems.”

[8] F. S. A. Joshi and S. Todwal, “Orion File System : File-level Host-based
Virtualization.”

[9] D. Ingram, “ Insight: A semantic file system.”
[10] “Tagsistant,” http://www.tagsistant.net/.
[11] “WinFS,” http://en.wikipedia.org/wiki/Winfs.
[12] S. P. D. Garg, V. Mehta and M. D. Rosa, “Writable Semantic File

System.”
[13] “FUSE: Filesystem in Userspace ,” http://fuse.sourceforge.net/.

