
Lecture 11
RFS – A Network File System for Mobile Devices and the Cloud

Yuan Dong, Jinzhan Peng, Dawei Wang, Haiyang Zhu, Fang
Wang, Sun C. Chan, Michael P. Mesnier

Advanced Operating Systems

January 4th, 2012

SOA/OS Lecture 11, RFS 1/44



Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 2/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 3/44



Context

I Mobile Devices
I increasing number of applications - lots of data - key issue:

access to dependable storage
I cloud storage - attractive

I Cloud storage for mobile devices - new issues
I unpredictable wireless network connectivity
I data privacy over the network

I Solution: RaindropFS
I ‘wireless friendly’
I ‘network file-system’
I ‘... for mobile devices and the cloud’

SOA/OS Lecture 11, RFS 4/44



RaindropFS

I Wireless friendly
I network connectivity
I average bandwidth around the world (2010 study):

105 Kbps. . . 7.2 MBps

I Network file system - issues to be resolved
I unpredictable connectivity of the wireless network
I data privacy introduced by the cloud

SOA/OS Lecture 11, RFS 5/44



Issue #1: Unpredictable Wireless Connectivity

I local storage cache - the right approach

I the ‘unpredictable connectivity’ problem
I server-centric management

I server controlled synchronization between server and client
caches

I not well suited for unpredictable wireless connectivity
I constrains such as varying bandwidth cost, battery life etc.

I solution: management controlled by the client
I continuous file consistency not a goal

SOA/OS Lecture 11, RFS 6/44



Issue #2: Data Privacy

I mobile devices - single user

I public clouds: no satisfactory solution to privacy

I solution: client-centric approach which depends on
applications

SOA/OS Lecture 11, RFS 7/44



Contributions - Raindrop FS

I device-aware cache management
I different networks
I different costs
I energy-awareness

I different levels of client-driven data security and privacy
policies

I client-aware optimizations at the server
I previous usage recorded
I predict usage
I server prepush

I partial file caching for large files

I integrate with Amazon S3 cloud storage

I tested Android running on top of Raindrop FS (x86-based
netbook)

SOA/OS Lecture 11, RFS 8/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 9/44



Design Goals

I Cloud storage abstraction
I ability to connect using any interface to cloud storage
I synchronize data efficiently and transparently

I Connection optimization
I adapt connections based on the mobile device’s connectivity

I Client data protection
I client-controlled user data security and privacy

SOA/OS Lecture 11, RFS 10/44



Cloud storage abstraction

I Components
I RaindropFS server responsible for mapping files to the cloud
I RaindropFS client residing on the mobile devices
I HTTP for client-server communication

I Features
I Cloud cache (64 MB segment = unit of transmission between

RFS server and cloud provider)
I Cloud adapter - support for multiple clouds

SOA/OS Lecture 11, RFS 11/44



The Raindrop FS client-server model

Figura: The Raindrop FS client-server model

SOA/OS Lecture 11, RFS 12/44



Network communication in Raindrop FS

I Demand fetching
I update local storage from cloud

I Synchronization
I transfer data between client-cache and cloud

I Consistency maintenance
I consistency of files over multiple clients

Figura: Packets transmitted over WiFi for sync/consistency maintenance

SOA/OS Lecture 11, RFS 13/44



Connection optimization

I Network file-system design
I server-centric - server controls synchronization and consistency

maintenance
I client-centric - clients decide when to synchronize

I Consistency models
I close-to-open - each close() requires interaction with the server
I RFS’s client-controlled consistency - synchronization at

client-specified sync points; server maintains version numbers
for files and folders

SOA/OS Lecture 11, RFS 14/44



Consistency models

Figura: Consistency models

SOA/OS Lecture 11, RFS 15/44



Device-aware synchronization scheduling

Figura: Device states used in RFS

I multiple levels per state

I user configuration is required to define sync conditions -
example: low-cost/free network, high battery capacity, low
CPU and memory load

SOA/OS Lecture 11, RFS 16/44



Reintegration

I logging all file operations: costly

I solution: status vector
(files: 5 bits; folders: 4 bits - no modify bit)
<deleted, created, renamed, attr-changed, modified>

Figura: File status vector transition

SOA/OS Lecture 11, RFS 17/44



Raindrop FS Architecture

Figura: RFS Architecture

SOA/OS Lecture 11, RFS 18/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 19/44



Overview

I Raindrop FS client
I Linux kernel module for performance critical components: local

cache heaps, metadata manager
I user space: Sync daemon, encryption engine

I Raindrop FS server
I built on cloud storage directly
I RFS files: regular files, links to public Internet resources
I uses HTTP 1.1 and SOAP, allowing clients to bypass network

firewalls, use gateways or proxies
I zlib compression algorithm for communication efficiency

SOA/OS Lecture 11, RFS 20/44



Managing local cache heaps

I other network file systems: local file mapping, separate
partition

I in RFS: partial file caching
I all cached blocks for a given RFS file

I stored in one file
I organized as a heap

I heaps are preallocated (blocks physically contiguous)

I recycle action (cache evictions) for freeing up space (heap can
no longer accommodate new cached blocks)

I support for block-pinning

SOA/OS Lecture 11, RFS 21/44



Managing local cache heaps

I on mount: metadata loaded into memory

I client maintains a dirty list of modified files and directories

I bitmap per file indicating dirty blocks that need sync

I if metadata updates from server: client invalidates cached
blocks

Figura: How RFS directories & files map to a local cache

SOA/OS Lecture 11, RFS 22/44



Integrating the RFS server and the cloud

I metadata in MySQL (adapts to Amazon’s RDS)

I file data on Amazon S3
(thin storage API with Get/Put/Delete)

I updates pushed to the server in 64 MB segments
(communication efficiency)

I RFS RESTful web service API (without management options)
I (files, directories) create, delete, rename
I (files, directories) set/get entity attributes
I (files) read, write file blocks
I (directories) read - retrieve file list
I update - retrieve update information from the server within

specified time interval

SOA/OS Lecture 11, RFS 23/44



Data privacy

I client-side encryption

I user-policy based (not everything needs to be encrypted)

I AES used on the client for read/write operations
I metadata currently not encrypted

I reveals structure of the client file system to the server
I tradeoff that allows block-level optimizations such as updates

of the system files

SOA/OS Lecture 11, RFS 24/44



Server prepush

I used to speed up cold file fetching (unknown files)

I file’s block access pattern collected across multiple users

I more blocks are pushed on a new request from a client based
on the access pattern

I access patterns stored per file in groups of tuples
<start-block, end-block>

I requests trigger lookups into the groups of tuples
I on match, server prepushes blocks
I on miss, server records a new access pattern

I groups can be merged if adjacent

I prepush hint added to client requests

SOA/OS Lecture 11, RFS 25/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 26/44



Conditions

I Mobile device
(Asus EeePC 1000H, 1.6 GHz Atom CPU, 1GB RAM)

I Ubuntu Mobile

I Compared to FScache (with NFS as server) and Coda
I Connections

I Wired (100 MBps Ethernet)
I WiFi (54 MBps over a D-Link wireless router)
I WCDMA (7.2 MBps 3G network)

I Benchmarks
I grep - search for a text over the mounted network FS
I copyin - copy from the local FS to the mounted network FS
I copyout - copy from mounted network FS to the local FS
I install - untar archive in the network FS

I Cold vs. Warm (data in local cache) tests

SOA/OS Lecture 11, RFS 27/44



Benchmark

I Warm mode testing - RFS lazy sync design
I FScache only caches for reading - no changes for warm mode

copyin & install tests

Figura: Benchmark performance (seconds)

SOA/OS Lecture 11, RFS 28/44



Benchmark

I Coda - small number of request for sync (network type has no
impact)

I RFS - no requests sent

Figura: Benchmark packets

SOA/OS Lecture 11, RFS 29/44



Privacy overhead

I encryption in read/write synchronization operations

I no encryption in local operations

I lower overhead on low bandwidth connections

Figura: Privacy overhead of the read operation

SOA/OS Lecture 11, RFS 30/44



Case Study Description

I Android-x86 platform on EeePC 1000H

I ported RFS to the Android Linux kernel

I changed /root/init.rc to point to the Android system on the
RFS server

I only Linux kernel & ramdisk on local FS

I boot Android over RFS

I Android system files are public files (not encrypted)

SOA/OS Lecture 11, RFS 31/44



Booting Android over RFS

I Android system: 1322 files, 463 MB total

I RFS on boot transfer: 167 files, 49.4 MB

Figura: Booting Android over RFS

SOA/OS Lecture 11, RFS 32/44



Booting Android over RFS

Figura: Top 12 files in Android booting

SOA/OS Lecture 11, RFS 33/44



Android booting with server prepush

I mmap() to load executables

I each page fault triggers remote file block read
I with server prepush

I request count drops 24x
I transmission size drops by 10%

Figura: Server prepush on Android booting

SOA/OS Lecture 11, RFS 34/44



Android booting with server prepush (speedup)

Figura: Booting Android with server prepush

SOA/OS Lecture 11, RFS 35/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 36/44



Related work (1)

I Cache management
I previous work - mainly server-centric
I popular network file systems not designed for mobile
I RFS - clients control

I Disconnected opperation
I Local cache: Coda, Version Control systems (CVS, SVN),

browsers (offline mode), HTML5 (Local Storage)
I RFS - client-controlled caching

I File Systems for weak connectivity - Moxie
I reduced data transfer, addresses weak connections
I protects data in transmission (data privacy) vs. RFS

(information privacy)
I no prefetching

SOA/OS Lecture 11, RFS 37/44



Related work (2)

I Prefetch vs. Prepush
I lots of literature on prefetching
I MFS uses prefetching for adapting data access patterns to

network availability
I server prepush - block access patterns collected across multiple

users

I Privacy for the cloud
I NFS, Coda rely on trusted administrators, taking into account

only access controls
I Amazon/Rackspace provide cloud service hosting but with no

data privacy

I Applications atop of cloud storage
I Dropbox
I Jungle Disk, S3 Backup - client side encryption
I usually targeted for personal backup systems

SOA/OS Lecture 11, RFS 38/44



Comparison between RFS and other mobile file systems

Figura: Comparison between RFS and other mobile file systems

SOA/OS Lecture 11, RFS 39/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 40/44



Conclusion

I client-centric design addresses
I unpredictable wireless network connectivity
I data privacy over the network

I client-control synchronization and consistency
I new optimizations

I server prepush for speeding up cold file fetching
I reintegration of changes in the device’s with the cloud

I future work
I user-specified management policies
I hashing file contents for detecting redundant blocks
I additional encryption algorithms (e.g. public-key)

SOA/OS Lecture 11, RFS 41/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 42/44



Keywords

I mobile

I network file system

I cloud storage

I data privacy

I device-aware cache
management

I network aware

I battery aware

I partial file caching

I data synchronization

I server prepush

I Android

I Amazon S3

SOA/OS Lecture 11, RFS 43/44



Resources

I Yuan Dong, Haiyang Zhu, Jinzhan Peng, Fang Wang, Michael
P. Mesnier, Dawei Wang, and Sun C. Chan. –
RFS: a network file system for mobile devices and the
cloud, SIGOPS Operating Systems Review,
Volume 45, Issue 1 (February 2011), 101-111.
http://doi.acm.org/10.1145/1945023.1945036

SOA/OS Lecture 11, RFS 44/44

http://doi.acm.org/10.1145/1945023.1945036

	Introduction
	Design
	Implementation
	Evaluation & Case Study
	Related work
	Conclusion
	Keywords

