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Context

I Mobile Devices
I increasing number of applications - lots of data - key issue:

access to dependable storage
I cloud storage - attractive

I Cloud storage for mobile devices - new issues
I unpredictable wireless network connectivity
I data privacy over the network

I Solution: RaindropFS
I ‘wireless friendly’
I ‘network file-system’
I ‘... for mobile devices and the cloud’
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RaindropFS

I Wireless friendly
I network connectivity
I average bandwidth around the world (2010 study):

105 Kbps. . . 7.2 MBps

I Network file system - issues to be resolved
I unpredictable connectivity of the wireless network
I data privacy introduced by the cloud
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Issue #1: Unpredictable Wireless Connectivity

I local storage cache - the right approach

I the ‘unpredictable connectivity’ problem
I server-centric management

I server controlled synchronization between server and client
caches

I not well suited for unpredictable wireless connectivity
I constrains such as varying bandwidth cost, battery life etc.

I solution: management controlled by the client
I continuous file consistency not a goal
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Issue #2: Data Privacy

I mobile devices - single user

I public clouds: no satisfactory solution to privacy

I solution: client-centric approach which depends on
applications

SOA/OS Lecture 11, RFS 7/44



Contributions - Raindrop FS

I device-aware cache management
I different networks
I different costs
I energy-awareness

I different levels of client-driven data security and privacy
policies

I client-aware optimizations at the server
I previous usage recorded
I predict usage
I server prepush

I partial file caching for large files

I integrate with Amazon S3 cloud storage

I tested Android running on top of Raindrop FS (x86-based
netbook)
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Design Goals

I Cloud storage abstraction
I ability to connect using any interface to cloud storage
I synchronize data efficiently and transparently

I Connection optimization
I adapt connections based on the mobile device’s connectivity

I Client data protection
I client-controlled user data security and privacy
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Cloud storage abstraction

I Components
I RaindropFS server responsible for mapping files to the cloud
I RaindropFS client residing on the mobile devices
I HTTP for client-server communication

I Features
I Cloud cache (64 MB segment = unit of transmission between

RFS server and cloud provider)
I Cloud adapter - support for multiple clouds
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The Raindrop FS client-server model

Figura: The Raindrop FS client-server model
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Network communication in Raindrop FS

I Demand fetching
I update local storage from cloud

I Synchronization
I transfer data between client-cache and cloud

I Consistency maintenance
I consistency of files over multiple clients

Figura: Packets transmitted over WiFi for sync/consistency maintenance
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Connection optimization

I Network file-system design
I server-centric - server controls synchronization and consistency

maintenance
I client-centric - clients decide when to synchronize

I Consistency models
I close-to-open - each close() requires interaction with the server
I RFS’s client-controlled consistency - synchronization at

client-specified sync points; server maintains version numbers
for files and folders
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Consistency models

Figura: Consistency models
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Device-aware synchronization scheduling

Figura: Device states used in RFS

I multiple levels per state

I user configuration is required to define sync conditions -
example: low-cost/free network, high battery capacity, low
CPU and memory load
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Reintegration

I logging all file operations: costly

I solution: status vector
(files: 5 bits; folders: 4 bits - no modify bit)
<deleted, created, renamed, attr-changed, modified>

Figura: File status vector transition
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Raindrop FS Architecture

Figura: RFS Architecture
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Overview

I Raindrop FS client
I Linux kernel module for performance critical components: local

cache heaps, metadata manager
I user space: Sync daemon, encryption engine

I Raindrop FS server
I built on cloud storage directly
I RFS files: regular files, links to public Internet resources
I uses HTTP 1.1 and SOAP, allowing clients to bypass network

firewalls, use gateways or proxies
I zlib compression algorithm for communication efficiency
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Managing local cache heaps

I other network file systems: local file mapping, separate
partition

I in RFS: partial file caching
I all cached blocks for a given RFS file

I stored in one file
I organized as a heap

I heaps are preallocated (blocks physically contiguous)

I recycle action (cache evictions) for freeing up space (heap can
no longer accommodate new cached blocks)

I support for block-pinning
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Managing local cache heaps

I on mount: metadata loaded into memory

I client maintains a dirty list of modified files and directories

I bitmap per file indicating dirty blocks that need sync

I if metadata updates from server: client invalidates cached
blocks

Figura: How RFS directories & files map to a local cache
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Integrating the RFS server and the cloud

I metadata in MySQL (adapts to Amazon’s RDS)

I file data on Amazon S3
(thin storage API with Get/Put/Delete)

I updates pushed to the server in 64 MB segments
(communication efficiency)

I RFS RESTful web service API (without management options)
I (files, directories) create, delete, rename
I (files, directories) set/get entity attributes
I (files) read, write file blocks
I (directories) read - retrieve file list
I update - retrieve update information from the server within

specified time interval
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Data privacy

I client-side encryption

I user-policy based (not everything needs to be encrypted)

I AES used on the client for read/write operations
I metadata currently not encrypted

I reveals structure of the client file system to the server
I tradeoff that allows block-level optimizations such as updates

of the system files
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Server prepush

I used to speed up cold file fetching (unknown files)

I file’s block access pattern collected across multiple users

I more blocks are pushed on a new request from a client based
on the access pattern

I access patterns stored per file in groups of tuples
<start-block, end-block>

I requests trigger lookups into the groups of tuples
I on match, server prepushes blocks
I on miss, server records a new access pattern

I groups can be merged if adjacent

I prepush hint added to client requests

SOA/OS Lecture 11, RFS 25/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 26/44



Conditions

I Mobile device
(Asus EeePC 1000H, 1.6 GHz Atom CPU, 1GB RAM)

I Ubuntu Mobile

I Compared to FScache (with NFS as server) and Coda
I Connections

I Wired (100 MBps Ethernet)
I WiFi (54 MBps over a D-Link wireless router)
I WCDMA (7.2 MBps 3G network)

I Benchmarks
I grep - search for a text over the mounted network FS
I copyin - copy from the local FS to the mounted network FS
I copyout - copy from mounted network FS to the local FS
I install - untar archive in the network FS

I Cold vs. Warm (data in local cache) tests
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Benchmark

I Warm mode testing - RFS lazy sync design
I FScache only caches for reading - no changes for warm mode

copyin & install tests

Figura: Benchmark performance (seconds)
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Benchmark

I Coda - small number of request for sync (network type has no
impact)

I RFS - no requests sent

Figura: Benchmark packets
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Privacy overhead

I encryption in read/write synchronization operations

I no encryption in local operations

I lower overhead on low bandwidth connections

Figura: Privacy overhead of the read operation
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Case Study Description

I Android-x86 platform on EeePC 1000H

I ported RFS to the Android Linux kernel

I changed /root/init.rc to point to the Android system on the
RFS server

I only Linux kernel & ramdisk on local FS

I boot Android over RFS

I Android system files are public files (not encrypted)
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Booting Android over RFS

I Android system: 1322 files, 463 MB total

I RFS on boot transfer: 167 files, 49.4 MB

Figura: Booting Android over RFS
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Booting Android over RFS

Figura: Top 12 files in Android booting
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Android booting with server prepush

I mmap() to load executables

I each page fault triggers remote file block read
I with server prepush

I request count drops 24x
I transmission size drops by 10%

Figura: Server prepush on Android booting
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Android booting with server prepush (speedup)

Figura: Booting Android with server prepush
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Related work (1)

I Cache management
I previous work - mainly server-centric
I popular network file systems not designed for mobile
I RFS - clients control

I Disconnected opperation
I Local cache: Coda, Version Control systems (CVS, SVN),

browsers (offline mode), HTML5 (Local Storage)
I RFS - client-controlled caching

I File Systems for weak connectivity - Moxie
I reduced data transfer, addresses weak connections
I protects data in transmission (data privacy) vs. RFS

(information privacy)
I no prefetching
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Related work (2)

I Prefetch vs. Prepush
I lots of literature on prefetching
I MFS uses prefetching for adapting data access patterns to

network availability
I server prepush - block access patterns collected across multiple

users

I Privacy for the cloud
I NFS, Coda rely on trusted administrators, taking into account

only access controls
I Amazon/Rackspace provide cloud service hosting but with no

data privacy

I Applications atop of cloud storage
I Dropbox
I Jungle Disk, S3 Backup - client side encryption
I usually targeted for personal backup systems
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Comparison between RFS and other mobile file systems

Figura: Comparison between RFS and other mobile file systems

SOA/OS Lecture 11, RFS 39/44



Outline

Introduction

Design

Implementation

Evaluation & Case Study

Related work

Conclusion

Keywords

SOA/OS Lecture 11, RFS 40/44



Conclusion

I client-centric design addresses
I unpredictable wireless network connectivity
I data privacy over the network

I client-control synchronization and consistency
I new optimizations

I server prepush for speeding up cold file fetching
I reintegration of changes in the device’s with the cloud

I future work
I user-specified management policies
I hashing file contents for detecting redundant blocks
I additional encryption algorithms (e.g. public-key)
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Keywords

I mobile

I network file system

I cloud storage

I data privacy

I device-aware cache
management

I network aware

I battery aware

I partial file caching

I data synchronization

I server prepush

I Android
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