
Lecture 12
Pointless Tainting? Evaluating the Practicality of Pointer

Tainting

Asia Slowinska, Herbert Bos

Operating Systems Practical

8 January, 2013

OSP Lecture 12, Pointer Tainting 1/40



Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 2/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 3/40



Exploiting

I buffer overflows
I inject code – alter control flow

I attack non-control data
I user identity
I user privilege level
I server configuration string

I non-control data attacks are more difficult to detect

OSP Lecture 12, Pointer Tainting 4/40



Protection from non-control data attacks

I type-safe languages

I compiler extensions

I formal methods verification
I however . . .

I C/C++
I source unavailable – recompilation not possible

I trojans
I masquerade as useful programs
I no exploit required
I “stealthy spies” harder to detect

OSP Lecture 12, Pointer Tainting 5/40



Control flow diversion

I pointer dereference
I control diversion attacks

I execute instructions different from the ones it would normally
execute

I alter flow of control

I non control diversion attacks
I memory corruption attacks against non-control data

(non-function return address etc.)
I privacy breaching malware (keyloggers and sniffers)
I elevated privileges, unusual replies
I address space layout randomization & stack guard don’t work

OSP Lecture 12, Pointer Tainting 6/40



Pointer tainting

I focused by non control diversion attacks

I also works against control-diverting attacks
I a form of dynamic information flow tracking (DIFT)

I origin of data through a taint bit in a shadow memory
unaccessible to software

I check whether values derived from tainted origin ends up in
places it should never be stored

I popular
I apply on software without need of recompilation
I (stated by advocates) incurs hardly false positives
I one of the only techniques of detecting both control-diverting

and non-control diverting attacks

OSP Lecture 12, Pointer Tainting 7/40



Pointer tainting – not working

I keylogger detector
I the method is flawed
I incurs both false positives and negative

I existing applications not suitable for x86 architecture and
Windows operating systems

I analyse fundamental limitations of the method when applied
to detection of privacy-breaching malware

I fixing the method is breaking it

OSP Lecture 12, Pointer Tainting 8/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 9/40



Control diverting attacks

I manipulate data that is subsequently loaded in the processor’s
program counter

I struct req {

char reqbuf[64];

void (*handler)(char *);

};

void do_req(int fd, struct req *r)

{

// now the overflow

read(fd, r->reqbuf, 64);

r->handler(r->reqbuf);

}

OSP Lecture 12, Pointer Tainting 10/40



Non-control diverting attacks

I modify security-critical data (do not alter control flow)
I non control data attacks

void serve (int fd)

{

char *name = globMyHost;

char cl name[64];

char svr reply[1024];

// now the overflow:

read(fd,cl name,128);

sprintf(svr reply,

"hello %s, I am %s",

cl name, name);

svr send(fd,svr reply,1024);

}

I privacy breaching malware (trojans, keyloggers)

OSP Lecture 12, Pointer Tainting 11/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 12/40



Basic tainting

I dynamic taint analysis

I mark (in an emulator or hardware) all data coming from
suspect sources

I taint is propagated

I source operands in ALU – destination is tainted

I copy source operands – taint propagates

I “cleaning” instructions (xor eax,eax)

I jump to “tainted” address – alarm is raised

I protection against control-diverting attacks, but not against
non-control diverting attacks

OSP Lecture 12, Pointer Tainting 13/40



Memory corruption

I dereference of attack-manipulated pointers (same as
control-diverting attacks)

I heap corruption – change links in lists

I format string attack

I basic tainting analysis raises alerts only for dereferences due to
jumps, branches and function calls/returns

OSP Lecture 12, Pointer Tainting 14/40



Privacy-breaching

I “possibly malicious” program spying on users’ behaviour –
keyloggers

I basic taint analysis is weak in the face of translation tables
I x is tainted
I y = a[x] is not tainted
I similar for atoi, to_upper, strtol

I taint analysis is powerless in the face of privacy-breaching
malware

OSP Lecture 12, Pointer Tainting 15/40



Pointer tainting

I designed to handle non-control diverting attacks
I limited pointer tainting (detecting non-control data attacks)

I p is tainted
I raise an alert on any dereference of p
I inapplicable in the general case
I LPT prescribe that taint of and index is cleaned
I LPT cannot be used for tracking keystrokes
I if p is tainted raise an alert on any dereference of p

I full pointer tainting (detect privacy breaching)
I propagates taint
I if p is tainted, any dereference of p taints the destination
I looks ideal for privacy-breaching malware applications

OSP Lecture 12, Pointer Tainting 16/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 17/40



Test environment

I Qemu 0.9

I Ubuntu 8.04.1, kernel 2.6.24-19-386

I Windows XP SP2
I depending on test, modify emulator to taint either

I typed keyboard characters
I network data

I inspect taintedness of register at context-switch times
I the more register are tainted the worse the problem

I particularly serious for esp and ebp

OSP Lecture 12, Pointer Tainting 18/40



Test environment (2)

I conservative measurements
I register may be clean but not bytes in process’ address space
I check registers only at context-switch times
I sufficient to present the problem of false positives

I taintedness in Linux
I schedule()
I context_switch() – monitor taintedness inside the kernel

I taintedness in Windows
I cr3 inspection – contains the physical address of the top-level

page directory
I cr3 change → a new process is scheduled

OSP Lecture 12, Pointer Tainting 19/40



False positives in LPT

I taint data from network

I alerts raised for benign actions like configuring the machine’s
IP address

I LPT propagates taint when combining and untainted base
pointer and a tainted index

I dereferencing causes an alert

OSP Lecture 12, Pointer Tainting 20/40



Taint explosion for FPT

I simple keystroke tracing – all taint that is applied

I simple C program – reads a user typed character from the
command line

OSP Lecture 12, Pointer Tainting 21/40



Taint explosion for FPT (2)

OSP Lecture 12, Pointer Tainting 22/40



Taint explosion for FPT (3)

OSP Lecture 12, Pointer Tainting 23/40



Taint pollution

I containment measures required

I pollution of the kernel

I problematic usage of esp and ebp

OSP Lecture 12, Pointer Tainting 24/40



Taint analysis by opening files

OSP Lecture 12, Pointer Tainting 25/40



False positives and root causes of taint pollution

I tainting of ebp and esp
I LPT raises alarms quickly
I FPT spreads taint indiscriminately

I pointers are tainted in the same way
I A tainted, what about B = (A+0x4)?

I if taint is applied only for detecting memory corruption
attacks, taint may leak due to table lookups

OSP Lecture 12, Pointer Tainting 26/40



False negatives

I pure LPT and FTP does not have many false negatives
I however . . .

I LPT will miss modification of non-control data by means of a
direct buffer overflow

I miss implicit information flows
I if (x == 0) y = 0; else y = 1

I reduce false positive → opportunities for false negatives will
increase significantly

OSP Lecture 12, Pointer Tainting 27/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 28/40



ebp/esp protection

I both LPT and FPT

I basic idea – never apply pointer tainting to tainted values of
ebp and esp

I ebp is used as a general purpose register

I clean ebp when value is large enough to represent a frame
pointer

I although taint is slowed down, it still propagates quickly

OSP Lecture 12, Pointer Tainting 29/40



LPT-specific containment techniques

I prevent taint from leaking due to table lookups
I detect and sanitise table accesses

I impractical on x86 – no specific instructions for pointer
arithmetic

I bounds checks – safe even if index is tainted provided the
index was properly bounds-checked

I identified by a cmp instruction
I suffers from false positives and false negatives

I pointer injection detection
I use a P bit to mark valid pointers
I applied on SPARC v8 architecture
I false positives possible – overflow a buffer, modify and index,

add index to a legitimate address
I not easily applicable to x86

OSP Lecture 12, Pointer Tainting 30/40



FTP-specific techniques

I white lists and black lists
I white list all places where tainting should be propagated
I black list all places where tainting should not be propagated
I unfeasible for large applications
I heavy impact on performance

I landmarking
I an address is “ready to be used for a dereference”
I dereferencing a landmark – propagate taint
I derived values have to be modified with tainted data
I opportunities for false positives and false negatives abound

OSP Lecture 12, Pointer Tainting 31/40



Landmarking and esp/ebp protection

OSP Lecture 12, Pointer Tainting 32/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 33/40



FPT is broken

I prone to false negatives

I only slow down the outburst of false positives

I difficult to distinguish access to a translation table from
access to a next field in a linked list

I without a priori information it’s impossible to successfully
apply FPT (on current hardware)

OSP Lecture 12, Pointer Tainting 34/40



Challenges for LPT

I pointer injection (P bit) seems promising

I have to get it to work on common hardware

I possible for Linux on SPARC

I open challenge to do it for x86

OSP Lecture 12, Pointer Tainting 35/40



Overall

I pointer tainting – considered one of the most powerful
techniques to detect keyloggers and memory corruption
attacks on non-control data

I proved problematic – large number of false positives

I FPT is probably not suited for detecting keyloggers

I unclear whether LPT can be applied to automatically detect
memory corruption attacks on x86

OSP Lecture 12, Pointer Tainting 36/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 37/40



Keywords

I exploit

I DIFT

I taint analysis

I pointer tainting

I control diversion

I control data

I non-control data

I memory corruption

I keylogger, trojans

I x86 (Linux & Windows)

I limited pointer tainting
(LPT)

I full pointer tainting (FPT)

I false positives, false
negatives

I esp/ebp protection

I pointer injection detection

I landmarking

OSP Lecture 12, Pointer Tainting 38/40



Resources

I Asia Slowinska, Herbert Bos – Pointless Tainting? Evaluating
the Practicality of Pointer Tainting

I Asia Slowinska, Herbert Bos – Pointer tainting still pointless:
(but we all see the point of tainting)

OSP Lecture 12, Pointer Tainting 39/40



Outline

Introduction

Threat model

Pointer tainting

Problems with pointer tainting

Containment techniques

Conclusion

Keywords

Questions

OSP Lecture 12, Pointer Tainting 40/40


	Introduction
	Threat model
	Pointer tainting
	Problems with pointer tainting
	Containment techniques
	Conclusion
	Keywords
	Questions

