A

paper crunch

Lecture 12

Pointless Tainting? Evaluating the Practicality of Pointer
Tainting

Asia Slowinska, Herbert Bos

Operating Systems Practical

8 January, 2013

ospP

Lecture 12, Pointer Tainting

1/40

SSA

pap

" Introduction
Threat model
Pointer tainting
Problems with pointer tainting
Containment techniques
Conclusion
Keywords

Questions

ospP

Lecture 12, Pointer Tainting

2/40

A

paper crunch

QOutline

Introduction

ospP

Lecture 12, Pointer Tainting

3/40

SSA Exploiting

paper crunch

» buffer overflows
» inject code — alter control flow
» attack non-control data

> user identity
> user privilege level
» server configuration string

» non-control data attacks are more difficult to detect

osP Lecture 12, Pointer Tainting 4/40

A

paper crunch

Protection from non-control data attacks

v

type-safe languages

v

compiler extensions

formal methods verification

v

however . ..

» C/CH++
» source unavailable — recompilation not possible

v

> trojans
» masquerade as useful programs
» no exploit required
» ‘“stealthy spies” harder to detect

OosP Lecture 12, Pointer Tainting

5/40

A

paper crunch

Control flow diversion

» pointer dereference
» control diversion attacks
» execute instructions different from the ones it would normally

execute
» alter flow of control

» non control diversion attacks

» memory corruption attacks against non-control data
(non-function return address etc.)

» privacy breaching malware (keyloggers and sniffers)

> elevated privileges, unusual replies

» address space layout randomization & stack guard don't work

osP Lecture 12, Pointer Tainting 6/40

S‘(\?‘A Pointer tainting

paper crunch

v

focused by non control diversion attacks

v

also works against control-diverting attacks
a form of dynamic information flow tracking (DIFT)
» origin of data through a taint bit in a shadow memory
unaccessible to software
» check whether values derived from tainted origin ends up in
places it should never be stored

v

v

popular
» apply on software without need of recompilation
» (stated by advocates) incurs hardly false positives
» one of the only techniques of detecting both control-diverting
and non-control diverting attacks

osP Lecture 12, Pointer Tainting 7/40

S‘(‘jA Pointer tainting — not working

> keylogger detector

> the method is flawed
» incurs both false positives and negative

» existing applications not suitable for x86 architecture and
Windows operating systems

» analyse fundamental limitations of the method when applied
to detection of privacy-breaching malware

» fixing the method is breaking it

osP Lecture 12, Pointer Tainting 8/40

A

paper crunch

QOutline

Threat model

ospP

Lecture 12, Pointer Tainting

9/40

STA Control diverting attacks

» manipulate data that is subsequently loaded in the processor's
program counter
> struct req {
char reqbuf [64];
void (*handler) (char *);

};

void do_req(int fd, struct req *r)
{
// now the overflow
read(fd, r->reqbuf, 64);
r->handler (r->reqbuf) ;

osP Lecture 12, Pointer Tainting 10/40

S‘(‘jA Non-control diverting attacks

» modify security-critical data (do not alter control flow)
» non control data attacks
void serve (int fd)
{
char *name = globMyHost;
char cl name[64];
char svr reply[1024];

// now the overflow:
read(fd,cl name,128);
sprintf (svr reply,
"hello %s, I am %s",
cl name, name);
svr send(fd,svr reply,1024);
}

» privacy breaching malware (trojans, keyloggers)

osP Lecture 12, Pointer Tainting 11/40

A

paper crunch

QOutline

Pointer tainting

ospP

Lecture 12, Pointer Tainting

12/40

A

paper crunch

Basic tainting

dynamic taint analysis

mark (in an emulator or hardware) all data coming from
suspect sources

taint is propagated

source operands in ALU — destination is tainted
copy source operands — taint propagates
“cleaning” instructions (xor eax,eax)

jump to “tainted” address — alarm is raised

protection against control-diverting attacks, but not against
non-control diverting attacks

ospP

Lecture 12, Pointer Tainting

13/40

A

paper crunch

v

v

v

v

Memory corruption

dereference of attack-manipulated pointers (same as
control-diverting attacks)

heap corruption — change links in lists
format string attack

basic tainting analysis raises alerts only for dereferences due to
jumps, branches and function calls/returns

ospP

Lecture 12, Pointer Tainting 14/40

A

paper crunch

Privacy-breaching

> “possibly malicious” program spying on users’ behaviour —
keyloggers
» basic taint analysis is weak in the face of translation tables
> x is tainted
» y = a[x] is not tainted
» similar for atoi, to_upper, strtol
> taint analysis is powerless in the face of privacy-breaching
malware

osP Lecture 12, Pointer Tainting 15/40

A

paper crunch

Pointer tainting

> designed to handle non-control diverting attacks

» limited pointer tainting (detecting non-control data attacks)
> p is tainted

raise an alert on any dereference of p

inapplicable in the general case

LPT prescribe that taint of and index is cleaned

LPT cannot be used for tracking keystrokes

» if p is tainted raise an alert on any dereference of p

>
>
>
>

» full pointer tainting (detect privacy breaching)
> propagates taint
» if p is tainted, any dereference of p taints the destination
» looks ideal for privacy-breaching malware applications

osP Lecture 12, Pointer Tainting 16/40

A

paper crunch

QOutline

Problems with pointer tainting

osP Lecture 12, Pointer Tainting

17/40

v

v

v

v

v

v

Test environment

Qemu 0.9
Ubuntu 8.04.1, kernel 2.6.24-19-386
Windows XP SP2

depending on test, modify emulator to taint either

» typed keyboard characters
» network data

inspect taintedness of register at context-switch times
the more register are tainted the worse the problem
» particularly serious for esp and ebp

ospP

Lecture 12, Pointer Tainting 18/40

A

paper crunch

Test environment (2)

> conservative measurements
> register may be clean but not bytes in process' address space
» check registers only at context-switch times
» sufficient to present the problem of false positives
> taintedness in Linux
» schedule()
» context_switch() — monitor taintedness inside the kernel
> taintedness in Windows
» cr3 inspection — contains the physical address of the top-level

page directory
» cr3 change — a new process is scheduled

osP Lecture 12, Pointer Tainting 19/40

A

paper crunch

False positives in LPT

» taint data from network

» alerts raised for benign actions like configuring the machine's
IP address

» LPT propagates taint when combining and untainted base
pointer and a tainted index

» dereferencing causes an alert

osP Lecture 12, Pointer Tainting 20/40

A Taint explosion for FPT

> simple keystroke tracing — all taint that is applied

» simple C program — reads a user typed character from the
command line

ospP

Lecture 12, Pointer Tainting 21/40

SSA Taint explosion for FPT (2)

paper crunch

t
bash n%. 2;

console-kit-daemon
libnss-files-2.7.s0
pam-unix.so

sy slu%d

hald

dhedbd
hald-addon-storage
kernel threads
kernel

o
@ _.
@ % @

TT T T T T T T T T T T T TTT

Intervals

osP Lecture 12, Pointer Tainting 22/40

SSA Taint explosion for FPT (3)

paper crunch

' cl(?an
irt
very dlrtyb

calc.exe ||ﬁ| | 1
. e L w —
IEXPLORE EXE l-\-l-IIIlI-IIIIIIIII\IIHIIII\IIH-H-I]

kd.exe (010N N i 1 (o IVIWII-_-]

services.exe || | ||| [IR (AR Pl I 1
wwuauctt.exe. B il |11 000 OO 0001111000 i+

tsass.exe. i - A \HIII!IVIIIIIHH\H\ i 0 1

svehostexe [([1| | | 1 Pl o
svehostexe il 11 (MM IR0 0
msmsgs.exe A | [1
explorer.exe 1'u|m A i Hiiiﬁiil"llvihnm il mmu iﬂii i "‘iii 1

csrss.exe |{/ |1l W W11 IIM (LR N1 TN II!HI\II il 1 I\-I 1

0 100 200 300 400 500 600 700 800 900
Intervals

OoSsP Lecture 12, Pointer Tainting 23/40

A

Taint pollution

paper crunch

» containment measures required
» pollution of the kernel

» problematic usage of esp and ebp

osP Lecture 12, Pointer Tainting

24/40

A

paper crunch

Taint analysis by opening files

)
f
USER]

* KERNEL
filp_open() _dentry_open()

inode™
S Y

file list CH H F--
K*' ebp” o

* * E3
callback list --
Ed £ E3

dentry_hashtable stack® -~ other lists [} |-

ospP Lecture 12, Pointer Tainting 25/40

S%‘A False positives and root causes of taint pollution

> tainting of ebp and esp
» LPT raises alarms quickly
» FPT spreads taint indiscriminately
> pointers are tainted in the same way
» A tainted, what about B = (A+0x4)7?

» if taint is applied only for detecting memory corruption
attacks, taint may leak due to table lookups

osP Lecture 12, Pointer Tainting 26/40

A

paper crunch

False negatives

» pure LPT and FTP does not have many false negatives

however . ..

» LPT will miss modification of non-control data by means of a
direct buffer overflow

miss implicit information flows

» if (x ==0) y=0; elsey =1
reduce false positive — opportunities for false negatives will
increase significantly

ospP

Lecture 12, Pointer Tainting 27/40

A

paper crunch

QOutline

Containment techniques

ospP

Lecture 12, Pointer Tainting

28/40

ebp/esp protection

both LPT and FPT

basic idea — never apply pointer tainting to tainted values of
ebp and esp

ebp is used as a general purpose register

clean ebp when value is large enough to represent a frame
pointer

although taint is slowed down, it still propagates quickly

ospP

Lecture 12, Pointer Tainting 29/40

A

paper crunch

v

v

v

LPT-specific containment techniques

prevent taint from leaking due to table lookups
detect and sanitise table accesses

>

impractical on x86 — no specific instructions for pointer
arithmetic

bounds checks — safe even if index is tainted provided the
index was properly bounds-checked

>

| 4

identified by a cmp instruction
suffers from false positives and false negatives

pointer injection detection

>

>

| 4

use a P bit to mark valid pointers

applied on SPARC v8 architecture

false positives possible — overflow a buffer, modify and index,
add index to a legitimate address

not easily applicable to x86

ospP

Lecture 12, Pointer Tainting

30/40

A

paper crunch

FTP-specific techniques

» white lists and black lists

» white list all places where tainting should be propagated
black list all places where tainting should not be propagated
unfeasible for large applications
heavy impact on performance

v vy

» landmarking

an address is “ready to be used for a dereference”
dereferencing a landmark — propagate taint

derived values have to be modified with tainted data
opportunities for false positives and false negatives abound

vV vy vy

osP Lecture 12, Pointer Tainting 31/40

—

paper crunch

Landmarki

ng and esp/ebp protection

gzip (n0.2)

tar (no. 2)

tar (no. 1)

gzip (no. 1)
9pov

nautius

bash (no. 2)
hald
gnome-panel
nm-applet
metaciy
hald-addon-input
kemel threads
hald-addon-storage
dncdbd

python2.5
gnome-screensaver

Xorg
gnome-terminal
ash (no. 1)

t

kernel

clean
Girty m—
very dirty mem—

i 1

L i i
W l
(L TR uil i

n

Sean
dirty m—
Very dity m— -
—
calc.exe
=B IEXPLORE.EXE
Kd.exe
msmsgs.exe
: e svchost.exe
{0 : explorer.exe |
winlogon.exe
i Isass.exe
e services.exe il
i s - . svchost.exe |11}
et e — wuauditexe
i csrss.exe 1]
e
0 200 40 60 80 1000 1200 0
Intervals

200 400 600 800 1000 1200 1400 1600 1800 2000
Intervals

ospP

Lecture 12, Pointer Tainting

A

paper crunch

QOutline

Conclusion

ospP

Lecture 12, Pointer Tainting

33/40

A

paper crunch

FPT is broken

prone to false negatives
only slow down the outburst of false positives

difficult to distinguish access to a translation table from
access to a next field in a linked list

without a priori information it's impossible to successfully
apply FPT (on current hardware)

ospP

Lecture 12, Pointer Tainting

34/40

v

v

v

v

Challenges for LPT

pointer injection (P bit) seems promising
have to get it to work on common hardware
possible for Linux on SPARC

open challenge to do it for x86

ospP

Lecture 12, Pointer Tainting

35/40

Overall

pointer tainting — considered one of the most powerful
techniques to detect keyloggers and memory corruption
attacks on non-control data

proved problematic — large number of false positives
FPT is probably not suited for detecting keyloggers

unclear whether LPT can be applied to automatically detect
memory corruption attacks on x86

ospP

Lecture 12, Pointer Tainting 36/40

A

paper crunch

QOutline

Keywords

ospP

Lecture 12, Pointer Tainting

37/40

paper crunch

A

Keywords

exploit

DIFT

taint analysis
pointer tainting
control diversion
control data
non-control data
memory corruption

keylogger, trojans

» x86 (Linux & Windows)

> limited pointer tainting
(LPT)

» full pointer tainting (FPT)

» false positives, false
negatives

» esp/ebp protection
» pointer injection detection

» landmarking

ospP

Lecture 12, Pointer Tainting 38/40

86‘ A Resources

» Asia Slowinska, Herbert Bos — Pointless Tainting? Evaluating
the Practicality of Pointer Tainting

» Asia Slowinska, Herbert Bos — Pointer tainting still pointless:
(but we all see the point of tainting)

osP Lecture 12, Pointer Tainting 39/40

A

paper crunch

QOutline

Questions

ospP

Lecture 12, Pointer Tainting

40/40

	Introduction
	Threat model
	Pointer tainting
	Problems with pointer tainting
	Containment techniques
	Conclusion
	Keywords
	Questions

