Lecture 10
When The CRC and TCP Checksum Disagree

Jonathan Stone, Craig Partridge
Advanced Operating Systems

12 December, 2012

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree

1/26

A

paper crunch

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 2/26

A

paper crunch

QOutline

Introduction

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 3/26

A

paper crunch

Issue

» as much as one packet in 1100 can fail the TCP checksum
» this happens even if the corresponding CRC is correct

> it means that transmission links aren’t the ones causing the
errors

» then who?

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 4/26

A

paper crunch

Recap

CRC checksum used to detect link-layer errors

v

v

Do we need checksums at every layer? Why?

v

One reason is that you can not rely on lower layers doing error
checking for you

Thus, TCP has its own checksum

v

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 5/26

st‘jA Fun fact

» TCP computes its checksum by using a pseudo-header

» Why?

» The explanation comes straight from the designer, David
Patrick Reed

» http://www.postel.org/pipermail /end2end-interest/2005-
February/004616.html

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 6/26

First insight

What happens if we _do_ rely on lower layers for error
checking?

SUN did that

Because checksumming takes a long time, SUN's NFS
implementation disabled it in UDP

What happened?

Power fluctuations on busses caused random bits being
shuffled

SUN’s current implementation of NFS runs with
checksumming enabled

SOA/0S

Lecture 10, When The CRC and TCP Checksum Disagree

7/26

A

paper crunch

Most important thing to realize

» Never take anything for granted

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 8/26

A

paper crunch

QOutline

Looking for errors

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 9/26

A

paper crunch

Important issues

> capture as many errors as possible
> try to categorize errors that cause checksum failure

> define ways of eliminating those errors

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 10/26

A

paper crunch

Capturing errors

» use libpcap to analyze traffic. The more the merrier

» try to match each bad packet with its retransmission (twin
packets)

> look at the error patterns by examining each pair

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 11/26

—

paper crunch

Good/evil twins

08:27:02.907787 X.X.X.X.22 > Y.¥.Y.Y.38201: P
3286558421: 32865568441 (20) ack 1212716141 win 25144
4500 003c d7e4 4000 £f506 9029 XXXX XXXX
YYYY YYYY 0016 9539 c3ed e6d5 4848 946d
5018 6238 9e26 0000 Q000 000a 7476 b63b
203f aB9e TH1f fa39 5el3 425

Figure 1: A Bad Twin ...

08:27:02.907787 X.X.X.X.22 > Y.¥.Y.¥Y.38201:
[tep sum ok]
3286558421:3286558441(20) ack 3221241833 win 8760
4500 003c d7e7 4000 f506 9026 XXXX XXXX
YYYY YYYY 0016 9539 c3e4 e6d5 (0848 d455
5010 2238 9e06 0000 0000 000a 7476 b63b
203f aB89e 751f fa39 5el3 1425

Figure 2: and Matching Good Twin.

SOA/0OS Lecture 10, When The CRC and TCP Checksum Disagree 12/26

—

paper crunch

Pretty print

207.24,0.1200ma) > 1716471, TV (12659) lea 1460

1
|
1
]
|
1
1
1
1
1
1
1
1
|
|
|
]
I
I
|
1
1
1

Q €3

Figure 4: pretty-printer output with every 4th byte
bad

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 13/26

What to look for

try to morph the good packet into the bad packet

do this to understand how the error might have occured

block errors can be caused by buggy DMA engines

individual byte errors may be caused by UARTSs with interrupts
for each byte. This can cause overruns on SLIP links.

try to find similar patterns by manual examination :)

correlate the patterns with the hardware and software
configurations of the network in which you captured the
packets

SOA/0S

Lecture 10, When The CRC and TCP Checksum Disagree 14/26

A

paper crunch

QOutline

Results

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 15/26

S Stats

Trace Name Total Pkts | Errors Protocol
IP | UDP TCP

CAMPUS 1079M 33851 0| 8878 24973

DoE-LAB 600M 7295 0 173 37122

Dorm 94M 1157 1278 613 9687

WEB-CRAWL 436M | 396832 0 0 | 396832

Total 479556 | 1278 | 9664 | 468614

Table 1: Trace Sites and Basic Statistics.
SOA/0OS Lecture 10, When The CRC and TCP Checksum Disagree 16/26

A

paper crunch

Error types

end-host hardware errors

v

end-host software errors

v

> router memory errors

link-level errors

v

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 17/26

A

paper crunch

End-host hardware errors

> network interfaces may be buggy
» they may change bits before adding the CRC trailer
» they may change bits after receiving the packet
» usually drivers take care of hardware bugs (if possible):
http://Ixr.linux.no/linux+* /drivers/net/forcedeth.c#L5591

» failures can also affect other hardware components

> memory errors can occur
» busses can malfunction
» see the SUN NFS story above

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 18/26

A

paper crunch

End-host software errors

» ACK-of-FIN bug
» Bad LF in CR/LF

» In conclusion, bugs in software that has direct access to
packet structure are bad.

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 19/26

A

paper crunch

Router memory errors

» Same as end-host errors

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 20/26

A

paper crunch

Link layer errors

v

Complex interactions cause higher level errors

» Compression algorithms are the most likely cause

v

Misinterpretation of RFCs describing these algorithms lead to
these errors

v

Thus, they can be considered as software bugs too

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 21/26

A

paper crunch

QOutline

Conclusions

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 22/26

A

paper crunch

Conclusions 1

probability:

> Pue:]-_Pef_Pead_Pedp

» P — error free packets
> P..q — errors always detected
> Pegp — errors detected probabilistically

» Errors might occur that get past both checksums, with the

Trace Name

Pedp

P,. Range

Low

High

Dorm

0.0000628404

0.0000000010

0.0000000614

CAMPUS

0.0000090361

0.0000000001

0.0000000088

DoE-LAB

0.0000171166

0.0000000003

0.0000000167

CRAWL

0.0000075436

0.0000000001

0.0000000074

Table 5: Estimated Rates of Undetected Errors

SOA/0S

Lecture 10, When The CRC and TCP Checksum Disagree

23/26

A

paper crunch

Conclusions 2

Don't trust hardware

v

v

Report host errors. ICMP could me modified to do this
automatically.

v

Report router errors. Use specialized software.

v

Protect important data.

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 24/26

SSA THE Conclusion

paper crunch

» If your application handles sensitive data (financial, military,
etc.)...

» You might want to implement some sort of application layer
error handling

» Then again, if the code responsible for error handling runs on
faulty hardware... :)

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 25/26

A

paper crunch

QOutline

Questions

SOA/OS Lecture 10, When The CRC and TCP Checksum Disagree 26/26

	Introduction
	Looking for errors
	Results
	Conclusions
	Questions

