Lecture 10

Pointless Tainting? Evaluating the Practicality of Pointer
Tainting

Asia Slowinska, Herbert Bos

Advanced Operating Systems

December 15, 2010

SOA/OS Lecture 10, Pointer Tainting

1/40

SSA

""" Introduction
Threat model
Pointer tainting
Problems with pointer tainting
Containment techniques
Conclusion
Keywords

Questions

SOA/OS Lecture 10, Pointer Tainting 2/40

A

paper crunch

QOutline

Introduction

SOA/OS Lecture 10, Pointer Tainting 3/40

SSA Exploiting

paper crunch

» buffer overflows
» inject code — alter control flow
» attack non-control data

> user identity
> user privilege level
» server configuration string

» non-control data attacks are more difficult to detect

SOA/OS Lecture 10, Pointer Tainting 4/40

A

paper crunch

Protection from non-control data attacks

v

type-safe languages

v

compiler extensions

formal methods verification

v

however . ..

» C/CH++
» source unavailable — recompilation not possible

v

v

trojans
» masquerade as useful programs
» no exploit required
» ‘“stealthy spies” harder to detect

SOA/OS Lecture 10, Pointer Tainting

5/40

A

paper crunch

Control flow diversion

» pointer dereference
» control diversion attacks
» execute instructions different from the ones it would normally

execute
» alter flow of control

» non control diversion attacks

» memory corruption attacks against non-control data
(non-function return address etc.)

» privacy breaching malware (keyloggers and sniffers)

> elevated privileges, unusual replies

» address space layout randomization & stack guard don't work

SOA/OS Lecture 10, Pointer Tainting 6/40

S‘(\?‘A Pointer tainting

paper crunch

v

focused by non control diversion attacks

v

also works against control-diverting attacks
a form of dynamic information flow tracking (DIFT)
» origin of data through a taint bit in a shadow memory
unaccessible to software
» check whether values derived from tainted origin ends up in
places it should never be stored

v

v

popular
» apply on software without need of recompilation
» (stated by advocates) incurs hardly false positives
» one of the only techniques of detecting both control-diverting
and non-control diverting attacks

SOA/OS Lecture 10, Pointer Tainting 7/40

A

paper crunch

Pointer tainting — not working

> keylogger detector

> the method is flawed
» incurs both false positives and negative

» existing applications not suitable for x86 architecture and
Windows operating systems

» analyse fundamental limitations of the method when applied
to detection of privacy-breaching malware

» fixing the method is breaking it

SOA/OS Lecture 10, Pointer Tainting 8/40

A

paper crunch

QOutline

Threat model

SOA/OS Lecture 10, Pointer Tainting 9/40

STA Control diverting attacks

» manipulate data that is subsequently loaded in the processor's
program counter
> struct req {
char reqbuf [64];
void (*handler) (char *);

};

void do_req(int fd, struct req *r)
{
// now the overflow
read(fd, r->reqbuf, 64);
r->handler (r->reqbuf) ;

SOA/OS Lecture 10, Pointer Tainting 10/40

S‘(‘jA Non-control diverting attacks

» modify security-critical data (do not alter control flow)
» non control data attacks
void serve (int fd)
{
char *name = globMyHost;
char cl name[64];
char svr reply[1024];

// now the overflow:
read(fd,cl name,128);
sprintf (svr reply,
"hello %s, I am %s",
cl name, name);
svr send(fd,svr reply,1024);
}

» privacy breaching malware (trojans, keyloggers)

SOA/OS Lecture 10, Pointer Tainting 11/40

A

paper crunch

QOutline

Pointer tainting

SOA/OS Lecture 10, Pointer Tainting 12/40

A

paper crunch

Basic tainting

» dynamic taint analysis

» mark (in an emulator or hardware) all data coming from
suspect sources

> taint is propagated

> source operands in ALU — destination is tainted
> copy source operands — taint propagates

» ‘“cleaning” instructions (xor eax,eax)

> jump to “tainted” address — alarm is raised

> protection against control-diverting attacks, but not against
non-control diverting attacks

SOA/OS Lecture 10, Pointer Tainting 13/40

A

paper crunch

Memory corruption

v

dereference of attack-manipulated pointers (same as
control-diverting attacks)

v

heap corruption — change links in lists

v

format string attack

v

basic tainting analysis raises alerts only for dereferences due to
jumps, branches and function calls/returns

SOA/OS Lecture 10, Pointer Tainting 14/40

A

paper crunch

Privacy-breaching

> “possibly malicious” program spying on users’ behaviour —
keyloggers
» basic taint analysis is weak in the face of translation tables
> x is tainted
» y = a[x] is not tainted
» similar for atoi, to_upper, strtol
> taint analysis is powerless in the face of privacy-breaching
malware

SOA/OS Lecture 10, Pointer Tainting 15/40

A

paper crunch

Pointer tainting

> designed to handle non-control diverting attacks

» limited pointer tainting (detecting non-control data attacks)
> p is tainted

raise an alert on any dereference of p

inapplicable in the general case

LPT prescribe that taint of and index is cleaned

LPT cannot be used for tracking keystrokes

» if p is tainted raise an alert on any dereference of p

>
>
>
>

» full pointer tainting (detect privacy breaching)
> propagates taint
» if p is tainted, any dereference of p taints the destination
» looks ideal for privacy-breaching malware applications

SOA/OS Lecture 10, Pointer Tainting 16/40

A

paper crunch

QOutline

Problems with pointer tainting

SOA/OS Lecture 10, Pointer Tainting 17/40

S‘(‘jA Test environment

» Qemu 0.9
» Ubuntu 8.04.1, kernel 2.6.24-19-386
» Windows XP SP2
» depending on test, modify emulator to taint either
» typed keyboard characters
» network data
> inspect taintedness of register at context-switch times
> the more register are tainted the worse the problem

» particularly serious for esp and ebp

SOA/OS Lecture 10, Pointer Tainting 18/40

A

paper crunch

Test environment (2)

> conservative measurements
> register may be clean but not bytes in process' address space
» check registers only at context-switch times
» sufficient to present the problem of false positives
> taintedness in Linux
» schedule()
» context_switch() — monitor taintedness inside the kernel
> taintedness in Windows
» cr3 inspection — contains the physical address of the top-level

page directory
» cr3 change — a new process is scheduled

SOA/OS Lecture 10, Pointer Tainting 19/40

A

paper crunch

False positives in LPT

» taint data from network

» alerts raised for benign actions like configuring the machine's
IP address

» LPT propagates taint when combining and untainted base
pointer and a tainted index

» dereferencing causes an alert

SOA/OS Lecture 10, Pointer Tainting 20/40

S‘é‘A Taint explosion for FPT

> simple keystroke tracing — all taint that is applied

» simple C program — reads a user typed character from the
command line

SOA/OS Lecture 10, Pointer Tainting 21/40

SSA Taint explosion for FPT (2)

paper crunch

t
bash n%. 2;

console-kit-daemon
libnss-files-2.7.s0
pam-unix.so

sy slu%d

hald

dhedbd
hald-addon-storage
kernel threads
kernel

o
@ _.
@ % @

TT T T T T T T T T T T T TTT

Intervals

SOA/OS Lecture 10, Pointer Tainting 22/40

SSA Taint explosion for FPT (3)

paper crunch

' cl(?an
irt
very dlrtyb

calc.exe ||ﬁ| | 1
. e L w —
IEXPLORE EXE l-\-l-IIIlI-IIIIIIIII\IIHIIII\IIH-H-I]

kd.exe (010N N i 1 (o IVIWII-_-]

services.exe || | ||| [IR (AR Pl I 1
wwuauctt.exe. B il |11 000 OO 0001111000 i+

tsass.exe. i - A \HIII!IVIIIIIHH\H\ i 0 1

svehostexe [([1| | | 1 Pl o
svehostexe il 11 (MM IR0 0
msmsgs.exe A | [1
explorer.exe 1'u|m A i Hiiiﬁiil"llvihnm il mmu iﬂii i "‘iii 1

csrss.exe |{/ |1l W W11 IIM (LR N1 TN II!HI\II il 1 I\-I 1

0 100 200 300 400 500 600 700 800 900
Intervals

SOA/OS Lecture 10, Pointer Tainting 23/40

A

paper crunch

Taint pollution

» containment measures required
» pollution of the kernel

» problematic usage of esp and ebp

SOA/OS Lecture 10, Pointer Tainting

24/40

A

paper c

runch

Taint analysis by opening files

)
fi
USER
' KERNEL

filp_open()

@up() —Q hash/head *

%ﬂ&i@

dentry_hashtable

i
stack

_dentry_open()

T

ebp* — stack™

inode®

filetist [-
* * E3

callback list --
Ed £ E3

other lists

SOA/0S

Lecture 10, Pointer Tainting

25/40

A

paper crunch

False positives and root causes of taint pollution

> tainting of ebp and esp
» LPT raises alarms quickly
» FPT spreads taint indiscriminately
> pointers are tainted in the same way
» A tainted, what about B = (A+0x4)7?

» if taint is applied only for detecting memory corruption
attacks, taint may leak due to table lookups

SOA/OS Lecture 10, Pointer Tainting 26/40

A

paper crunch

False negatives

» pure LPT and FTP does not have many false negatives

however . ..

» LPT will miss modification of non-control data by means of a
direct buffer overflow

miss implicit information flows

» if (x ==0) y=0; elsey =1
reduce false positive — opportunities for false negatives will
increase significantly

SOA/0S

Lecture 10, Pointer Tainting 27/40

A

paper crunch

QOutline

Containment techniques

SOA/OS Lecture 10, Pointer Tainting 28/40

ebp/esp protection

both LPT and FPT

basic idea — never apply pointer tainting to tainted values of
ebp and esp

ebp is used as a general purpose register

clean ebp when value is large enough to represent a frame
pointer

although taint is slowed down, it still propagates quickly

SOA/0S

Lecture 10, Pointer Tainting 29/40

A

paper crunch

v

v

v

LPT-specific containment techniques

prevent taint from leaking due to table lookups
detect and sanitise table accesses

>

impractical on x86 — no specific instructions for pointer
arithmetic

bounds checks — safe even if index is tainted provided the
index was properly bounds-checked

>

| 4

identified by a cmp instruction
suffers from false positives and false negatives

pointer injection detection

>

>

| 4

use a P bit to mark valid pointers

applied on SPARC v8 architecture

false positives possible — overflow a buffer, modify and index,
add index to a legitimate address

not easily applicable to x86

SOA/0S

Lecture 10, Pointer Tainting

30/40

A

paper crunch

FTP-specific techniques

» white lists and black lists

» white list all places where tainting should be propagated
black list all places where tainting should not be propagated
unfeasible for large applications
heavy impact on performance

v vy

» landmarking

an address is “ready to be used for a dereference”
dereferencing a landmark — propagate taint

derived values have to be modified with tainted data
opportunities for false positives and false negatives abound

vV vy vy

SOA/OS Lecture 10, Pointer Tainting 31/40

—

paper crunch

Landmarki

ng and esp/ebp protection

gzip (n0.2)

tar (no. 2)

tar (no. 1)

gzip (no. 1)
9pov

nautius

bash (no. 2)
hald
gnome-panel
nm-applet
metaciy
hald-addon-input
kemel threads
hald-addon-storage
dncdbd

python2.5
gnome-screensaver

Xorg
gnome-terminal
ash (no. 1)

t

kernel

clean
Girty m—
very dirty mem—

i 1

L i i
W l
(L TR uil i

n

Sean
dirty m—
Very dity m— -
—
calc.exe
=B IEXPLORE.EXE
Kd.exe
msmsgs.exe
: e svchost.exe
{0 : explorer.exe |
winlogon.exe
i Isass.exe
e services.exe il
i s - . svchost.exe |11}
et e — wuauditexe
i csrss.exe 1]
e
0 200 40 60 80 1000 1200 0
Intervals

200 400 600 800 1000 1200 1400 1600 1800 2000
Intervals

SOA/0S

Lecture 10, Pointer Tainting

A

paper crunch

QOutline

Conclusion

SOA/OS Lecture 10, Pointer Tainting 33/40

A

paper crunch

FPT is broken

prone to false negatives
only slow down the outburst of false positives

difficult to distinguish access to a translation table from
access to a next field in a linked list

without a priori information it's impossible to successfully
apply FPT (on current hardware)

SOA/0S

Lecture 10, Pointer Tainting

34/40

SéA Challenges for LPT

paper crunch

v

pointer injection (P bit) seems promising

v

have to get it to work on common hardware
possible for Linux on SPARC
open challenge to do it for x86

v

v

SOA/OS Lecture 10, Pointer Tainting 35/40

Overall

pointer tainting — considered one of the most powerful
techniques to detect keyloggers and memory corruption
attacks on non-control data

proved problematic — large number of false positives
FPT is probably not suited for detecting keyloggers

unclear whether LPT can be applied to automatically detect
memory corruption attacks on x86

SOA/0S

Lecture 10, Pointer Tainting 36/40

A

paper crunch

QOutline

Keywords

SOA/OS Lecture 10, Pointer Tainting 37/40

A

paper crunch

Keywords

exploit

DIFT

taint analysis
pointer tainting
control diversion
control data
non-control data
memory corruption

keylogger, trojans

» x86 (Linux & Windows)

> limited pointer tainting
(LPT)

» full pointer tainting (FPT)

» false positives, false
negatives

» esp/ebp protection
» pointer injection detection

» landmarking

SOA/0S

Lecture 10, Pointer Tainting 38/40

86‘ A Resources

» Asia Slowinska, Herbert Bos — Pointless Tainting? Evaluating
the Practicality of Pointer Tainting

» Asia Slowinska, Herbert Bos — Pointer tainting still pointless:
(but we all see the point of tainting)

SOA/OS Lecture 10, Pointer Tainting 39/40

A

paper crunch

QOutline

Questions

SOA/OS Lecture 10, Pointer Tainting 40/40

	Introduction
	Threat model
	Pointer tainting
	Problems with pointer tainting
	Containment techniques
	Conclusion
	Keywords
	Questions

