
Lecture 9
When The CRC and TCP Checksum Disagree

Jonathan Stone, Craig Partridge

Advanced Operating Systems

30 November, 2011

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 1/26



Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 2/26



Outline

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 3/26



Issue

I as much as one packet in 1100 can fail the TCP checksum

I this happens even if the corresponding CRC is correct

I it means that transmission links aren’t the ones causing the
errors

I then who?

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 4/26



Recap

I CRC checksum used to detect link-layer errors

I Do we need checksums at every layer? Why?

I One reason is that you can not rely on lower layers doing error
checking for you

I Thus, TCP has its own checksum

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 5/26



Fun fact

I TCP computes its checksum by using a pseudo-header

I Why?

I The explanation comes straight from the designer, David
Patrick Reed

I http://www.postel.org/pipermail/end2end-interest/2005-
February/004616.html

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 6/26



First insight

I What happens if we do rely on lower layers for error
checking?

I SUN did that

I Because checksumming takes a long time, SUN’s NFS
implementation disabled it in UDP

I What happened?

I Power fluctuations on busses caused random bits being
shuffled

I SUN’s current implementation of NFS runs with
checksumming enabled

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 7/26



Most important thing to realize

I Never take anything for granted

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 8/26



Outline

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 9/26



Important issues

I capture as many errors as possible

I try to categorize errors that cause checksum failure

I define ways of eliminating those errors

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 10/26



Capturing errors

I use libpcap to analyze traffic. The more the merrier

I try to match each bad packet with its retransmission (twin
packets)

I look at the error patterns by examining each pair

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 11/26



Good/evil twins

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 12/26



Pretty print

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 13/26



What to look for

I try to morph the good packet into the bad packet

I do this to understand how the error might have occured

I block errors can be caused by buggy DMA engines

I individual byte errors may be caused by UARTs with interrupts
for each byte. This can cause overruns on SLIP links.

I try to find similar patterns by manual examination :)

I correlate the patterns with the hardware and software
configurations of the network in which you captured the
packets

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 14/26



Outline

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 15/26



Stats

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 16/26



Error types

I end-host hardware errors

I end-host software errors

I router memory errors

I link-level errors

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 17/26



End-host hardware errors

I network interfaces may be buggy
I they may change bits before adding the CRC trailer
I they may change bits after receiving the packet
I usually drivers take care of hardware bugs (if possible):

http://lxr.linux.no/linux+*/drivers/net/forcedeth.c#L5591

I failures can also affect other hardware components
I memory errors can occur
I busses can malfunction
I see the SUN NFS story above

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 18/26



End-host software errors

I ACK-of-FIN bug

I Bad LF in CR/LF

I In conclusion, bugs in software that has direct access to
packet structure are bad.

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 19/26



Router memory errors

I Same as end-host errors

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 20/26



Link layer errors

I Complex interactions cause higher level errors

I Compression algorithms are the most likely cause

I Misinterpretation of RFCs describing these algorithms lead to
these errors

I Thus, they can be considered as software bugs too

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 21/26



Outline

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 22/26



Conclusions 1

I Errors might occur that get past both checksums, with the
probability:

I Pue = 1 − Pef − Pead − Pedp

I Pef – error free packets
I Pead – errors always detected
I Pedp – errors detected probabilistically

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 23/26



Conclusions 2

I Don’t trust hardware

I Report host errors. ICMP could me modified to do this
automatically.

I Report router errors. Use specialized software.

I Protect important data.

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 24/26



THE Conclusion

I If your application handles sensitive data (financial, military,
etc.)...

I You might want to implement some sort of application layer
error handling

I Then again, if the code responsible for error handling runs on
faulty hardware... :)

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 25/26



Outline

Introduction

Looking for errors

Results

Conclusions

Questions

SOA/OS Lecture 9, When The CRC and TCP Checksum Disagree 26/26


	Introduction
	Looking for errors
	Results
	Conclusions
	Questions

