
Lecture 6
A Survey of Checkpoint/Restart Implementations

Eric Roman - Lawrence Berkeley National Laboratory Berkeley,
CA

Advanced Operating Systems

15 November, 2012

SOA/OS Lecture 6, Checkpoint Mechanisms 1/33



Contents

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 2/33



Outline

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 3/33



Introduction

I Save the current state of the system/process periodically or
before critical code sections, providing sufficient information
to recover it in case of a system failure

I It’s usually an operating system feature

I Not a new research area

I Commercial/production implementations are emerging (high
availability systems, clusters, virtualization)

SOA/OS Lecture 6, Checkpoint Mechanisms 4/33



Motivation & Application

I Process migration: transparent process migration is used for
distributed load balancing and job controlling systems

I Crash recovery and rollback transaction: a process can
easily return to a previously checkpointed state (useful for
long-running applications - scientific computation)

I System administration: system administrators can
checkpoint processes before shutting down a machine and
restart them (on the same of another machine)

I High performance systems, embeded systems, servers, medical
devices, etc.

SOA/OS Lecture 6, Checkpoint Mechanisms 5/33



Checkpoint Principles

I Save the state of a running process in a file
I Memory (stack, heap, data, bss)
I Registers
I File descriptors
I Optional: pending signals, signal handlers, accounting records,

terminal state

I Restart the process by recreating the objects described in the
saved file

SOA/OS Lecture 6, Checkpoint Mechanisms 6/33



Types of checkpoint

I Full checkpoint: saves the entire state of the program

I Incremental checkpoint: only saves data that changed from
the previous checkpoint (minimizes the costs/time and space)

I Checkpoint with fork: duplicates the existing process (the
original process continues to execute while the child saves its
state)

SOA/OS Lecture 6, Checkpoint Mechanisms 7/33



Outline

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 8/33



Checkpoint Implementations

I Application-implemented checkpoint

I Library linked with the application

I Operation system implementation

SOA/OS Lecture 6, Checkpoint Mechanisms 9/33



Application Level Checkpoint

I Highest degree of control

I The operating system may remain unmodified and completely
unaware of checkpoints and restart

I Difficult to implement - it may not be possible to change the
application source code

I Delay between the time of the checkpoint command and the
time the application decides to save its state

I Lack of a common restart mechanism (different applications
may use different checkpoint implementations)

SOA/OS Lecture 6, Checkpoint Mechanisms 10/33



Library Level Checkpoint

I Avoids most the of underlying application source modifications

I Typically use a signal handler to accomplish checkpointing
(reduces the delay between the checkpoint command time and
the checkpoint decision time)

I Common restart procedure

I Imposes restrictions on which system calls the application may
use (system calls like open file handles and memory mapp are
intercepted)

I Interprocess communication is forbidden – scripts and parallel
applications may not be checkpointed

SOA/OS Lecture 6, Checkpoint Mechanisms 11/33



Operating System Level Checkpoint

I Special support in the operating system kernel

I Avoids replicating kernel data structures (e.g. opened files)

I Data like process id, session id or original parent can be
managed only in kernel level implementation

I Allows applications to be checkpointed at any time

I Very few implementations

SOA/OS Lecture 6, Checkpoint Mechanisms 12/33



Parallel Application Checkpoint

I Process comunication: shared memory, pipes, local domain
sockets

I During checkpoint, the operating system must suspend all
processes and save their states

I During restart, the operating system must reconstruct all
processes and IPC channels

SOA/OS Lecture 6, Checkpoint Mechanisms 13/33



Multinode Application Checkpoint

I Requires active involvement of the checkpointing processes or
coordination with a remote kernel

I Ensures consistency: nodes cooperation

I Ensures all sent messages have been received or buffered

SOA/OS Lecture 6, Checkpoint Mechanisms 14/33



Checkpoint Implementation Details

I Process address space
I Library implementation

I Obtains the start and end addresses for each region using
system calls interception and kernel specific knowledge

I Problems for mapped regions: mmap system call cannot be
intercepted - it is used before checkpoint library is initialized;
alternative: /proc filesystem

I Operating system implementation - direct access to data
structures describing the mapped regions

I Optimization: application level implementation allow to
designate ”unimportant” data regions

I CPU registers - IP, SP, general purpose registers, etc
I Library implementation: uses a signal handler (when a signal is

received, the kernel stores the registers on stack)
I Operating system implementation: direct access to data

structures that store the process registers

SOA/OS Lecture 6, Checkpoint Mechanisms 15/33



Checkpoint Implementation Details (2)

I Signal handlers and pending signal state
I Library implementation: sigaction or signal system calls,

sigpending
I Operating system implementation: direct access to data

structures that save the signal handler and pending signals
I Files and file descriptors

I Issues
I Files may change between the checkpoint and the

corresponding restart
I Application interactions with the filesystem (if the application

closed a file descriptor, there are no available data structures
to recover file’s state)

I Improvements: save hidden copies of all the opened files
I Reestablish the association between file descriptors and

terminals
I Opened directories: no existing implementation has addressed

this issue
I Sockets: shutdown and restart sockets through callback;

message bufering mechanisms

SOA/OS Lecture 6, Checkpoint Mechanisms 16/33



Types of Checkpoint Implementation

I Library
I libckpt
I Condor
I libtckpt

I System
I VMADump
I CRAK

SOA/OS Lecture 6, Checkpoint Mechanisms 17/33



libckpt

I One of the first library implementations for UNIX
I Provides a number of special optimizations to reduce the size

of checkpoint files
I Memory exclusion (mark unused pages or pages that will not

be modified)
I Incremental checkpoint using mprotect()
I Forked checkpointing
I Synchronous checkpoint

SOA/OS Lecture 6, Checkpoint Mechanisms 18/33



libckpt (2)

I Requires a modification to the application source code
(renaming main routine)

I The application must be recompiled and statically linked to
libckpt

I Support for shared libraries

I Can not restore segments mapped in by the application
through mmap()

SOA/OS Lecture 6, Checkpoint Mechanisms 19/33



Condor

I Implements process migration for the Condor load balancing
system

I Supports applications using memory mapped segments

I Mapped segments and dynamic libraries are read through the
/proc filesystem

I Requires applications to be linked with a special checkpoint
library

I No recompilation is necessary

SOA/OS Lecture 6, Checkpoint Mechanisms 20/33



libtckpt

I Checkpoints multithreaded applications using Linux or Solaris
threads

I Adds a checkpoint thread to the application used to
synchronize the other threads and invoke user callbacks

I User may install callbacks to be invoked before or after a
checkpoint is taken or after a restart is performed

SOA/OS Lecture 6, Checkpoint Mechanisms 21/33



VMADump

I Part of Scyld’s Bproc system

I Designed mainly for this style of process migration

I Explicit cooperation from process

I System call for ckeckpoint and restore

I VMADump also allows process images to be executed directly
through exec()

I Optimization in saving memory (saving shared libraries name
and not the content)

I Drawbacks:
I is application-initiated
I ignores file contents and file descriptors
I only individual single-threaded processes, not sessions, process

groups, or multithreaded applications

SOA/OS Lecture 6, Checkpoint Mechanisms 22/33



VMADump (2)

SOA/OS Lecture 6, Checkpoint Mechanisms 23/33



CRAK

I Designed for process migration

I Implemented as kernel module

I Minimal modifications to the operating system kernel

I Split between user space and kernel space

I User space is responsible for identifying the set of processes to
be checkpointed, and for reconnecting open file descriptors
and pipes

I Children can be save

I Signals to synchronize processes to be checkpointed

SOA/OS Lecture 6, Checkpoint Mechanisms 24/33



CRAK (2)

I Saves data in a manner quite similar with VMADump with
the difference that CRAK checkpoint isn’t necessary called by
the process to be checkpointed

I Cannot use current
I Find the location of a checkpointing process’ memory

I Saves files descriptors attached to sockets, unnamed pipes,
and regular files

I Pipes between processes are reconnected in user space
I Any data undelivered in pipes is restored in kernel space

SOA/OS Lecture 6, Checkpoint Mechanisms 25/33



CRAK (3)

I Sockets are restored in three phases
I New socket is created in user space
I In kernel space, local socket data structure is modified
I The remote socket data structure is modified to reflect the

restarting address

I CRAK is system-initiated, so no modifications are necessary to
user code

I Drawbacks:
I Cannot restart multithreading processes
I No checkpoint handlers
I Cannot block checkpoints

I Far from a general purpose checkpoint/restart

SOA/OS Lecture 6, Checkpoint Mechanisms 26/33



Checkpoint Implementation Comparison

SOA/OS Lecture 6, Checkpoint Mechanisms 27/33



Outline

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 28/33



Conclusion

I Although checkpoint/restart is a useful technology, it is still
mainly a research subject and has not come to production use.
The reasons are:

I Lack of support from popular operating systems
I Most operating systems such as Unix were not designed for

checkpoint/restart. It’s very hard to add such functionality
without significant change of the kernel

I Lack of commercial demand
I Checkpoint/restart is primarily used for high performance

distributed systems

I Transparency and reliability
I Checkpoint/restart ought to be both transparent and reliable

for general use, which is difficult

SOA/OS Lecture 6, Checkpoint Mechanisms 29/33



Outline

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 30/33



Keywords

I checkpoint

I restart

I memory

I registers

I migration

I fault tolerance

I process communication

I libckpt

SOA/OS Lecture 6, Checkpoint Mechanisms 31/33



Outline

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

SOA/OS Lecture 6, Checkpoint Mechanisms 32/33



Questions

?

SOA/OS Lecture 6, Checkpoint Mechanisms 33/33


	Checkpoint
	Checkpoint Implementations
	Conclusion
	Keywords
	Questions

