
Lecture 5
User-Mode Linux

Jeff Dike

Operating Systems Practical

November 7, 2012

OSP Lecture 5, UML 1/33

Contents

User-Mode Linux

Keywords

Resources

Questions

OSP Lecture 5, UML 2/33

Outline

User-Mode Linux

Keywords

Resources

Questions

OSP Lecture 5, UML 3/33

UML

I A linux kernel port on Linux

I A virtual machine in user-space

I The simulated hardware is built on top of the native kernel
services

I The UML kernel is ported on top of the native’s kernel system
calls

I The associated code is in the arch interface (arch/um/)

I There are no drivers

I Processes run in a closed environment

OSP Lecture 5, UML 4/33

UML (2)

OSP Lecture 5, UML 5/33

Devices

I console
I the main console is the one in which the UML kernel was

started
I subsequent consoles run inside an xterm

I block devices
I emulated through files

I serial links
I emulated through pseudo-terminals (/dev/pts/0)

I networking
I daemon used to send Ethernet frames between virtual

machines
I can link the virtual device to the real one

OSP Lecture 5, UML 6/33

Processor

I implemented using the arch interface

I the entire code is a separate architecture named “um”:

l s / u s r / s r c / l i n u x / a rch /um/
Kcon f i g Kcon f i g . x86 64 Make f i l e−s ka s [. . .]
Kcon f i g . cha r Make f i l e Make f i l e−t t [. . .]
Kcon f i g . debug Make f i l e−i 3 86 Make f i l e−x86 64 os−L inux
Kcon f i g . i 386 Make f i l e−i a 64 c o n f i g . r e l e a s e s c r i p t s
Kcon f i g . net Make f i l e−os−L inux d e f c o n f i g sys−i 3 86
Kcon f i g . s c s i Make f i l e−ppc d r i v e r s sys−i a 64

I user space code need to be able to run unmodified in the
virtual machine

I system calls are interpreted and run on the virtual machine

I UML runs in user space as a process

OSP Lecture 5, UML 7/33

Intercepting system calls

I uses ptrace - controlled execution (gdp uses ptrace)

I one thread uses ptrace to control the other threads and
processes

I the thread is notified by a system call from another thread
I the arguments are gathered
I redirects to kernel code running in user space for execution

OSP Lecture 5, UML 8/33

Trap

I traps are used to switch from user mode to kernel mode
I on physical systems are generated by hardware components

I the result is forcing the processor to jump to a certain address
in kernel space

I traps are implemented using Linux signals
I SIGALRM/SIGVTALRM - clock
I SIGIO - hardware interrupts
I SIGSEGV - memory faults
I the user-space kernel declares handlers for these signals

OSP Lecture 5, UML 9/33

Trap (2)

I signal handlers need to run in kernel-mode (in the UML
process)

1. need to use a kernel stack
2. need to deactivate the interception of system calls

OSP Lecture 5, UML 10/33

Trap (3)

OSP Lecture 5, UML 11/33

Kernel address space

I when a process enters kernel mode, it automatically changes
the address space

I the UML problem?
I the kernel and the process co-exist in the same address space -

the UML process address space

I solution:
I placing the UML kernel in a memory area that is not likely to

be accessed (0xa0000000 – 0xbfffffff)
I mmaps a file in each process space

OSP Lecture 5, UML 12/33

Process address space

I Each process on the virtual machine has a real process on the
physical machine associated with it

I All processes share kernel data
I mmap a file with kernel data in the address space of each

andevery process (shared segment)

I context changes are implemented using real (native) context
changes

I what preempts a process?
I clock interrupt on the native kernel
I SIGVTALRM on the UML kernel

OSP Lecture 5, UML 13/33

Address space

OSP Lecture 5, UML 14/33

Initialization and shutdown

I example:
./linux-2.6.19-rc5 ubda=FedoraCore5-x86-root fs mem=128M

I arguments are sent through a buffer

I init memory, start idle thread

I the monitoring thread starts intercepting

I start kernel, mem init, paging init

I register and init drivers

I on shutdown, all processes and threads are killed

OSP Lecture 5, UML 15/33

Processes

I for creating a new process, the generic code in the kernle calls
the specific architecture code from /arch/

I in the UML case, a new process is created on the host system
I the monitoring thread is used (MT)

I new process/thread executes init operation (handlers for
SIGVTALRM, SIGIO, SIGSEGV, etc.)

I after init it sends itself a SIGSTOP
I the MT detects the stopping of the process and ends the

system call and returns a return value specific to ‘fork’

I the process is killed on the host system and the memory is
freed

OSP Lecture 5, UML 16/33

System calls

I The virtualization of the system calls is done through MT
I system calls are redirected to the virtual kernel
I the system call is mapped to a “getpid” on the host system

OSP Lecture 5, UML 17/33

System calls (2)

I how to call the system call switch on the kernel stack?

1. creating an execution context that positions the process at the
beginning of the switch statement

2. use a signal at the return from the kernel; the handler for this
signal is the execution of the system call switch statement

I the MT is notified at the end of the system call in the MT

I the MT stores the return value in the specialized register

I the process continues to execute user level code

OSP Lecture 5, UML 18/33

System calls (3)

OSP Lecture 5, UML 19/33

System calls (4)

OSP Lecture 5, UML 20/33

Context switch

I in the case of a process switch - a process calls schedule

I a new process is chosen and the architecture dependent code
is called

I the MT is notified from the arch/um/ code

I the MT stops the process and starts the new one

OSP Lecture 5, UML 21/33

Context switch (2)

I after re-planning, some pages can be swapped - but the
mapping exists

I the pages are stored in a circular buffer

I after re-planning this buffer is checked and the address space
is updated

OSP Lecture 5, UML 22/33

Delivering signals

I delivered signals are stored in a queue in the process’
task struct

I the queue is inspected upon every exit from kernel mode

I the signal is delivered to the process running on the host
kernel through SIGUSR2

I the SIGUSR2 handler executes the actual signal handler

OSP Lecture 5, UML 23/33

Memory faults

I what is demand paging?

I a memory fault causes the delivery of SIGSEGV to the UML
process

I the handler checks the nature of the fault: user-mode fault or
kernel-mode fault

I if the page is valid - it is mapped

I otherwise SIGSEGV is sent to the user process or kernel panic
I exception: sending of a invalid pointer from user-space or

kernel space
I checks the address of the instruction that generated the fault

OSP Lecture 5, UML 24/33

IRQ

I copied from i386

I for i386: the interrupt routine is called through do irq
I for um: interrupts are simulated through SIGIO

I the routine is chosen through the file descriptor that is
associated with the device

OSP Lecture 5, UML 25/33

The result

I a Linux virtual machine runs on a Linux host operating system

I native applications run un-modified on UML

I has the advantage of using the latest kernel (over other
virtualization techniques)

I from 2.6 up, the um “architecture” is included in the kernel

I from 2.6 up SKAS (separate kernel address space) is used
instead of MT

OSP Lecture 5, UML 26/33

Applications

I kernel debugging

I isolation

I prototiping (testing on a virtual system before launching on
the physical system)

I multiple environments on the same physical system

OSP Lecture 5, UML 27/33

Outline

User-Mode Linux

Keywords

Resources

Questions

OSP Lecture 5, UML 28/33

Keywords

I Linux kernel

I user-mode

I context switch

I address space

I system calls

I traps

I memory faults

I IRQ

OSP Lecture 5, UML 29/33

Outline

User-Mode Linux

Keywords

Resources

Questions

OSP Lecture 5, UML 30/33

Resources

I http://www.usenix.org/publications/library/

proceedings/als00/2000papers/papers/full_papers/

dike/

I https://www.usenix.org/publications/library/

proceedings/als01/full_papers/dike/

I http://user-mode-linux.sourceforge.net/

I http://user-mode-linux.sourceforge.net/old/

UserModeLinux-HOWTO.html

I http://www.coherenthosting.com/prj/uml/henrique/

pool_h01/

OSP Lecture 5, UML 31/33

http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
https://www.usenix.org/publications/library/proceedings/als01/full_papers/dike/
https://www.usenix.org/publications/library/proceedings/als01/full_papers/dike/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/old/UserModeLinux-HOWTO.html
http://user-mode-linux.sourceforge.net/old/UserModeLinux-HOWTO.html
http://www.coherenthosting.com/prj/uml/henrique/pool_h01/
http://www.coherenthosting.com/prj/uml/henrique/pool_h01/

Outline

User-Mode Linux

Keywords

Resources

Questions

OSP Lecture 5, UML 32/33

Questions

?

OSP Lecture 5, UML 33/33

	User-Mode Linux
	Keywords
	Resources
	Questions

