
Pointless Tainting?

Evaluating the Practicality of Pointer Tainting

Asia Slowinska

Vrije Universiteit Amsterdam

asia@few.vu.nl

Herbert Bos

Vrije Universiteit Amsterdam and NICTA ∗

herbertb@cs.vu.nl

Abstract

This paper evaluates pointer tainting, an incarnation of Dy-

namic Information Flow Tracking (DIFT), which has re-

cently become an important technique in system security.

Pointer tainting has been used for two main purposes: de-

tection of privacy-breaching malware (e.g., trojan keylog-

gers obtaining the characters typed by a user), and detec-

tion of memory corruption attacks against non-control data

(e.g., a buffer overflow that modifies a user’s privilege level).

In both of these cases the attacker does not modify control

data such as stored branch targets, so the control flow of

the target program does not change. Phrased differently, in

terms of instructions executed, the program behaves ‘nor-

mally’. As a result, these attacks are exceedingly difficult to

detect. Pointer tainting is considered one of the only methods

for detecting them in unmodified binaries. Unfortunately, al-

most all of the incarnations of pointer tainting are flawed.

In particular, we demonstrate that the application of pointer

tainting to the detection of keyloggers and other privacy-

breaching malware is problematic. We also discuss whether

pointer tainting is able to reliably detect memory corrup-

tion attacks against non-control data. We found that pointer

tainting generates itself the conditions for false positives. We

analyse the problems in detail and investigate various ways

to improve the technique. Most have serious drawbacks in

that they are either impractical (and incur many false pos-

itives still), and/or cripple the technique’s ability to detect

attacks. In conclusion, we argue that depending on architec-

ture and operating system, pointer tainting may have some

∗ NICTA is funded by the Australian Government as represented by the

Department of Broadband, Communications and the Digital Economy and

the Australian Research Council through the ICT Centre of Excellence

program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys ’09, 1–3, April 2009, Nuremberg, Germany.
Copyright c© 2009 ACM 978-1-60558-482-9/09/04. . . $5.00

value in detecting memory corruption attacks (albeit with

false negatives and not on the popular x86 architecture), but

it is fundamentally not suitable for automated detecting of

privacy-breaching malware such as keyloggers.

Categories and Subject Descriptors D.4.6 [Security and

Protection]: Invasive software

General Terms Security, Experimentation

Keywords dynamic taint analysis, pointer tainting

1. Introduction

Exploits and trojans allow attackers to compromise ma-

chines in various ways. One way to exploit a machine is

to use techniques like buffer overflows or format string at-

tacks to divert the flow of execution to code injected by the

attacker. Alternatively, the same exploit techniques may at-

tack non-control data [Chen 2005b]; for instance a buffer

overflow that modifies a value in memory that represents a

user’s identity, a user’s privilege level, or a server configura-

tion string. Non-control data attacks are even more difficult

to detect than attacks that divert the control flow. After all,

the program does not execute any foreign code, does not

jump to unusual places, and does not exhibit strange sys-

tem call patterns or any other tell-tale signs that indicate that

something might be wrong.

While protection for some of these attacks may be pro-

vided if we write software in type-safe languages [Jim 2002],

compile with specific compiler extensions [Castro 2006,

Akritidis 2008], or verify with formal methods [Elphinstone

2007], much of the system software in current use is writ-

ten in C or C++ and often the source of the software is not

available, and recompilation is not possible.

Worse, even with the most sophisticated languages, it is

difficult to stop users from installing trojans. Often trojans

masquerade as useful programs, like pirated copies of popu-

lar applications, games, or ’security’-tools, with keylogging,

privacy theft and other malicious activities as hidden fea-

tures. No exploit is needed to compromise the system at all.

Once inside, the malware may be used to join a spam botnet,

damage the system, attack other sites, or stealthily spy on a

user. Again, stealthy spies are harder to detect than ‘loud’

61

programs that damage systems, or engage in significant net-

work activity. The trojan spyware, installed by the user, may

use legitimate APIs to obtain and store the characters that

are typed in by the users (or data in files, buffers, or on the

network). From a system’s perspective, the malware is not

doing anything ‘wrong’.

In light of the above, we distinguish between attacks that

divert the control flow of a program and those that do not.

Control diversion typically means that a pointer in a process

is manipulated by an attacker so that when it is dereferenced,

the program starts executing instructions different from the

ones it would normally execute at that point. Non control di-

verting attacks, on the other hand, include memory corrup-

tion attacks against non-control data and privacy breaching

malware like keyloggers and sniffers. Memory corruption at-

tacks against non-control data manipulate data values that

are not directly related to the flow of control; for instance, a

value that represents a user’s privilege level, or the length in

bytes of a reply buffer. The attack itself does not lead to un-

usual code execution. Rather, it leads to elevated privileges,

or unusual replies. The same is true for privacy breaching

malware like sniffers and trojan keyloggers.

Pointer tainting as advertised is attractive. It is precisely

these difficult to detect, stealthy non-control-diverting at-

tacks that are the focus of pointer tainting [Chen 2005a]. At

the same time, the technique works against control-diverting

attacks also. We will discuss pointer tainting in more detail

in later sections. For now, it suffices to define it as a form

of dynamic information flow tracking (DIFT) [Suh 2004]

which marks the origin of data by way of a taint bit in a

shadow memory that is inaccessible to software. By track-

ing the propagation of tainted data through the system (e.g.,

when tainted data is copied, but also when tainted pointers

are dereferenced), we see whether any value derived from

data from a tainted origin ends up in places where it should

never be stored. For instance, we shall see that some projects

use it to track the propagation of keystroke data to ensure that

untrusted and unauthorised programs do not receive it [Yin

2007]. By implementing pointer tainting in hardware [Dal-

ton 2007], the overhead is minimal.

Pointer tainting is very popular because (a) it can be ap-

plied to unmodified software without recompilation, and

(b) according to its advocates, it incurs hardly (if any) false

positives, and (c) it is assumed to be one of the only (if

not the only) reliable techniques capable of detecting both

control-diverting and non-control-diverting attacks with-

out requiring recompilation. Pointer tainting has become a

unique and extremely valuable detection method especially

due to its presumed ability to detect non-control-diverting

attacks. As mentioned earlier, non-control-diverting attacks

are more worrying than attacks that divert the control flow,

because they are harder to detect. Common protection

mechanisms like address space randomisation and stack-

guard [Bhatkar 2005, Cowan 1998] present in several mod-

ern operating systems are ineffective against this type of

attack. The same is true for almost all forms of system call

monitoring [Provos 2003, Giffin 2004]. As a result, some

trojan keyloggers have been active for years (often unde-

tected). In one particularly worrying case, a keylogger har-

vested over 500,000 login details for online banking and

other accounts [Raywood 2008]. At the same time, the con-

sequences of a successful non-control-diverting attack may

be as severe as with a control-diverting attack. For instance,

passwords obtained by a keylogger often give attackers full

control of the machines. The same is true for buffer over-

flows that modify a user’s privilege level.

However, pointer tainting is not working as advertised.

Inspired by a string of publications about pointer tainting

in top venues [Chen 2005a;b, Yin 2007, Egele 2007, Dalton

2007, Yin 2008, Venkataramani 2008, Dalton 2008], several

of which claim zero false positives, we tried to build a key-

logger detector by means of pointer tainting. However, what

we found is that for privacy-breaching malware detection,

the method is flawed. It incurs both false positives and neg-

atives. The false positives appear particularly hard to avoid.

There is no easy fix. Further, we found that almost all exist-

ing applications of pointer tainting to detection of memory

corruption attacks are also problematic, and none of them

are suitable for the popular x86 architecture and Windows

operating system.

In this paper, we analyse the fundamental limitations of

the method when applied to detection of privacy-breaching

malware, as well as the practical limitations in current ap-

plications to memory corruption detection. Often, we will

see that the reason is that ‘fixing the method is breaking it’:

simple solutions to overcome the symptoms render the tech-

nique vulnerable to false positives or false negatives.

Others have discussed minor issues with projects that use

pointer tainting [Dalton 2006], and most of these have been

addressed in later work [Dalton 2008]. To the best of our

knowledge, nobody has investigated the technique in detail,

nobody has shown that it does not work against keyloggers,

and we are the first to report the complicated problems with

the technique that are hard to overcome. We are also the first

to evaluate the implications experimentally.

In summary, the contributions of this paper are:

1. an in-depth analysis of the problems of pointer tainting

on real systems which shows that it does not work against

malware spying on users’ behaviour, and is problematic

in other forms also;

2. an analysis and evaluation of all known fixes to the prob-

lems that shows that they all have serious shortcomings.

We emphasise that this paper is not meant as an attack

on existing publications. In our opinion, previous papers

underestimated the method’s problems. We hope that our

work wlll help others avoid making the mistakes we made

62

struct req { void serve (int fd)

char reqbuf[64]; {
void (*handler)(char *); char *name = globMyHost;

}; char cl name[64];
char svr reply[1024];

void do req(int fd,
struct req *r) // now the overflow:

{ read(fd,cl name,128);

// now the overflow: sprintf(svr reply,
read (fd,r->reqbuf,128); "hello %s, I am %s",

r->handler (r->reqbuf); cl name, name);
} svr send(fd,svr reply,1024);

}

(a) control data attack (b) non-control data attack

Figure 1. Trivial overflow examples

when we worked on our ill-fated keylogger detector, and

perhaps develop improved detection techniques.

2. Threat Model

Before we can evaluate pointer tainting, we revisit in more

detail the nature of the attacks that we introduced infor-

mally in the previous section. Recall that we said that we

would distinguish between two types of attack: (1) control-

diverting, and (2) non-control-diverting. Moreover, within

the latter category we will distinguish between (2a) memory

corruption attacks against non-control data, and (2b) privacy

breaching malware, such as keyloggers and sniffers. We now

define what they are.

Attackers often compromise computer systems by ex-

ploiting security vulnerabilities resulting from low-level

memory errors such as buffer overflows, dangling pointers,

and double frees. Control-diverting attacks exploit buffer

overflows or other vulnerabilities to manipulate a value in

memory data that is subsequently loaded in the processor’s

program counter (e.g., return addresses or function pointers)

with the aim of executing either code that was injected by

the attackers, or a particular library function. An example

of an attack against control data is shown in Figure 1(a): a

stylised server reads a request in a struct’s buffer field and

subsequently calls the corresponding handler. By overflow-

ing reqbuf, an attacker may change the handler’s function

pointer and thus cause the program to call a function at a

different address.

Non-control-diverting memory corruption attacks exploit

similar vulnerabilities to modify security-critical data in

ways that do not result in a different control flow. For in-

stance, a buffer overflow on a server may overwrite the

pointer to (part of) the reply message. As a result, an at-

tacker controls the memory area used for the reply, possibly

causing the server to leak confidential information. This ex-

ample is shown in stylised form in Figure 1(b), which shows

a trivial greeting server. To keep it simple, we use an over-

flow on the stack and assume that the program is compiled

without stack protection. The server stores a pointer to its

own name (which is defined as global string) in the variable

name and then reads the name of the client from a socket.

These two names are combined in a greeting message which

is echoed to the client. If a malicious client overflows the

cl name buffer, it may overwrite the server’s name pointer,

which means that the reply string is composed of the client’s

string and a memory region specified by the attacker. The

result is that information leaks out of the system.

As the instructions that are executed are exactly the same

as for a non-malicious attack, this is an example of a non-

control-diverting attack. For brevity, we will refer to them

as non-control data attacks in the remainder of this paper.

The other manifestation of the non-control-diverting class

of attacks that we will look at concerns privacy breaching

malware like keyloggers, spyware, and network sniffers.

In many ways, the nature of privacy breaching mal-

ware is completely different from the two types of attack

discussed above, as it is not about intrusion itself. The mal-

ware may be installed by way of exploits, or as part of tro-

jans downloaded by the users, or any other means. Once in-

stalled, it often uses legitimate means (e.g., existing APIs)

to achieve illegitimate goals (theft of security sensitive in-

formation). As a result, techniques that detect intrusions

are powerless. For instance, a keylogger in Windows often

uses well-known OS APIs like GetAsyncKeyState(), or

GetForegroundWindow(), to poll the state of the keyboard

or to subscribe to keyboard events. In practice, a lot of spy-

ware is implemented as a browser helper object (BHO) li-

brary that extends Internet Explorer. Since it runs in the same

address space as the browser, it has full control over the

browser’s functionality. Zango [ProcessLibrary.com, Egele

2007], for instance, copies visited URLs to a shared mem-

ory section which is later read by a spyware helper process.

Again, the execution of the program that is spied upon

does not change, and so we also classify these attacks as

non-control-diverting.For convenience, this paper often uses

keyloggers as an example, but we stress that the analysis

holds for all types of privacy breaching malware. We do

not care whether the malware is installed by the user, or by

means of a prior exploit; nor do we care about the method

that malware employs to access sensitive data. Our main

interest is whether we are able to detect them as malware,

and say that they access data that was not intended for them.

Since pointer tainting was originally designed to deal

with non-control-diverting attacks (non-control data exploits

and privacy breaching malware), we will concentrate on

them rather than control-diverting attacks. We have already

argued that these are the ‘hard cases’ anyway.

3. Pointer tainting

Pointer tainting is a variant of dynamic taint analysis, a

technique for detecting various attacks. We show that it was

originally proposed because taint analysis in its basic form

cannot handle non-control-diverting attacks.

63

3.1 Basic tainting

One of the most reliable methods for detecting control di-

versions is known as dynamic taint analysis. The technique

marks (in an emulator or in hardware) all data that comes

from a suspect source, like the network, with a taint tag. The

tag is kept in separate (shadow) memory, inaccessible to the

software. Taint is propagated through the system to all data

derived from tainted values. Specifically, when tainted val-

ues are used as source operands in ALU operations, the des-

tinations are also tainted; if they are copied, the destinations

are also tainted, etc. Other instructions explicitly ‘clean’ the

tag. An example is ‘xor eax,eax’ on x86 which sets the

eax register to zero and cleans the tag. An alert is raised

when a tainted value is used to affect a program’s flow of

control (e.g., when it is used as a jump target or as an in-

struction). We summarise the rules for taint propagation:

1. all data from suspect sources is tainted;

2. when tainted data is copied, or used in arithmetical cal-

culations, the taint propagates to the destination;

3. taint is removed when all traces of the tainted data are

removed (e.g., when the bytes are loaded with a constant)

and a few other operations.

Basic taint analysis has been successfully applied in

numerous systems [Crandall 2004, Newsome 2005, Costa

2005, Ho 2006, Portokalidis 2006, Slowinska 2007, Portoka-

lidis 2008]. The drawback is that it protects against control-

diverting attacks, but not against non-control-diverting at-

tacks as shown presently.

Memory corruption and the (in)effectiveness of basic taint-

ing. For exploits, the root cause of almost all control-

diverting and non-control data attacks is the dereference of

attacker-manipulated pointers. For instance, a stack smash-

ing attack overflows a buffer on the stack to change the

function’s return address. Similarly, heap corruption attacks

typically use buffer overflows or double frees to change the

forward and backward links in the doubly linked free list. Al-

ternatively, buffer overflows may overwrite function pointers

on heap or stack directly. In a format string attack, a member

of the printf() family is given a specially crafted format

string to trick it into using an attacker-provided value on the

stack as a pointer to an address where a value will be stored.

The nature of these attacks vary, but they all rely on deref-

erencing a pointer provided by the attacker via memory cor-

ruption. Basic taint analysis raises alerts only for derefer-

ences due to jumps, branches, and function calls/returns. A

modification of a value representing a user’s privilege level

in a non-control data attack would go unnoticed.

Privacy-breaching and the ineffectiveness of basic taint-

ing. One may want to employ dynamic taint analysis to

detect whether a ‘possibly malicious’ program is spying on

users’ behaviour. A basic approach could work by marking

the keystrokes typed by the user as tainted, and monitoring

the taint propagation in order to inspect whether the software

in question accesses tainted sensitive data.

However basic taint analysis is weak in the face of trans-

lation tables that are frequently used for keystrokes. Assum-

ing variable x is tainted, basic taint analysis will not taint y

on an assignment such as y = a[x], even though it is com-

pletely dependent on x. As a practical consequence, data

from the keyboard loses its taint almost immediately, be-

cause the scan codes are translated via translation tables. The

same is true for ASCII/UNICODE conversion, and transla-

tion tables in C library functions like atoi(), to upper(),

to lower(), strtol(), and sprintf().

As a corollary, basic taint analysis is powerless in the face

of privacy-breaching malware. As data loses its taint early

on, it is impossible to track if it ends up in the wrong places.

3.2 Pointer tainting

Pointer tainting is explicitly designed to handle non-control-

diverting attacks. Because of the two different application

domains, pointer tainting comes in two guises, which we

will term limited pointer tainting (for detecting non-control

data attacks) and full pointer tainting (for detecting privacy

breaches). Both have shortcomings. To clarify the problems,

we first explain the two variants in detail. For now, we just

describe the basic ideas. We will see later that they both need

to be curtailed to reduce the number of false positives.

Limited pointer tainting (LPT): alerts on dereferences.

Systems that aim at detecting non-control data attacks ap-

ply a limited form of pointer tainting [Chen 2005a, Dalton

2008]. Defining a tainted pointer as an address that is gener-

ated using tainted data, taint analysis is extended by raising

an alert when a tainted pointer is dereferenced. So:

4a. if p is tainted, raise an alert on any dereference of p.

Doing so catches several of the memory corruption ex-

ploits discussed above, but cannot be realistically applied

in the general case. For instance, any pointer into an ar-

ray that is calculated by way of a tainted index would lead

to an alert when it is dereferenced, causing false positives.

Again, this is common in translation tables. For this reason,

LPT implementations in practice prescribe that the taint of

an index used for a safe table lookup is cleaned. In Sec-

tion 6.2 we evaluate various such cleaning techniques. As

a consequence, however, LPT cannot be used for tracking

keystrokes. As soon as the tainted keystroke scan-code is

converted by a translation table, the taint is dropped and we

lose track of the sensitive data.

Full pointer tainting (FPT): propagation on dereferences.

Full pointer tainting extends basic taint analysis by propa-

gating taint much more aggressively. Rather than raising an

alert, pointer tainting simply propagates taint when a tainted

pointer is dereferenced. So:

4b. if p is tainted, any dereference of p taints the destination.

64

FPT looks ideal for privacy-breaching malware detection;

table conversion preserves the original taint, allowing us

to track sensitive data as it journeys through the system.

Panorama [Yin 2007] is a powerful and interesting example

of this method. It tries to detect whether a new application

X is malicious or not, by running it in a system with FPT.

Sensitive data, such as keystrokes that are unrelated to X

(e.g., a password you type in when logging to a remote

machine) are tagged tainted. If at some point, any byte in

the address space of X is tainted, it means that the sensitive

data has leaked into X , which should not happen. Thus, the

program must be malicious and is probably a keylogger.

4. Test environment

To get a handle on the number of false positives, we track the

spread of taint through the system for increasingly sophisti-

cated versions of pointer tainting. The idea is that we mark

sensitive data as tainted and monitor taint propagation over

the system. If taint spreads to benign applications that should

never receive tainted data, we mark it as a false positive.

For the experiments we use Qemu 0.9 [Bellard 2005] with

vanilla Ubuntu 8.04.1 with Linux kernel 2.6.24-19-386 and

Windows XP SP2. Depending on the test, we modified the

Qemu emulator to taint either all characters typed at the

keyboard, or all network data. We then propagate the taint

via pointer tainting (using rules 1, 2, 3, and either 4a or

4b). Whether network or keyboard is tainted will be clarified

when we discuss our experiments. The taint tag is a 32-bit

value, so that each key stroke or network byte can have a

unique colour, which helps in tracking the individual bytes.

To measure the spread of taint we repeatedly inspect the

taintedness of registers at context-switch time. Tainted reg-

isters in processes that do not expect tainted input indicate

unwanted taint propagation. The more registers are tainted,

the worse the problem. The situation is particularly serious if

special-purpose registers like the stack pointer (esp) and the

frame pointer (ebp) are tainted. Once either of these registers

is tainted, data on the stack also gets tainted quickly. Indeed,

many accesses are made by dereferencing an address relative

to the value of esp or ebp.

The measurements are conservative in the sense that even

if the registers are clean at some point, there may still be

tainted bytes in the process’ address space. Moreover, we

only check taint in registers during context switch time,

probably again underestimating processes’ taintedness. Taint

may also leak across the kernel-userspace boundary in other

ways, e.g., when tainted bytes are memory mapped into a

process’ address space. In other words, the real situation may

be worse than what we sketch here. However the conserva-

tive approach we have implemented is sufficient to present

the severity of the problem of false positives.

Context switches in Linux occur at just one well-defined

point: the schedule() function. The scheduler is called

either directly by a blocking call that will lead to a call to

schedule() in the kernel (a voluntary context switch), or

by interrupts and exceptions (a forced switch). For instance,

a timer interrupt handler discovers that a process has used

up its quantum of CPU time and sets a flag of the current

process to indicate that it needs a reschedule. Just prior to

the resumption of the user space process, this flag is checked

and if it is set, the schedule() function is called.

The two methods differ in the way registers are saved.

In particular, the general purpose x86 registers eax, ecx

and edx are not saved on the call to schedule() on the

voluntary context switch. The calling context is responsi-

ble for saving the registers are restoring them later. On in-

terrupts and exceptions, all registers are saved at well de-

fined points. The implication is that on voluntary switches,

when we measure the state of the registers on return from

schedule(), we ignore the taintedness of the above three

registers. Whether they are tainted or not is irrelevant, as

they will be overwritten later anyway. On a forced switch,

when we inspect the condition of the process on the return

from interrupt/exception handler, we look at all the registers.

Summarizing, in any case the state of the registers being pre-

sented is captured once the original values are restored after

the context switch. That reflects the state of processes rather

than the state of kernel structures.

For a complete picture we also monitor the taintedness

inside the kernel, during the context_switch() function.

As we cannot perform detailed analysis of Windows, we

measure the state of the registers whenever the value of the

cr3 register changes. This x86 register contains the physical

address of the top-level page directory and a change indi-

cates that a new process is scheduled. For user mode pro-

cesses the measurement is performed once the processor is

operating in user mode. This way we are sure that we present

the state of the process, and not some kernel structures used

to complete the context switch.

5. Problems with pointer tainting

When we started implementing a keylogger detector by

means of pointer tainting, we observed that taint spread

rapidly through the system. We analyse now the problem of

taint explosion both experimentally (Sections 5.1 and 5.2)

and analytically (Section 5.3).

5.1 False positives in LPT

To confirm the immediate spread of taint in limited pointer

tainting (LPT), we used the emulator that taints data com-

ing from the network. Both for Linux and Windows alerts

were quickly raised for benign actions like configuring the

machine’s IP address.

This is wrong, but not unexpected. We have already seen

the causes in the LPT discussion in Section 3.2: without

appropriate containment mechanisms, LPT propagates taint

when combining an untainted base pointer and a tainted

index and dereferencing such an address triggers an alert.

65

kernel
kernel threads

hald-addon-storage
dhcdbd

hald
syslogd

pam-unix.so
libnss-files-2.7.so

console-kit-daemon
bash (no. 1)
bash (no. 2)

run-parts
bash (no. 3)
bash (no. 4)

sed
tar

gzip
dash

apt-get
ls

cp
ping

 0 50 100 150 200

Intervals

clean
dirty

very dirty

Figure 2. The taintedness of the processes constituting 90% of all context switches. In this and all similar plots the following explanation

holds. The x-axis is divided into scheduling intervals, spanning 50 scheduling operations each. Time starts when taint is introduced in the

system. In an interval, several processes are scheduled. For each of these, we take a random sample from the interval to form a datapoint. So,

even if gzip is scheduled multiple times in an interval, it has only one datapoint. A datapoint consists of two small boxes drawn on top of

each other, separated by a thin white line. The smaller one at the top represents the taintedness of ebp and esp. The bottom, slightly larger

one represents all other registers. We use three colours: lightgrey means the registers are clean, darkgrey means less than half of considered

registers are tainted, and black means that half or more are tainted (very dirty). Absence of a box means the process was not scheduled.

This is exactly what happened in our experiment. We discuss

ways of addressing this problem in Section 6.2.

5.2 Taint explosion for FPT

To evaluate the spread of taint in full pointer tainting, we

introduce a minimal amount of (tainted) sensitive informa-

tion, and observe its propagation. After booting the OS, we

switch on keystroke tracking (which taints keystroke data),

and invoke a simple C program, which reads a user typed

character from the command line. This is all the taint that is

introduced in the system. Afterwards we run various appli-

cations, but do so using ssh, so no additional taint is added.

Figure 2 shows how taint spreads to the kernel and some

of the most frequently scheduled processes. Aside from a

few boxes on the very left, almost all applications and the

kernel have at least half of the considered registers and ebp

and esp tainted. Clearly, taint spreads very rapidly to all

parts of the OS. Moreover in both this and the remaining ex-

periments, tar and gzip should be completely clean as we

use a bash script hardcoding the input and output filenames.

Figure 3 shows a similar picture for Windows XP. Here,

performing simple tasks, we provide the guest operating

system with new tainted keystrokes during the whole ex-

periment. In more detail, we first launch the kernel debug-

ger, kd.exe, and next switch on keystroke tagging. Thus,

from this point onward data typed by the user is considered

tainted. Next, we launch Internet Explorer, IEXPLORE.exe,

and calculator, calc.exe. We perform simple web brows-

ing, thus delivering tainted data to the Internet Explorer pro-

cess. However, we do not provide the calculator with any

typed characters, but we use solely the mouse. Finally, we

switch off keystroke tagging, and consult the kernel debug-

ger to dump values of the cr3 register of running processes.

5.3 Analysis: the many faces of taint pollution

The above results show that pointer tainting without some

containment measures is not useful. It is not possible to draw

meaningful conclusions from the presence of taint in a cer-

tain process. A crucial step in the explosion of taint through

the system is the pollution of the kernel. Data structures

wholly unrelated to the keyboard activity pick up taint, and

from the kernel, taint spills into user processes. As LPT sim-

ply raises an alert (and we have already seen how quickly

this happens in a table lookup with tainted index), this sec-

tion focuses on the more interesting case of FPT and we con-

sider how taint spreads through the system in practice.

As mentioned earlier, incorrectly tainting ebp or esp is

particularly bad, as accesses to local variables on the stack

are made relative to ebp, and a ‘pop’ from the stack with

a tainted esp will taint the destination. Unfortunately, the

Linux kernel has numerous places where ebp and/or esp

incorrectly pick up taint. Rather than discussing them all,

we explain as an example how a common operation like

opening a file, ends up tainting ebp, as well as various lists

and structures in the kernel. The main purpose is to show that

taint pollution occurs on common code paths (like opening

files) and can be the result of complex interactions.

5.3.1 Taint pollution by opening files - a case study

Taint pollution occurs due to calls to the open() system call

in various ways. For the following analysis, we extended the

emulator with code that logs the progression of taint through

66

csrss.exe

explorer.exe

msmsgs.exe

svchost.exe

svchost.exe

lsass.exe

wuauclt.exe

services.exe

kd.exe

IEXPLORE.EXE

calc.exe

 0 100 200 300 400 500 600 700 800 900

Intervals

clean
dirty

very dirty

Figure 3. The taintedness of the processes constituting 95% of

all context switches in Windows XP

[1] struct dentry * __d_lookup(struct dentry * parent,

[2] struct qstr * name)
[3] {

[4] unsigned int hash = name->hash;
[5] struct hlist_head *head = d_hash(parent,hash);
[6] struct hlist_node *node;

[7] struct dentry *dentry;
[8]

[9] hlist_for_each_entry_rcu(dentry, node, head,
[10] d_hash) {

[11] struct qstr *qstr;
[12] ...

Figure 4. A snippet of the d lookup() function.

the system at fine granularity. We then manually analysed

the propagation through the Linux source code by mapping

the entries in the log onto the source.

The Linux Virtual Filesystem uses dentry objects to store

information about the linking of a directory entry (a partic-

ular name of the file) with the corresponding file. Because

reading a directory entry from disk and constructing the cor-

responding dentry object requires considerable time, Linux

uses a dentry cache to keep in memory dentry objects that

might be needed later. The dentry cache is implemented by

means of a dentry hashtable. Each element is a pointer

to a list of dentries that hash to the same bucket and each

dentry contains pointers to the next dentry in the list.

The real work in the open() system call is done by

the filp open() function which at some point accesses

the dentry cache by means of the d lookup() func-

tion to search for the particular entry in the parent direc-

tory (see Figures 4 and 5). The second argument, struct

qstr* name, provides the pathname to be resolved, where

name->name and name->len contain the file name and

length, and name->hash its hash value.

Phase 1: taint enters kernel data structures. To see

how taint propagates incorrectly in d lookup(), let us

assume that the filename was typed in by the user, so it is

tainted. The hash is calculated by performing arithmetical

and shift operations on the characters of the filename, which

means that the hash in line 4 is tainted. The d hash()

fopen()

* **

* **

* **

1

2

3

4

filp_open()

_d_lookup()

dentry_hashtable

*

_dentry_open()

ebp

ebp*

inode

file list

*

callback list

other lists
stack

stack

*

*

USER

KERNEL

hash/head *

Figure 5. Taint pollution when a file is opened

function in line 5 first produces a new hash value from both

the dentry object of the parent directory and the tainted hash

of the filename (so that the new hash is also tainted) and then

returns the head of the list of dentries hashing to this new

hash value. This is the address of the element in the table

with the index derived from the new hash value. The address

is calculated as the table’s base pointer plus tainted index

and is therefore tainted. head in line 5 becomes tainted.

As is common in the Linux kernel, the singly linked list

of dentries is constructed by adding a struct hlist node

field in a type that should be linked; in this case the dentry

node. Each hlist node field points to the hlist node field of

the next element, and a hlist head field points to the start of

the list. We iterate over the list (line 9), searching for the

dentry matching the name, which will be found, if the file

has been opened previously (which is quite common).

Phase 2: ebp gets tainted. During the iteration, head

(and later node) contain pointers to the list’s hlist head and

hlist node link fields. Of course, these fields themselves are

not interesting and the real work takes place on the associ-

ated dentry object. Therefore, the macro in line 9 performs

a simple arithmetical operation to produce the address of

the dentry, which results in tainting dentry (line 9). Worse,

within the loop numerous checks of dentry are performed,

and for efficiency, the ebp register is loaded with dentry’s

tainted address. The result is that numerous values on the

stack become tainted, and taint explosion is hard to avoid.

Phase 3: ebp is cleaned and then tainted again. By

the time d lookup() returns, ebp is clean again, but taint

keeps spreading. Now that the dentry object is found in the

cache, the filp open() function calls dentry open(),

passing to it the tainted address of the dentry object. This

function almost immediately loads the ebp register with the

tainted address of the received dentry object. As a result,

taint spreads rapidly through the kernel’s address space.

Phase 4: pollution of other structures via lists. Taint

spreads further across the kernel by dint of pointer arithmetic

prevalent in structures and list handling. Linked lists are

especially susceptible to pollution.

When we read a field of a structure pointed to by a tainted

address, the result is tainted. Similarly, when we insert a

tainted element elem to a list list, we immediately taint the

references of the adjacent nodes. Indeed, the insertion op-

eration usually executes the assignment list->next=elem

which taints the next link. If we perform a list search or

traversal, then the pointer to the currently examined ele-

67

ment is calculated in the following fashion: (1) curr=list,

(2) curr=curr->next, and so the taintedness is passed on

from one element to another.

If a list element is removed from one list and entered into

another, the second list will also be tainted. For instance,

if a block of data pointed to by a tainted pointer is freed,

free lists may become tainted. By means of common pointer

handling, the pollution quickly reaches numerous structures

that are unrelated to the sensitive information.

Let us continue the example of opening files. As ex-

plained earlier, the dentry open() function is provided

with the tainted address of the dentry object. This func-

tion executes the instruction inode=dentry->d inode to

determine the address of the inode object associated with

dentry. The assignment taints inode as its value is loaded

from the tainted address dentry plus an offset. Next,

once the new file object file is initialised, we execute

head=inode->i sb->s files as we insert the file into the

list of opened files pointed to by head (i sb is a field of the

filesystem’s superblock), so the head is tainted. As a result,

the file insert operation immediately taints the references

of the adjacent nodes in the list.

Finally, when the kernel has finished using the file object,

it uses the fput() function to remove the object from the

superblock’s list and release it to the slab allocator. Without

going into detail, we mention that dentry cache look-ups

are lockless read-copy-update (RCU) accesses and that, as

a result, the file objects end up being added to the RCU’s

per-CPU list of callbacks to really free objects when it is

safe to do so. The list picks up the taint and, when it is

traversed, spreads it across all entries in the list. The callback

is responsible for releasing the tainted object to the slab.

5.3.2 False positives and root causes of pollution

It is clear that due to false positives, limited pointer tainting

and full pointer tainting in their naive, pure forms are im-

practical for automatically detecting memory corruption at-

tacks and sensitive information theft, respectively. We have

seen that taint leaks occur in many places, even on a com-

mon code path like that of opening a file. The interesting

question is what the root causes of the leaks are, or phrased

differently, whether these leaks have something in common.

After manually inspecting many relevant parts of the

Linux kernel, we found three primary underlying causes for

taint pollution. First, the tainting of ebp and esp. These

pointers are constantly dereferenced and once they are

tainted, LPT raises alerts very quickly, while FPT spreads

taint almost indiscriminately as the stack becomes tainted.

Second, not all pointers are tainted in the same way and

not all should propagate taint when dereferenced. If A is a

tainted address and B is an address calculated relative to A

(e.g., B=(A+0x4)), then B will be tainted. However, in many

cases it might be unreasonable to mark *B as tainted. For

example, let’s assume that tainted A points to a field of a

structure, file_name. Next, B is derived to hold the base

address of this structure, B = A-offset(file_name), and

B becomes tainted. Now, depending on a security policy, we

may or may not wish to mark B->file_handler as tainted.

However, if all these structures are organized in a list, we

certainly do not want to propagate taintedness to the next

element of a list, B->next. On the other hand, if a pointer

is itself calculated using tainted data (C=A+eax, where eax

is tainted), the taint should be propagated, as C might be

pointing to a field in a translation table. Notice that all these

cases are hard to distinguish for emulators or hardware.

Third, if pointer tainting is applied only for detecting

memory corruption attacks on non-control data, rather than

tracking keystrokes and other sensitive data, taint may leak

due to table lookups, as discussed in Section 3.2.

5.3.3 False negatives: is pointer tainting enough?

While false positives are more serious than false negatives

for automatic detection tools, a system that misses most of

the attacks is not very useful either. ‘Pure’ pointer tainting

in LPT or FPT does not have many false negatives, but

even without any containment of taint propagation, pointer

tainting does not detect all the attacks it is designed for.

For instance, LPT will detect modification of non-control

data by means of a format string attack, or a heap overflow

that corrupts freelist link pointers. However, it will miss

modification of non-control data by means of a direct buffer

overflow. Limited mitigation may be possible by checking

system call arguments, as is done in Vigilante [Costa 2005],

but the fundamental problem remains. Consider for instance,

a buffer on the heap or stack that contains the username and

may be located in memory just below a field that indicates

the user’s privilege level. If attackers can overflow the buffer,

they can modify the privilege level.

Similarly, FPT and LPT both miss implicit information

flows. Implicit information flows have no direct assignment

of a tainted value to a variable (which would be propagated

by pointer tainting). Instead, the value of a variable is com-

pletely determined by the value of tainted data in a condi-

tion. For instance, if x is tainted, then information flows to

y in the following code: if (x=0) y=0; else y=1;. As

we do not track implicit information flows, false negatives

are quite likely. This is particularly worrying if FPT is used

to detect potential privacy-breaching malware, as it gives the

untrusted code an opportunity to ’launder’ taint. As pointed

out by [Cavallaro 2008] purely dynamic techniques cannot

detect implicit flows. The authors explain that it is necessary

to reason about the assignments that take place on the un-

executed program branches, and also provide a number of

reasons making the problem intractable for x86 binaries.

If we are to have any hope at all of catching sophisticated

privacy-breaching malware with FPT, we need to detect and

raise an alert immediately when taint enters the untrusted

code, lest it be laundered. As soon as untrusted code is

allowed to run it can trick the system into cleaning the data.

68

kernel
bash (no. 1)

kernel threads
dhcdbd

hald-addon-input
hald

bash (no. 2)
bash (no. 3)

hald-addon-storage
syslogd
apt-get

tar
gzip

libnss-files-2.7.so (no. 1)
libnss-files-2.7.so (no. 2)

pam-unix.so
bash (no. 4)
bash (no. 5)

cp

 0 50 100 150 200

Intervals

clean
dirty

very dirty

Figure 6. Taint pollution with esp/ebp protection for code

involved in 90% of the context switches (Linux)

Like most work on pointer tainting, we assume that false

negatives in pure pointer tainting are not the most important

problem. However, to deal with the false positives, we are

forced to contain taint propagation in various ways. Doing

so will reduce the false positive ratio, but the opportunities

for false negatives will increase significantly.

6. Containment techniques

We have seen that without containment, pointer tainting is

not usable. We now evaluate ways to control the spreading.

6.1 Containment for LPT and FPT: ebp/esp protection

The first cause of pollution in FPT (and false positives in

LPT) mentioned in Section 5.3.2 is tainting of esp and ebp.

We can simply remove it with minimal overhead by never

applying pointer tainting to tainted values of ebp or esp.

However, on occasion ebp is also used as a temporary gen-

eral purpose register. Having analysed a number of scenarios

that involved a tainted ebp, we devised a simple heuristic,

and clean ebp whenever its value is big enough to serve as

a frame pointer on the stack. Doing so introduces false neg-

atives into the system in case ebp is used as a temporary

general purpose register and serves as a pointer. However,

we expect this to be rare.

We implemented the above restriction in our emulator

and again evaluated the spread of taint through the system.

The results for Linux, shown in Figure 6, indicate that while

the spread has slowed down a little compared to Figure 2,

taint still propagates quickly. Observe that ebp is still tainted

occasionally. This is correct. It means that ebp was used as

a container. For lack of space, we do not show the plot for

Windows. We will show a combined plot later (Figure 9).

6.2 LPT-specific containment techniques

The most important cause of false positives in LPT in-

volves taint pollution via table lookups. As LPT uses pointer

tainting only to detect memory corruption attacks, rather

than tracking sensitive data, we should try to prevent taint

from leaking due to lookups. Proposed solutions revolve

around detecting some specific pointer arithmetic opera-

tions [Suh 2004], bounds-checking operations [Chen 2005a,

Dalton 2007], and more recently pointer-injection [Kat-

sunuma 2006, Dalton 2008]. Because of conversion tables,

none of these techniques are suitable for FPT.

Detecting and sanitising table accesses.

Suh et al. [Suh 2004] sanitise table lookups even when the

index is tainted and assume that the application has already

performed the necessary bounds checks. The method is im-

practical as it requires us to recognise table lookups, while

many architectures, including the popular x86, do not have

separate instructions for pointer arithmetic. On x86, we can

only instrument those instructions that calculate an address

from base and index. Then we propagate the taint of the base

and skip that of the index. However, the use of add and mov

instructions to calculate pointers is extremely common in

real-world code and these cannot be monitored in the same

way. As a result, this method leads to many false positives.

Others have pointed out that this policy is also prone to false

negatives in case of return-to-libc attacks [Dalton 2006].

Detecting bounds checks

Chen et al. [Chen 2005a] argue that most table lookups are

safe even if the index is tainted, as long as the index was

properly bounds-checked. Thus, to reduce false positives, we

may try to detect bounds-checks at runtime, and drop the

operand’s taint. Bounds-checks are identified by a cmp in-

struction of the index with an untainted operand. As the and

instruction is also frequently used for bound checks [Dalton

2007], we also clean the first source operand of and if the

second operand is clean and has a value of 2n
− 1.

While simple and fast, the method suffers from false

positives and negatives, some of which were noted by oth-

ers [Dalton 2006; 2007; 2008]. We are the first to find the

last 2 in the list below.

In many conversion tables, a lookup simply returns a dif-

ferent representation of the input and cleaning the tag leads

to false negatives. For instance, the taintedness of suspicious

input is dropped as it passes through translation tables, even

if the data is then used for a buffer overflow or other exploit.

Incorrectly dropping taint in a way that can be exploited by

attackers is known as taint laundering (Section 5.3.3). False

negatives also occur when the cmp and and instructions are

used for purposes other than bounds checking.

In addition, the method is prone to false positives if code

does not apply bounds-checking at all or uses different in-

structions to do so. Many lookups take place with an 8-bit

index in a 256-entry table and are safe without bounds check.

Furthermore, taint often leaks to pointers in subtle ways

that are not malicious at all. For instance, many protocols

have data fields accompanied by length fields that indicate

how many bytes are in the data field. The length may be

69

used to calculate a pointer to the next field in the message.

A subtle leak occurs when the length is bounds checked,

but the check is against a value that is itself tainted. For

instance, a check whether the length field is shorter than

IP’s total length field (minus the length of other headers).

A comparison with tainted data does not clean the index.

Yet another way for taint to escape and cause false pos-

itives, is when check and usage of the index are decoupled.

For instance, the index is loaded into a register from memory

and checked, which leads us to clean the register. However,

by the time the index is actually used, it may well have to

be loaded from the original (tainted) memory address again,

because the register was reused in the meantime. This again

leads to a tainted dereference and thus an alert. We see that

for various reasons, raising alerts immediately on tainted

dereferences is likely to trigger many false positives.

We have just discussed why current solutions that revolve

around detecting bounds checks and table accesses are in-

sufficient and incur both false positives and false negatives.

We implemented these policies, and experiments performed

on the emulator confirm our objections: control flow diver-

sions were reported instantly. In addition, on architectures

like x86, there is little distinction between registers used as

indices, normal addresses, and normal scalars. Worse, the in-

structions to manipulate them are essentially also the same.

As a result this problem is very hard to fix, unless a particular

coding style is enforced.

Pointer injection detection

This brings us to recent and more promising work which

prevents memory corruption attack by detecting when a

pointer is injected by untrusted sources [Katsunuma 2006].

The most practical of these, Raksha [Dalton 2008] identifies

valid pointers, which it marks with a P bit, and triggers an

alert if a tainted pointer is dereferenced that is not (derived

from) a valid pointer.

For this purpose, it scans the data and code segments in

ELF binaries to map out in advance all legitimate pointers

to statically allocated memory and marks these with a P bit.

To do so, it has to rely on properties of the SPARC v8 ar-

chitecture that always uses two specific instructions to con-

struct a pointer and has regular instruction format. In addi-

tion, it modifies the Linux kernel to also mark pointers re-

turned by system calls that allocate memory dynamically

(mmap, brk, shmat, etc) with a P bit. Furthermore, as the

kernel sometimes legitimately dereferences untrusted point-

ers it uses knowledge of SPARC Linux to identify the heap

and memory map regions that may be indexed by untrusted

information (and uses the kernel header files to find the start

and end addresses of these regions).

The method effectively stops false positives, but false

negatives are possible. For instance, it is possible to overflow

a buffer to modify an index that is later added to a legitimate

address. The resulting pointer would have the P bit set and

therefore a dereference would not trigger alerts.

More worrying is that the method is very closely tied to

the Linux/SPARC combination and portability is a problem.

For instance, it would not work well on x86 processors run-

ning Windows. First, x86 makes it much harder to detect

pointers to statically allocated memory. Second, we cannot

modify the kernel, so that we are forced to add specific han-

dling for several system calls in hardware or emulator (and

the number of system calls in Windows is large). Third, we

cannot identify kernel regions that may be indexed with un-

trusted data. To err on the safe side, we would have to as-

sume that certain data values are pointers when really they

are not, and that the entire kernel address space could be

pointed to by untrusted data. As a result, we expect many

false negatives on x86. Even so, while limited to OS/archi-

tecture combinations similar to Linux/SPARC, Raksha is the

most reliable LPT implementation we have seen.

6.3 FPT-specific techniques

Section 5.3.2 identified primary causes for pollution. We

now try to remove them without crippling the method.

White lists and black lists

The simplest solution is to whitelist all places in the code

where taint should be propagated using pointer tainting, or

alternatively, blacklist all places where it should not be prop-

agated. Neither scheme works in practice. Whitelisting is

impossible unless you know all software in advance (includ-

ing the userspace programs) and well enough to know where

taint should propagate. This is certainly not the case when

you are monitoring potential malware (e.g., to see if it is a

keylogger). It is also difficult for large software packages

(say, OpenOffice, or MS Word), or any proprietary code. Fi-

nally, whitelisting only a small subset of the places reduces

FPT to taint analysis with a minimal extension.

Blacklisting also suffers from the problem that you have

no detailed knowledge over all programs running on your

system. In addition, the number of taint leaks is enormous

and blacklisting them all is probably not feasible. Notice that

even if we managed to blacklist part of the software, includ-

ing the Linux kernel and a few applications, for instance,

that still would not be enough. Assume that one of the pro-

grams we do not blacklist causes unrelated data to be tainted.

Next, if such data is communicated to other processes, they

become tainted, and a false alarm is raised. Such unrelated

tainted data can enter kernel structures during system calls.

Finally, blacklisting and whitelisting both have a sig-

nificant impact on performance. Thus, we do not consider

whitelisting or blacklisting a feasible path to remedy FPT.

Landmarking

Easy fixes like ebp/esp protection and white/black-listing

do not work. In this section, we discuss a more elaborate

scheme, known as landmarking, that contains taint much

more aggressively. Unfortunately, as a side effect, it signif-

icantly reduces the power of pointer tainting which leads to

70

[1] typedef struct test_t {

[2] int i;
[3] struct test_t* next;

[4] } test_t, *ptest_t;
[5]
[6] ptest_t table[256] = ...; // initialised

[7] ptest_t i1 = table[index]; // tainted
[8] ptest_f i2 = i1->next; // clean

[9] int i3 = i1->i; // clean

Figure 7. An example of landmarking.

many false negatives. In addition, it still incurs false posi-

tives and significantly increases the runtime overhead. Nev-

ertheless, this is the most powerful technique for preventing

taint explosion we know. A similar technique appears to have

been used in Panorama [Yin 2007], but as our landmarking

is slightly more aggressive and, hence, should incur fewer

false positives, we will limit the discussion to landmarking.

Recall that the second primary cause of unwanted taint

propagation is due to pointers being relative to a tainted ad-

dress: if A is a tainted address, and an address B is calculated

relative to A (e.g., B=A+0x4), then B is tainted as well, even

though tainting *B is often incorrect. As a remedy, we will let

B influence the taintedness of *B only if it itself was calcu-

lated using tainted data. So, with A and eax tainted, we will

exclude B=A+0x4 from taint propagation, but keep C=A+eax.

For this purpose, we introduce landmarks. Landmarks in-

dicate that an address is ‘ready to be used for a dereference’.

We have reached a landmark for A, if all tainted operations

up to this point were aimed at calculating A, but not a future

value of B derived from A. Rephrasing, as soon as a value

is a landmark (and thus a valid and useful) address, derefer-

ences should propagate taint. However, values derived from

the landmark have to be modified with tainted data again in

order to make the derived value also qualify for pointer taint-

edness. Thus, we limit the number of times a tainted value

can influence the taintedness of a memory access operation.

In practical terms, we say that a value forms a complete

and useful address only when it is used as such. In other

words, we identify landmarks either by means of a deref-

erence, or by an operation explicitly calculating an address,

such as the lea instruction on x86 that calculates the effec-

tive address and stores it in a register.

Example Consider the code snippet shown in Figure 7. We

access the second item of a list rooted at table[index],

where the index is assumed to be tainted. First, in line 7, the

pointer to the head of the list is fetched from the table. To cal-

culate the memory load address, (table + index*8), we

use a tainted operand, index, which has never been derefer-

enced before, and so i1 becomes tainted. However, we have

just reached the landmark for i1, meaning that dereferences

of i1 propagate taintedness, but addresses derived from i1

in a clean way do not. Next, in the second assignment, line 8,

we access memory at the address calculated by increasing i1

by 4, a clean constant. Thus (i1 + 4) when dereferenced

does not propagate taintedness, and i2 is clean. A similar

reasoning holds for clean i3. Based on this example one

might think that landmarking solves our problems, as we

propagate the taintedness to the elements of a (translation)

table, but we do not spread it over elements of a list.

Problems with landmarking Unfortunately, landmarking

is not just a rather elaborate technique, it also cripples the

power of pointer tainting and opportunities for false nega-

tives abound.

Assume that p is a pointer whose calculation involves a

tainted operand, and we load values v0=*p and v1=*(p+1)

from memory. In a first possible scenario, the compiler

translates the code such that p is calculated once for both

load operations. In that case, the first of the loaded vari-

ables becomes tainted, and the other one is clean. So, de-

pending on the order of instructions, v0=*p; v1=*(p+1);

vs. v1=*(p+1); v0=*p;, we get different results. This is

strange. On the other hand, if the compiler translates the

code such that p is calculated twice, once for each of the

variables, then both values are tainted. Such inconsistent

behaviour makes it hard to draw conclusions based on the

results of landmarked pointer tainting. Moreover, it clearly

introduces false negatives.

Another example of false negatives stems from transla-

tion tables containing structures instead of single fields. Let’s

refer to Fig 7 once more, where i1 (line 7), is tainted, but

i3=i1->i (line 9), is clean. Now imagine that the test_t

structure contains various representations of characters, say

ASCII and EBCDIC. In that case, the table access makes us

lose track of sensitive data, which is clearly undesirable.

This weakness can also be exploited to cause leakage

of secret data. Assume that a server receives a string-

based request from the network and returns a field from a

struct X, pointed to by xptr. If an attacker is able to mod-

ify xptr (for instance, by overflowing the request buffer

with a long string), then the server returns the contents

of xptr->field_offset which can point to an arbitrary

place in the memory. For the same reasons as in the example

above, the result will be clean.

The best thing about landmarking is that we contain the

spread of taint very aggressively and it really is much harder

for taint to leak out. The hope is that, in combination with

ebp/esp protection, landmarking can stop the pollution, so

that (an admittedly reduced version of) FPT can be used for

automatic detection of keyloggers.

The worst thing about landmarking is that it does not

work. It still offers ample opportunities for false positives.

This is no surprise, because even if we restrict taint propaga-

tion via pointer tainting in one register, nothing prevents one

from copying the register, perhaps even before the derefer-

ence, and adding a constant value to the new register. As the

new register was not yet used for dereferencing, taint will be

(incorrectly) propagated.

Another possible reason for false positives arises when

programs calculate directly the address of an element (or

71

kernel
apt-get

bash (no. 1)
gnome-terminal

Xorg
gnome-screensaver

python2.5
dhcdbd

hald-addon-storage
kernel threads

hald-addon-input
metacity

nm-applet
gnome-panel

hald
bash (no. 2)

nautilus
gpgv

gzip (no. 1)
tar (no. 1)
tar (no. 2)

gzip (no. 2)

 0 200 400 600 800 1000 1200

Intervals

clean
dirty

very dirty

Figure 8. Pollution with landmarking and ebp/esp protection

combined for code involved in 90% of the switches (Linux)

field within a struct, without going through an immediate

pointer. Consider an array A of struct{int a;int b;}

and assume the index is tainted. If we first calculate the

address of A[index] and use this to calculate the address

of the field b, everything will be fine. No taint is unduly

propagated to b. However, if we directly calculate a pointer

to b (e.g., int *p = (char*)A+8*index+4; we would

propagate taint incorrectly to ’b’. The array example is very

simplistic and perhaps a bit contrived but the same (very

real) problem may hold for queues, stacks, and hashtables.

We implemented landmarking and analysed the spread of

taint when applying it together with ebp/esp protection. The

results are shown in Figure 8. Taint pollution takes consid-

erably longer than with just ebp/esp protection. Some of

the processes that receive taint early (like the Xorg X server,

or the screensaver), conceivably should have access to the

tainted bytes. However, after some time taint again spreads

to completely unrelated user processes (e.g., tar, nautilus,

hald, python, apt-get, etc.), as well as to the kernel and ker-

nel threads. The results for Windows (Figure 9) are even

worse. Notice that all processes are occasionally tainted.

The calc.exe process, for instance, should not get any taint

at all, as we provide input using mouse, and not keyboard.

wuauclt.exe is the AutoUpdate Client of Windows Update

and is used to check for available updates from Microsoft

Update, and thus it’s not expected to process keyboard events

either.

7. How bad are things?

We conclude with an overall assessment of FPT and LPT.

7.1 FPT on current hardware is fundamentally broken

We have discussed a few solutions to contain the spurious

taint propagation, but they are prone to false negatives, and

only slow down the outburst of false positives. However,

the problem is even more serious as there are undecidable

cases when the (most common) hardware itself is not able

csrss.exe

wuauclt.exe

svchost.exe

services.exe

lsass.exe

winlogon.exe

explorer.exe

svchost.exe

msmsgs.exe

kd.exe

IEXPLORE.EXE

calc.exe

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Intervals

clean
dirty

very dirty

Figure 9. Taintedness of processes constituting 95% of all con-

text switches in XP with landmarking and ebp/esp protection

to firmly establish the taintedness of a load operation. For

instance, it may be impossible to distinguish accesses to

translation tables from accesses to next fields in a linked

list. We discuss such a scenario below and argue that without

an external oracle (like a priori annotated translation tables

or support from a source code analyzer) we are not able to

successfully apply FPT. We believe that on current hardware,

FPT with current containment techniques is not feasible.

Assume that kbd_data is a tainted keystroke and that an

application needs to find a lower case value associated with

that keystroke. Clearly, we want to propagate taintedness to

this derived value. The following code (similar to the GNU

C library (glibc-2.7) to_lower() function) is used to

obtain the lower case value:

[1] attributes = transl_table[kbd_data];

[2] lower_case = attributes->lower;

In line 1, to get the address of attributes, a non-tainted

pointer (transl_table) is combined with a tainted index,

kbd_data and the pointer is dereferenced. In other words,

atttributes is tainted. In line 2, this new tainted pointer

is updated with a constant, and dereferenced to load the

lower_case value. Unfortunately, taint is not propagated.

At the same time there are numerous cases where the em-

ulator/hardware is executing a similar sequence of instruc-

tions where results should not be tainted. Consider the fol-

lowing code, which we already presented in Section 5.3.1

[1] struct hlist_head *head = d_hash(parent, hash);
[2] struct dentry *dentry = head->first;

[3] /* (...) */
[4] dentry = dentry->next;

Line 1 again combines a non-tainted pointer (the address

of the hashtable) with a tainted index derived from hash.

Next, in line 2 (and in line 4), the newly derived tainted

pointer, head (or dentry in line 4), is again altered using

a constant index to further fetch a next entry from the list.

An equivalent sequence of instructions as in the previous

example should now not propagate taint. Since, we have

72

argued that black/white listing cannot solve the problem

fully, false positives would be unavoidable.

We do not believe that hardware can distinguish the two

cases without an external oracle. Of course, we may throw

more heuristics at the problem. For instance, we could apply

landmarking such that it allows for dereferences of one level

deep, so that while dentry is tainted, a dereference does not

propagate taint. However, the opportunity for false positives

would increase. Moreover, since we may have structures

with multiple levels of nesting, it is hard to see where we

should draw the line.

7.2 Challenges for LPT on popular hardware

As we saw in Section 6.2, pointer injection detection seems

to be a promising technique for containing taint propaga-

tion. If we can get it to work on commonly used hard-

ware, LPT may be a powerful technique for detecting at-

tacks against non-control data. Unfortunately, it seems im-

possible to achieve this unless we are able to recognise ex-

isting system pointers reliably. [Dalton 2008] shows that this

is possible for Linux on the SPARC by dent of architectural

‘features’ (e.g., two specific instructions are used to form

a pointer). It is an open challenge to do something simi-

lar on x86-like architectures, or to invent completely new

techniques for containtment of taint. Meeting this challenge

means that we salvage an important technique for detecting

non-control data attacks. Until that time, we think pointer

tainting has serious problems that prevent it from being used

in real systems.

8. Related work

The work on dynamic information flow tracking (DIFT) by

[Denning 1977] forms the basis of taint analysis with pointer

tainting. The paper describes a way of verifying the secure

flow of information through a program. DIFT is applied in

hardware by Suh et al. [Suh 2004]. While taint is propagated

whenever memory is accessed using tainted pointers, the

system triggers alerts only for control flow diversions.

The technique of pointer tainting for non-control data

attack detection was formally introduced by [Chen 2004],

and later evaluated in a hardware design [Chen 2005a;b].

Any dereference of tainted pointer triggers an alert and the

technique is evaluated with a number of attacks, and six

SPEC2000 applications. No false positives are reported.

[Dalton 2006] points out that naive propagation rules that

trigger an alert when a pointer dereference has any of its

source operands tainted are problematic. Indexing an array

with a tainted index in many cases need not be unsafe if

it was properly bounds-checked. The proposed solution is

to propagate only the taint bit of the base pointer. While

DIFT [Suh 2004] optimistically assumes that bounds check-

ing is always done by the applications, this is clearly not true

in practice. The authors suggest to apply untainting only for

instructions dedicated to input validation which requires an

architecture that can distinguish such instructions. In addi-

tion, they indicate several weaknesses in [Chen 2005a], most

notably its inability to deal with translation tables.

Raksha [Dalton 2007] is yet another hardware (FPGA-

based) approach with support for pointer tainting. However,

the system is quite flexible and able to handle various DIFT

models besides pointer tainting.

Panorama [Yin 2007] differs from the previous projects

in that it is designed solely to check whether sensitive data

leaks into software that may or may not be malicious. All

data from sensitive source is marked tainted and the poten-

tial malware is run in a system under pointer tainting. The

program under scrutiny is considered suspicious if it pro-

cesses tainted data. [Egele 2007] is a very similar approach,

but focused on detecting spyware in a web browser. Hook-

Finder [Yin 2008] wants to determine whether a piece of ma-

licious code has implanted a hook in the OS. Dynamic taint

analysis, including full pointer tainting, is used to track what

they refer to as impacts on the OS made by the untrusted

software, and checking whether they exhibit a desired hook-

ing behaviour.

[Xu 2006] presents a dynamic taint analysis technique to

detect input validation attacks, implemented as a source-to-

source transformation. For fear of false positives the authors

do not track dereferences, only the direct array access is

supported.

9. Conclusion

We have analysed pointer tainting, considered one of the

most powerful techniques to detect keyloggers and memory

corruption attacks on non-control data. Both in the analysis

and in experiments, the method proved problematic due to

the large number of false positives, even when we apply all

methods that we know of for containing the spread of taint.

We argued that full pointer tainting is probably not suited

for detecting privacy-breaching malware like keyloggers.

Moreover, it is even unclear whether limited pointer tainting

can be applied to detect automatically memory corruption

attacks on the most popular PC architecture (x86) and the

most popular OS (Windows).

Acknowledgements

This work is sponsored by the EU FP7 WOMBAT and the

EU FP7 FORWARD projects. We are grateful to Christo-

pher Kruegel, Mike Dalton, and Heng Yin for clarifying the

way in which they addressed the problem of taint explo-

sion in their work. Finally, we thank Andrew Warfield (our

shepherd), Rebecca Isaacs, Manuel Costa, and the (excel-

lent) anonymous EUROSYS reviewers for their feedback on

earlier versions of this paper.

References

[Akritidis 2008] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and

M. Castro. Preventing memory error exploits with WIT. In SP

’08: 2008 IEEE Symposium on Security and Privacy, 2008.

73

[Bellard 2005] F. Bellard. Qemu, a fast and portable dynamic trans-

lator. In ATEC ’05: 2005 USENIX Annual Technical Conference,

2005.

[Bhatkar 2005] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient

techniques for comprehensive protection from memory error

exploits. In SSYM’05: 14th USENIX Security Symposium, 2005.

[Castro 2006] M. Castro, M. Costa, and T. Harris. Securing soft-

ware by enforcing data-flow integrity. In OSDI ’06: 7th sympo-

sium on Operating systems design and implementation, 2006.

[Cavallaro 2008] L. Cavallaro, P. Saxena, and R. Sekar. On the

limits of information flow techniques for malware analysis and

containment. In DIMVA ’08: 5th international conference on

Detection of Intrusions and Malware, and Vulnerability Assess-

ment, 2008.

[Chen 2004] S. Chen, K. Pattabiraman, Z. Kalbarczyk, and R. K.

Iyer. Formal reasoning of various categories of widely exploited

security vulnerabilities using pointer taintedness semantics. In

Proc. of IFIP SEC, 2004.

[Chen 2005a] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and I. Rav-

ishankar. Defeating memory corruption attacks via pointer taint-

edness detection. In DSN ’05: Proceedings of the 2005 Interna-

tional Conference on Dependable Systems and Networks, 2005.

[Chen 2005b] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K.

Iyer. Non-control-data attacks are realistic threats. In SSYM’05:

14th USENIX Security Symposium, 2005.

[Costa 2005] M. Costa, J. Crowcroft, M. Castro, A. Rowstron,

L. Zhou, L. Zhang, and P. Barham. Vigilante: End-to-end con-

tainment of internet worms. In 20th ACM Symposium on Oper-

ating Systems Principles (SOSP), 2005.

[Cowan 1998] C. Cowan, C. Pu, D. Maier, H. Hintony, Walpole J.,

P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stack-

guard: Automatic adaptive detection and prevention of buffer-

overflow attacks. In 7th USENIX Security Symposium, 1998.

[Crandall 2004] J. Crandall and F. Chong. Minos: Control data

attack prevention orthogonal to memory model. In 37th Intera-

tional Symposium on Microarchitecture, 2004.

[Dalton 2006] M. Dalton, H. Kannan, and C. Kozyrakis. Decon-

structing hardware architectures for security. In 5th Workshop

on Duplicating, Deconstructing, and Debunking, 2006.

[Dalton 2007] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha:

a flexible information flow architecture for software security. In

ISCA ’07: Proceedings of the 34th annual international sympo-

sium on Computer architecture, 2007.

[Dalton 2008] M. Dalton, H. Kannan, and C. Kozyrakis. Real-

world buffer overflow protection for userspace and kernelspace.

In SSYM’08: 17th Usenix Security Symposium, 2008.

[Denning 1977] D. Denning and P. Denning. Certification of

programs for secure information flow. Commnic. ACM, 20(7),

1977.

[Egele 2007] M. Egele, Ch. Kruegel, E. Kirda, H. Yin, and D. Song.

Dynamic Spyware Analysis. In ATC’07: 2007 USENIX Annual

Technical Conference, 2007.

[Elphinstone 2007] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe,

and G. Heiser. Towards a practical, verified kernel. In HO-

TOS’07: 11th USENIX workshop on Hot topics in operating sys-

tems, 2007.

[Giffin 2004] J. Giffin, S. Jha, and B. Miller. Efficient context-

sensitive intrusion detection. In The 11th Annual Network and

Distributed System Security Symposium (NDSS), 2004.

[Ho 2006] A. Ho, M. Fetterman, C. Clark, A. Warfield, and

S. Hand. Practical taint-based protection using demand emu-

lation. In EuroSys ’06: 1st European Conference on Computer

Systems, 2006.

[Jim 2002] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney,

and Y. Wang. Cyclone: A safe dialect of C. In USENIX 2002

Annual Technical Conference, 2002.

[Katsunuma 2006] S. Katsunuma, H. Kurita, R. Shioya,

K. Shimizu, H. Irie, M. Goshima, and S. Sakai. Base address

recognition with data flow tracking for injection attack detec-

tion. In PRDC ’06: 12th Pacific Rim International Symposium

on Dependable Computing, 2006.

[Newsome 2005] J. Newsome and D. Song. Dynamic taint analysis

for automatic detection, analysis, and signature generation of

exploits on commodity software. In 12th Annual Network and

Distributed System Security Symposium (NDSS), 2005.

[Portokalidis 2008] G. Portokalidis and H. Bos. Eudaemon: Invol-

untary and on-demand emulation against zero-day exploits. In

EuroSys ’08: 3rd European Conf. on Computer Systems, 2008.

[Portokalidis 2006] G. Portokalidis, A. Slowinska, and H. Bos. Ar-

gos: an emulator for fingerprinting zero-day attacks. In EuroSys

’06: 1st European Conference on Computer Systems, 2006.

[ProcessLibrary.com] ProcessLibrary.com. zango.exe. http:

//www.processlibrary.com/directory/files/zango/.

[Provos 2003] Niels Provos. Improving host security with system

call policies. In 12th USENIX Security Symposium, 2003.

[Raywood 2008] Dan Raywood. Sinowal trojan steals data from

around 500,000 cards and accounts. SC Magazine, Oct 2008.

[Slowinska 2007] A. Slowinska and H. Bos. The age of data:

pinpointing guilty bytes in polymorphic buffer overflows on

heap or stack. In ACSAC’07, 2007.

[Suh 2004] E. Suh, J. Lee, D. Zhang, and S. Devadas. Se-

cure program execution via dynamic information flow tracking.

SIGARCH Comput. Archit. News, 32(5):85–96, 2004.

[Venkataramani 2008] G. Venkataramani, I. Doudalis, Y. Solihin,

and M. Prvulovic. Flexitaint: A programmable accelerator for

dynamic taint propagation. In HPCA’08, 2008.

[Xu 2006] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy

enforcement: a practical approach to defeat a wide range of

attacks. In 15th USENIX Security Symposium, 2006.

[Yin 2008] H. Yin, Z. Liang, and D. Song. HookFinder: Identi-

fying and understanding malware hooking behaviors. In 15th

Annual Network and Distributed System Security Symposium

(NDSS’08), 2008.

[Yin 2007] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.

Panorama: capturing system-wide information flow for malware

detection and analysis. In CCS ’07: Proc. of the 14th ACM

conference on Computer and communications security, 2007.

74

