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ABSTRACT
The advent of multi-core and multi-threaded processor ar-
chitectures highlights the need to address the well-known
shortcomings of the ubiquitous lock-based synchronization
mechanisms. To this end, transactional memory has been
viewed by many as a promising alternative to locking. This
paper therefore presents a constructive critique of locking
and transactional memory: their strengths, weaknesses, and
opportunities for improvement.

1. INTRODUCTION
Parallelism is becoming the norm even for small systems,
bringing the need for synchronization to the mainstream.
Despite its long and enviable record of successful production
use, locking has well-known shortcomings obvious to anyone
who has used it in an operating system or a complex appli-
cation. These shortcomings motivate a constructive critique
of locking and of alternative synchronization techniques that
might be incorporated into programming languages, build-
ing on an earlier workshop paper [19].

Transactional memory (TM) has been viewed as a promis-
ing synchronization mechanism [7]. Although TM appears
to have the potential for widespread use, we argue that lock-
ing will continue to dominate. We believe that this line of
argument will grow less controversial as the shortcomings of
TM are made apparent by further attempts to apply it to
large production-quality software artifacts. In contrast, the
shortcomings of locking are already well understood, as are
the engineering techniques addressing these shortcomings.

The remainder of this paper is organized as follows. The
paper presents a critique of locking in Section 2, followed by
a critique of TM in Section 3. Section 4 discusses areas in
which TM is most likely to be successful. Finally, Section 5
presents concluding remarks and outlines a path forward.

2. LOCKING CRITIQUE
This section provides a brief overview of the many well-
known properties of locking. Section 2.1 reviews locking’s
key strengths and Section 2.2 reviews locking’s weaknesses.
Section 2.3 decribes how many of these weaknesses can be
addressed, and, finally, Section 2.4 describes the remaining
challenges surrounding locking.

2.1 Locking’s Strengths
The fact that locking is used so pervasively indicates com-
pelling strengths. Chief among these are:

1. Locking is intuitive and easy to use in many common
cases, as evidenced by the large number of lock-based
programs in production use. And in fact, the basic
idea behind locking is exceedingly simple and elegant:
allow only one CPU at a time to manipulate a given
object or set of objects [10].

2. Locking can be used on existing commodity hardware.

3. Well-defined locking APIs are standardized, for exam-
ple the POSIX pthread API. This allows lock-based
code to run on multiple platforms.

4. There is a large body of software that uses locking, and
a large group of developers experienced in its use.

5. Contention effects are concentrated within locking prim-
itives, allowing critical sections to run at full speed.
In contrast, in other techniques, contention degrades
critical-section performance.

6. Waiting on a lock minimally degrades performance of
the rest of the system. Several CPUs even have special
instructions and features to further reduce the power-
consumption impact of waiting on locks.

7. Locking can protect a wide range of operations, includ-
ing non-idempotent operations such as I/O, thread cre-
ation, memory remapping, and even system reboot.1

The fact that threads may be created while holding
locks permits composition with parallel library func-
tions, for example, parallel sort.

8. Locking interacts naturally with a large variety of syn-
chronization mechanisms, including reference count-
ing, atomic operations, non-blocking synchronization [6],
and read-copy update (RCU) [20].

9. Locking interacts in a natural manner with debuggers
and other software tools.

1Locks based on file existence will survive reboot, for ex-
ample, those using the POSIX O_CREATE flag to atomically
create a file, but only when the file didn’t already exist.
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2.2 Locking’s Weaknesses
Despite locking’s strengths, applying locking to complex soft-
ware artifacts uncovers a number of weaknesses, including:
deadlock, priority inversion, high contention on non-parti-
tionable data structures, blocking on thread failure, high
synchronization overhead even at low levels of contention,
and non-deterministic lock-acquisition latency.

Deadlock issues arise when an application uses more than
one lock in order to attain greater scalability, in which case
multiple threads acquiring locks in opposite orders can re-
sult in deadlock. This susceptibility to deadlock means that
locking is non-composable: it is not possible to use a lock to
guard an arbitrary segment of code.

In addition, software with interrupt or signal handlers can
self-deadlock if a lock acquired by the handler is held at the
time that the interrupt or signal is received.

Priority inversion [13] occurs when a low-priority thread
holding a lock is preempted by a medium-priority thread.
If a high-priority thread attempts to acquire the lock, it will
block until the medium-priority thread releases the CPU,
permitting the low-priority thread to run and release the
lock. This situation could cause the high-priority thread to
miss its real-time scheduling deadline, which is unacceptable
in safety-critical systems.

The standard method of scaling lock-based designs is to par-
tition the data structures, protecting each partition with a
separate lock. Unfortunately, some data structures, such
as unstructured trees and graphs, are difficult to efficiently
partition, making it difficult to attain good scalability and
performance when using such data structures.

Locking makes use of expensive instructions and results in
expensive cache misses [17]. This is particularly damaging
for read-mostly workloads, where locking introduces commu-
nications cache misses into a workload that could otherwise
run entirely within the CPU cache. This can result in severe
performance degradation even in the absence of contention.

Locking is a blocking synchronization primitive, in particu-
lar, if a thread terminates while holding a lock, any other
thread attempting to acquire that lock will block indefinitely.
Even less disastrous events such as preemption, sleeping for
I/O completion, and page faults can severely degrade per-
formance. All such blocking can be problematic for fault-
tolerant software.

Finally, lock acquisition is non-deterministic, which can be
an issue for real-time workloads.

Despite all of these shortcomings, locking remains heavily
used. Some reasons for this are outlined in Section 2.3.

2.3 Improving Locking
Perhaps locks are the synchronization equivalent of silicon:
despite many attempts to replace locking over the past few
decades, it still predominates. Just as silicon-based inte-
grated circuits have evolved to work around their early lim-
itations, both locking implementations and lock-based de-
signs have evolved to work around locking’s weaknesses.

Many of the strategies described in this section are well
known, but bear repeating so as to inform development of
other synchronization schemes.

Deadlock is most frequently avoided by providing a clear
locking hierarchy, so that when multiple locks are acquired,
they are acquired in a pre-specified order. More elaborate
schemes use conditional lock-acquisition primitives that ei-
ther acquire the specified lock immediately or give a failure
indication. Upon failure, the caller drops any conflicting
locks and retries in the correct order. Other systems de-
tect deadlock and abort selected processes participating in a
given deadlock cycle. Recent techniques for efficiently track-
ing locking order are being applied to detect the potential
for deadlock at runtime, enabling deadlock conditions to be
fixed before they actually occur [2].

Self-deadlock is most simply avoided by masking relevant
signals or interrupts while locks are held, or by avoiding
lock acquisition in handlers.

Priority inversion can be avoided through priority inheri-
tance, so that a high-priority task blocked on a lock will
temporarily “donate” its priority to a lower-priority holder
of that lock. Alternatively, priority inversion can be avoided
by raising the lock holder’s priority to that of the highest-
priority task that might acquire that lock. Some software en-
vironments permit preemption to be disabled entirely while
locks are held, which can be thought of as raising priority
to an arbitrarily high level. Unfortunately, we are unaware
of any high-performance low-latency algorithm for apply-
ing priority inheritance to reader-writer locking, although
in many cases RCU can be used to solve this problem [4].

Many algorithms can be redesigned to use partitionable data
structures, for example, replacing trees and graphs with hash
tables or radix trees, greatly increasing scalability and reduc-
ing lock contention. More generally, lock-induced overhead
is commonly addressed through the use of well-known de-
signs that reduce or eliminate such contention, dating back
more than 20 years [1, 11]. These designs were also recast
into pattern form more than a decade ago [16]. In read-
mostly situations, locked updates may be paired with read-
copy update (RCU) [17], as has been done in the LinuxR©

kernel,2 or as might potentially be done with hazard point-
ers [8, 21]. Experience with both techniques has shown them
to be extremely effective at reducing locking overhead in
many common cases, as well as increasing read-side per-
formance and scalability [5]. Finally, light-weight special-
purpose techniques are widely used, for example, for statis-
tical counters.

Preemption, blocking, page faulting, and many other haz-
ards that can befall the lock holder can be addressed through
the use of scheduler-conscious synchronization [12]. Some
form of scheduler-conscious synchronization is supported by
each of the mainstream operating systems, including Linux,
due to the fact that it is relied on by certain commercial
databases.

However, scheduler-conscious synchronization does nothing

2More recently, RCU has found use in user-level applications
and libraries [3, 18].
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to guard against processes terminating while holding a lock.
Many production applications and systems handle this situ-
ation by aborting in the face of the death of a critical process.
The application or system can then be restarted. Alterna-
tively, the system could record the lock’s owner during the
lock-acquisition process, detect the death of the lock owner,
and attempt to clean up state. This approach is not for the
faint of heart. The dead process might well have aborted
at any point in the critical section, which can result in ex-
tremely complex clean-up processing. However, this level of
complexity will be incurred by any software artifact that at-
tempts to recover from arbitrary failure. Restarting the ap-
plication or system might seem rather unsophisticated, but
is often the simplest, most reliable, and highest-performance
solution.

The non-deterministic latency of locking primitives can be
addressed by converting read-side critical sections to use
RCU, or, where this is not practical, through use of first-
come-first-served lock-acquisition primitives combined with
a limit on the number of threads.

In short, locking’s shortcomings have robust software-engi-
neering solutions that have proven their worth though long
use in large-scale production-quality software artifacts.

2.4 Remaining Challenges for Locking
Locking may be heavily used, but it is far from perfect.
The following are a few of the many possible avenues for
improvement:

1. Software tools to aid in static analysis of lock-based
software. The first prototypes of such tools appeared
well over a decade ago, but more work is needed, for
example, to reduce the incidence of false positives.

2. Pervasive availability and use of software tools to eval-
uate lock contention.

3. Better codification of effective design rules for use of
locking in large software artifacts.

4. More work augmenting locking with other synchroniza-
tion methodologies so as to work around locking’s re-
maining weaknesses.

5. Locking algorithms that provide good scalability and
performance for large ill-structured update-heavy non-
partitionable data structures, in cases where these al-
gorithms cannot reasonably be transformed to use par-
titionable data structures such as hash tables or radix
trees.

Although many of these items are a simple matter of engi-
neering, the last one will require a considerable quantity of
ground-breaking work.

3. TM CRITIQUE
TM executes a group of memory operations as a single atomic
transaction [9], either as a language extension or as a li-
brary. This section critiques TM, with Section 3.1 reviewing
TM’s key strengths and Section 3.2 reviewing TM’s weak-
nesses. Finally, Section 3.3 speculates on how these weak-
nesses might be addressed and on remaining TM challenges.

3.1 TM’s Strengths
As with locking, the basic idea behind TM is exceedingly
simple and elegant: cause a given operation, possibly span-
ning multiple objects, to execute atomically [9]. The promise
of transactional memory is simplicity, composability, per-
formance/scalability, and, for some variants, non-blocking
operation.

The simplicity of TM stems from the fact that, in princi-
ple, any sequence of memory loads and stores may be com-
posed into a single atomic operation. Such operations can
span multiple data structures without the deadlock issues
that can arise when using locking, even in cases where the
implementations of the operations defined over these data
structures are unknown. The fact that the transactions are
atomic, or linearizable, is argued by many to make it easier
to create and to understand multi-threaded code.

In many variants of TM, transactions may be nested, or
composed. This composability allows implementors further
freedom, as transactions may span multiple data structures
even if the operations defined over those data structures
themselves involve transactions.

Because a pair of transactions conflict only if the sets of vari-
ables that they reference intersect,3 small transactions run-
ning against large data sets should rarely conflict. Achieving
this same effect with locking can require significant effort
and complexity. In effect, TM automatically attains many
of the performance and scalability benefits of fine-grained
locking, but without the effort and complexity that often
accompanies fine-grained locking design [22].

Some implementations of TM are non-blocking, so that de-
lay or even complete failure of any given thread does not
prevent other threads from making progress. Such imple-
mentations provide a degree of fault-tolerance that is ex-
tremely difficult to obtain when using locking.

Transactions have been used for decades in the context of
database systems, and are thus well-understood by a large
number of practitioners. In addition, trivial hardware im-
plementations of TM have been available for more than a
decade in the form of LL/SC, indicating that full TM im-
plementations have the potential to gain wide acceptance.

3.2 TM’s Weaknesses
The simple and elegant idea behind locking proved to be
a facade concealing surprising difficulties and complexities
when applied to large and complex real-world software. Is
it possible that the simple and elegant idea behind TM is a
similar facade that will be torn away by the harsh realities
of complex multi-threaded software artifacts?

TM difficulties that have been identified thus far include is-
sues with non-idempotent operations such as I/O, conflict-
prone variables, conflict resolution in the face of high con-
flict rates, lack of TM support in commodity hardware, poor
contention-free performance of software TM (STM), and de-

3And, in many proposed TM implementations, at least one
of the variables in the intersection must be modified by one
or both of the transactions.
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buggability of transactions. There has of course been signif-
icant work on a number of these issues, which is the subject
of Section 3.3.

Begin Transaction

Send Request

Receive Response

Handle Response

End Transaction

Service Request

Receive Request

Send Response

Client Machine

Server Machine

Figure 1: Transactions Spanning Systems

Non-idempotent operations such as I/O pose challenges due
to the fact that they might be performed multiple times
upon transaction retry. For example, Figure 1 shows a prob-
lematic transaction. If the client’s transaction must buffer
the message until commit time, and it cannot commit until
it receives the response from the server, then the transac-
tion self-deadlocks. Although one could expand the scope
of the transaction to encompass both systems, as is done
for distributed databases, current TM proposals are limited
to single systems. TM has similar problems with a wide
range of non-idempotent operations, including thread cre-
ation and destruction, memory remapping, to say nothing
of things like system reboot.

Given that there are situations that are problematic for
TM, but that are handled naturally by other synchroniza-
tion mechanisms such as locking, it is important that TM
interact well with these other mechanisms. This sort of in-
teraction would also be critically important if moving a large
existing software artifact from locking to TM. In theory, in-
teraction with locking is trivial: simply manipulate the data
structure representing the lock as part of the transaction,
and everything works out perfectly. In practice, a num-
ber of non-obvious complications can arise, depending on
the implementation details of the TM system. Resolution
of these complications is possible but extremely expensive:
up to 300% increase in overhead for locks acquired within
transactions [27].

One challenge when moving to fine-grained locking designs is
the inevitable data structure that appears in every critical
section. A similar challenge might well await those who
attempt to transactionalize existing sequential programs—
the same data structures that impede fine-grained locking
will very likely result in excessive conflicts. This problem
might not affect new software, but new lock-based software
could similarly be designed to avoid this problem.

If a pair of transactions conflict, one or both must be rolled
back to avoid data corruption. Such rollbacks can result in

a number of problems, including starvation of large trans-
actions by smaller ones and delay of high-priority processes
via rollback of the high-priority process’s transactions due
to conflicts with those of a lower-priority process. These
effects can be crippling in large applications with diverse
transactions, particularly for applications that must provide
real-time response.

Current commodity hardware does not support any reason-
able form of TM. Although such hardware might appear over
time, current proposals either prohibit large transactions or
suffer performance degradations in the face of large trans-
actions. In addition, current hardware TM (HTM) propos-
als may be uncompetitive with STM for large transactions.
Finally, unless or until it becomes pervasive, any software
relying on HTM will have portability problems.

Although STM does not face these obstacles, it will remain
unattractive so long as its performance remains poor com-
pared to that of locking [14, 28]. The poor performance
of current STM prototypes is mainly due to: (1) atomic
operations, (2) consistency validation, (3) indirection, (4)
dynamic allocation, (5) data copying, (6) memory reclama-
tion, (7) bookkeeping and over-instrumentation, (8) false
conflicts, (9) privatization-safety cost, and (10) poor amor-
tization.

Privatization-safety cost deserves more explanation, given
that privatization is a natural optimization for locking and
HTM, but is invalidated by optimizations that are used in
high-performance STM implementations.

An example of privatization is shown in Figure 2. Here, a
linked list initially contains elements A and B, in that order,
as shown at the top of the diagram. One thread is attempt-
ing to privatize this list by unlinking it from the globally
accessible Head and placing it on Local. Another thread is
concurrently attempting to add an element A1 between ele-
ments A and B. As shown in the figure, there are two legal
outcomes. Either the first thread privatizes the list before
the second thread makes its (failed) attempt, as shown on
the left, or the first thread privatizes the list after the sec-
ond thread successfully adds element A1, as shown on the
right. Conservative (read “slow”) implementations of STM
have the same pair of possible outcomes.

However, highly optimized (read “not quite as slow”) imple-
mentations of STM have a third illegal outcome, shown at
the bottom of Figure 2. In this additional outcome, the sec-
ond thread adds element A1 to the list after the first thread
privatized it. Given that the whole point of privatization is
to avoid concurrent accesses, this last outcome constitutes a
fatal error.

The sequence of events leading to this fatal outcome is as
follows, given the initial list shown in Figures 2:

1. Transaction 1 intends to insert a new element A1 after
element A.

2. Transaction 2 intends to privatize the list.

3. Transaction 1 reads the reference to A from Head, and
determines that it must update A.
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LocalLocal A B A A1 B

Head A B

HeadHead

Head

B

A1

ALocal

Figure 2: Privatization Using Locking, HTM, and STM

4. Transaction 1 locks the STM metadata for A.

5. Transaction 2 determines that it must update Head.

6. Transaction 2 locks the STM metadata for Head. Be-
cause Local is not shared, there is no need to lock STM
metadata for Local.

7. Transaction 2 notes that there are no conflicts, and
therefore commits by copying Head to Local, writing
NULL to Head, and unlocking the STM metadata for
Head.

8. Transaction 2 now treats the list Local as private, elid-
ing any transactions.

9. Transaction 1 notes that there are no conflicts, and
therefore commits by placing a reference to B in A1,
placing a reference to A1 in A, and unlocking the STM
metadata for A.

Transaction 1’s update to A executes concurrently with the
operations following Transaction 2, thus violating privatiza-
tion. Given the present state of the STM art, developers
must either forgo the valuable optimization of privatization
or must use conservative STMs. Either approach degrades
both performance and scalability.

Even if STM performance becomes competitive, standard
TM APIs with well-defined semantics will be required to en-
able a smooth transition of software to TM. This API must
be independent of the TM implementation, in particular, of
whether TM is implemented in hardware or software. Fail-
ure to provide a standard TM API will act as a portability
obstacle to TM adoption by portable applications.

The final weakness of many TM implementations is poor in-
teraction with many existing software tools. For example, in
many HTM proposals, the traps induced by breakpoints can

result in unconditional aborting of enclosing transactions,
reducing this common debugging technique to an exercise
in futility.

Although these weaknesses might be addressed as described
in Section 3.3, it seems clear that the simple and elegant idea
underlying TM is not entirely immune to the vicissitudes of
large and complex real-world software artifacts.

3.3 Improving TM
To their credit, many in the TM community are taking
its weaknesses seriously and have been working to address
them.

Although non-idempotent operations are a thorny issue for
TM, there are some special cases that can be addressed. For
example, buffered I/O might be addressed by including the
buffering mechanism within the scope of the transactions do-
ing I/O. However, the messaging example in Section 3.2 is
more difficult. Although one could imagine distributed TM
systems encompassing both machines, simple locking seems
more straightforward. The concept of “inevitable transac-
tions” [25, 26] permits transactions to contain some types
of non-idempotent transactions, albeit at the cost of severe
scalability limitations, given that there can be at most one
active inevitable transaction at a given time.

Similarly, although one could imagine a new type of device
with transactional device registers, simple locking applied to
existing devices might be more appropriate.

It seems likely that the same partitioning techniques that
have been used in fine-grained locking designs could also
be applied to TM software. It is possible that additional
techniques specific to TM will be identified.

Recent work has applied the concept of a contention man-
ager to TM rollbacks [24]. The idea is to carefully choose
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which transaction to roll back, so as to avoid the issues called
out in Section 3.2. The contention-manager approach has
yielded reasonable results across a number of popular bench-
marks, but many workloads remain unevaluated. Another
promising approach reduces conflicts by converting read-
only transactions to non-transactional form, in a manner
similar to the pairing of locking with RCU.

Privatization has received some recent attention [25], but
“the remaining overheads are high enough to suggest the
need for programming model or architectural support.” [15].

Transition and migration planning is a key challenge for
HTM, as it will be difficult to convince developers to produce
software for a small number of specialized machines, espe-
cially in the absence of large performance advantages. In
addition, HTM limitations that either fail to support large
transactions or that suffer performance degradations in the
face of large transactions might discourage many developers
of large-scale applications. In contrast, STM implementa-
tions run on existing commodity hardware. This situation
calls for language support that uses HTM when applicable,
but which falls back to STM otherwise.

However, such a strategy requires that STM offer compet-
itive performance. The STM overheads of indirection, dy-
namic allocation, data copying, and memory reclamation
might be reduced or even avoided by relaxing the non-block-
ing properties that many STMs provide. The fact that most
databases implement transactions using blocking primitives
such as locks clearly demonstrates the feasibility of this ap-
proach. That said, an interesting open question is whether
STM can achieve HTM’s performance. If so, TM could be
implemented on existing hardware, or perhaps with minimal
hardware assists.

It is possible the debugging issues with HTM might be ad-
dressed by doing the debugging using STM. However, this
approach requires an extremely high degree of compatibility
between the HTM and STM environments, a level of com-
patibility that has proven difficult to achieve in other similar
situations.

It is interesting to contrast TM to transactional databases,
which have been quite successful for a number of decades.
Although both TM and databases make groups of opera-
tions appear semantically atomic, for some useful definition
of “atomic”, databases sidestep many of the performance is-
sues that plague STM. Databases avoid these issues by pop-
ulating database transactions with heavyweight operations
such as disk accesses, so that the transaction overhead is
typically negligible by comparison. Although there is hope
that this problem can be solved by hardware in the form
of HTM, to date, real HTM implementations support only
small transactions.

This situation should motivate applying transactions to other
heavyweight operations. One recent proposal suggests group-
ing system calls into transactions [23], so that system-admin-
istration tasks such as adding users become atomic, elimi-
nating the need for tools to clean up after half-completed
operations that were interrupted by system failure. This
is believed to have the potential to address some security

vulnerabilities, and in some cases was reported to actually
improve performance. Although these initial performance
results appear promising, they were reported against a ca.
2007 Linux kernel (2.6.22). Furthermore, the most promis-
ing performance improvements were seen on the ext2 and
ext3 filesystems, which are not known for their speed. Nev-
ertheless, we believe that these results corroborate our intu-
ition that performance considerations will result in software
transactions being applied to heavier-weight operations. Ef-
ficient processing of transactions containing only a handful
of memory-reference instructions will remain in HTM’s do-
main.

Although there has been good progress towards addressing
TM’s weaknesses, it is not clear that any of them have been
fully addressed. Of course, TM has been studied intensively
only for the past few years, as opposed to the decades of ex-
perience accumulated with locking. This gives some reason
to hope that TM’s weaknesses might be more completely
addressed over the next few decades.

4. WHERE DOES TM FIT IN?
In the near term, TM’s greatest opportunity lies with those
situations that are poorly served by combinations of pre-
existing mechanisms. Given a base of successful use, TM
usage might then grow as new parallel code is written and
as TM support becomes pervasive.

Partitionable data structures are well-served by locking, par-
ticularly when the partitions can be assigned to CPUs or
threads, and read-mostly situations are well-served by haz-
ard pointers and RCU. An important TM near-term op-
portunity is thus update-heavy workloads using large non-
partitionable data structures such as high-diameter unstruc-
tured graphs. Updates on such data structures can be ex-
pected to touch a minimal number of nodes, reducing con-
flict probability.

Another possible TM opportunity appears in systems with
complex fine-grained locking designs that incur significant
complexity in order to avoid deadlock. In some cases, ap-
plying small transactions to simple data structures might
remove the need to acquire locks out of order, simplifying or
even eliminating much of the deadlock-avoidance code. Par-
ticularly attractive opportunities for TM involve situations
that involve atomic operations that span multiple indepen-
dent data structures, for example, atomically removing an
element from one queue and adding it to another. In a large
number of cases, limited HTM implementations are suffi-
cient for these deadlock-avoidance situations.

A final TM opportunity might appear for single-threaded
software having an embarrassingly parallel core containing
only idempotent operations. Such software might gain sub-
stantial performance benefits, either from HTM on those
systems supporting it, or from STM across a broad range of
commodity systems.

Large non-partitionable update-heavy data structures ap-
pear to offer TM its best chance of success. However, if
TM is to see heavy use in the foreseeable future, developers
will need to use TM where it is strong and other techniques
where TM is weak. Therefore, additional work is required
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to permit TM to be easily used with these other techniques.

5. SUMMARY AND CONCLUSIONS
The grass is not necessarily uniformly greener on the other
side, but improvement is both necessary and possible. How-
ever, Table 1 shows that neither locking nor TM is optimal
in all cases.

Given the large number of synchronization mechanisms that
have been proposed over the past several decades, much
work will be required to determine how best to integrate
them into both existing and new programming languages.
We are undertaking such integration via efforts with STM
and“relativistic programming”(RP). RP formalizes and gen-
eralizes techniques such as RCU, combining integration with
other techniques, ease of use, and knowledge of timeless
hardware properties. These techniques will enable practi-
tioners to harness the potential of multi-core systems.

It is becoming quite clear that combining the strengths of
these various synchronization mechanisms is far more fruit-
ful than force-fitting one’s favorite mechanism into situations
for which it is ill-suited.
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