

Lecture 7

L4Android: A Generic Operating System Framework for Secure Smartphones

Matthias Lange, Adam Lackorzynski et al.

Operating Systems Practical

19 November, 2014

Proposed solution

Fiasco.OC

L4Re

L4Android

Evaluation

Keywords

Questions

E

Proposed solution

Fiasco.OC

L4Re

L4Android

Evaluation

Keywords

Questions

E

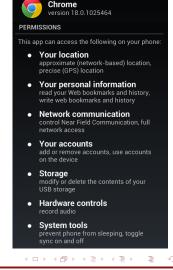
- Ubiquity of smartphones
- Need for secure apps
 - Near Field Communication
 - SIM cards
- Inherent lack of security in smartphone software

3

- 4 伺 ト 4 ヨ ト 4 ヨ ト

- Mainline Android development done by Google
- Phone vendors deploy customized Android versions
- "Maintenance nightmare":
 - Provide periodic updates that fix vulnerabilities
 - Or no updates at all because of high costs

- Monolithic kernels are difficult to certify/verify
- Device drivers run with full privileges
- Kernel components aren't isolated
- Device manufacturers develop custom (often proprietary) drivers


Root privileges allow full access to:

- All the user data
- Manufacturer settings
- The kernel
- "Rooted" phones are more vulnerable
 - Android phones don't allow root access by default
- Root access can be obtained
 - Manually by the user
 - By malicious software (via exploits)

Permissions in Android

- Based on Mandatory Access Control (MAC)
- "All or nothing" paradigm
- Too coarse-grained
 - E.g.: grant access to Internet and Address Book
 - ➤ Software can send user Address Book to any remote location

- Permissions in Android
- Chrome 39

K 🔜 App info	
PERMISSIONS	
This app can access the following on your phone:	
Ō	take pictures and videos
Ţ	record audio
Ŷ	approximate location (network-
	based) precise location (GPS and network- based)
©,	read your Web bookmarks and
	history write web bookmarks and history
Ŷ	modify or delete the contents of your USB storage
٩	add or remove accounts
	find accounts on the device
	read Google service configuration

Proposed solution

Fiasco.OC

L4Re

L4Android

Evaluation

Keywords

Questions

E

・ロン ・聞と ・ヨン ・ヨン

- Isolate OS inside a virtual machine
- Run secure apps outside the OS
- ► Use a **microkernel**-based framework
 - "Extended hardware"
 - Small Trusted Computing Base (TCB)
 - Drivers as user space services

э

-∃->

▲ @ ▶ ▲ @ ▶ ▲

- Framework for developing secure smartphone apps
- Components:
 - ▶ Microkernel: Fiasco.OC µkernel
 - Services: L4Re runtime environment
 - Paravirtualized kernel: L⁴Android
 - ▶ User space: Android libraries, apps, ...

- Proposed solution
- Fiasco.OC
- L4Re
- L4Android
- Evaluation
- Keywords
- Questions

(人間) くまり くまり

- Based on Jochen Liedtke's L4 microkernel
- Implements basic OS abstractions
 - Address Spaces
 - Threads
 - Scheduling
 - Inter-Process Communication (IPC)
 - Interrupt Delivery (via Asynchronous IPC)

Protection Domains:

- Equivalent to Linux namespaces/containers
- Host tasks on top of the microkernel
- Provide isolation
 - Among virtual machines
 - Between VMs and the TCB

3) 3

Capabilities provide access control to:

- Kernel objects
 - Address spaces
 - Threads
 - Communication channels
- Interrupts
- Fine-grained control over resources

э

- 4 伺 ト 4 ヨ ト 4 ヨ ト

- Microkernel exposes minimal interface
 - Small number of system calls
- ► Code base is small (~20,000 lines of code)
- Kernel is formally verifiable

э

.∋⇒

- E - M

- Proposed solution
- Fiasco.OC

L4Re

- L4Android
- Evaluation
- Keywords

Questions

- Software layer on top of the microkernel
- Simplifies development in microkernel user space
- Consists of:
 - Basic functionality: allocators, data structures, etc.
 - ► User libraries: C, C++, pthread etc.
 - Servers providing access to I/O devices

Proposed solution

Fiasco.OC

L4Re

L4Android

Evaluation

Keywords

Questions

L⁴Linux: Linux kernel modified to run paravirtualized

- On top of Fiasco.OC + L4Re
- ▶ With fine-grained access to devices via I/O servers
 - An L^4 Linux instance can run without any access to peripherals
 - Or it can be used as a driver provider
- L⁴Android Kernel
 - Based on L⁴Linux
 - Contains Android patches (wakelocks, binder etc.)
 - Therefore it is able to run the Android user stack

Proposed solution

Fiasco.OC

L4Re

L4Android


Evaluation

Keywords

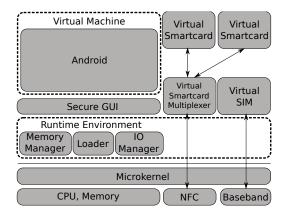
Questions

æ

・ロン ・聞と ・ヨン ・ヨン

Four proposed scenarios

- Software Smartcard
- Mobile Rootkit Detection
- Hardware Abstraction Layer
- Unified Corporate and Private Phone
- Last scenario implemented as a demo
- Runnable on ARM and x86 architectures
 - Freescale iMX.51 (Cortex-A8)
 - Aava Mobile developer phone (Moorestown)


Smartcard:

- Processor and memory integrated on a plastic card
- Cryptographic coprocessor smarcards for:
 - Mobile phones (SIM, NFC)
 - Credit cards
 - USB tokens
- "Software smartcard":
 - Performing the same computations on a general-purpose processor
 - Cheaper and more flexible than a physical smartcard
 - Usually unfeasible due to high security demands

イロト イヨト イヨト イヨト

Possible Smartcard setup:

æ

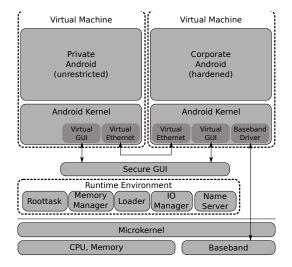
Fiasco.OC provides a secure computing base

- The smartcard operations run on top of the microkernel
- L4Re and microkernel syscalls offer a trusted interface
- Isolation from the L⁴Android domain is achieved
- Timing attacks are deflected by secure scheduling
- Vendors can implement various virtual smartcard configurations

<ロト < 団ト < 団ト < 団ト

э

- ► HAL: proposed L4-based development model for Linux drivers
- ► Move driver logic to a layer between L4Re and the guest kernel
- Develop generic driver stub in the guest OS
 - Easier to port drivers to new kernel versions
 - By updating the Linux-HAL interface
 - Driver faults are isolated from the rest of the system


- Corporate smartphones contain sensitive information
- Employees routinely carry two smartphones:
 - A company-provided smartphone configured according to the company's security policy
 - A personal, unrestricted phone
- Alternative: Bring Your Own Device (BYOD)

- Solution: a single phone running two Android virtual machines
 - Private Android: can even be rooted
 - Secure Android: implements corporate security policies
- User can easily switch between instances at runtime

イロト イポト イヨト イヨト

æ

Access to devices is multiplexed between instances

- Stub drivers in the guest kernels
- Driver servers in the L4 Runtime Environment
- Virtualization requirements:
 - Secure GUI server
 - Virtual Ethernet interfaces
 - Mobile telephony, hardware graphics/sound acceleration
 - Drivers are binaries in the Linux kernel or Android user space
 - Difficult to virtualize

・ロン ・聞と ・ヨン ・ヨン

Demo: http://l4android.org

Ξ

- Proposed solution
- Fiasco.OC
- L4Re
- L4Android
- Evaluation
- Keywords

Questions

- smartphones
- operating system security
- Mandatory Access Control
- protection domain
- capability

- Trusted Computing Base
- paravirtualization
- microkernel
- ► L4
- I/O server

э

- 4 伺 ト 4 ヨ ト 4 ヨ ト

- http://l4android.org
- http://l4linux.org
- http://os.inf.tu-dresden.de/L4/
- http://users.sec.t-labs.tu-berlin.de/~steffen/ papers/spsm03-lange.pdf
- ▶ Jochen Lietdke: On µ-Kernel Construction

- 4 同 1 - 4 三 1 - 4

- Proposed solution
- Fiasco.OC
- L4Re
- L4Android
- Evaluation
- Keywords

Questions

E

・ロン ・聞と ・ヨン ・ヨン

?

<ロト < 回 > < 臣 > < 臣 > 三 = のへで