Lecture 7
A Survey of Checkpoint/Restart Implementations

Eric Roman - Lawrence Berkeley National Laboratory Berkeley,
CA

Operating Systems Practical

21 November, 2012

osP Lecture 7, Checkpoint Mechanisms 1/33

paper crunch

A

Contents

Checkpoint

Checkpoint Implementations

Conclusion

Keywords

Questions

ospP

Lecture 7, Checkpoint Mechanisms

2/33

A

paper crunch

QOutline

Checkpoint

ospP

Lecture 7, Checkpoint Mechanisms

3/33

A

paper crunch

Introduction

Save the current state of the system/process periodically or
before critical code sections, providing sufficient information
to recover it in case of a system failure

It's usually an operating system feature
Not a new research area

Commercial /production implementations are emerging (high
availability systems, clusters, virtualization)

ospP

Lecture 7, Checkpoint Mechanisms 4/33

STA Motivation & Application

paper crunch

» Process migration: transparent process migration is used for
distributed load balancing and job controlling systems

» Crash recovery and rollback transaction: a process can
easily return to a previously checkpointed state (useful for
long-running applications - scientific computation)

» System administration: system administrators can
checkpoint processes before shutting down a machine and
restart them (on the same of another machine)

» High performance systems, embeded systems, servers, medical
devices, etc.

OosP Lecture 7, Checkpoint Mechanisms 5/33

OA Checkpoint Principles

paper crunch

» Save the state of a running process in a file
» Memory (stack, heap, data, bss)
> Registers
» File descriptors
» Optional: pending signals, signal handlers, accounting records,

terminal state

» Restart the process by recreating the objects described in the
saved file

osP Lecture 7, Checkpoint Mechanisms 6/33

Types of checkpoint

Full checkpoint: saves the entire state of the program
Incremental checkpoint: only saves data that changed from
the previous checkpoint (minimizes the costs/time and space)

Checkpoint with fork: duplicates the existing process (the
original process continues to execute while the child saves its

state)

ospP

Lecture 7, Checkpoint Mechanisms 7/33

A

paper crunch

QOutline

Checkpoint Implementations

osP Lecture 7, Checkpoint Mechanisms

8/33

SSA Checkpoint Implementations

» Application-implemented checkpoint
» Library linked with the application

» Operation system implementation

OosP Lecture 7, Checkpoint Mechanisms

9/33

Application Level Checkpoint

Highest degree of control

The operating system may remain unmodified and completely
unaware of checkpoints and restart

Difficult to implement - it may not be possible to change the
application source code

Delay between the time of the checkpoint command and the

time the application decides to save its state

Lack of a common restart mechanism (different applications
may use different checkpoint implementations)

ospP

Lecture 7, Checkpoint Mechanisms 10/33

Library Level Checkpoint

Avoids most the of underlying application source modifications

Typically use a signal handler to accomplish checkpointing
(reduces the delay between the checkpoint command time and
the checkpoint decision time)

Common restart procedure

Imposes restrictions on which system calls the application may
use (system calls like open file handles and memory mapp are
intercepted)

Interprocess communication is forbidden — scripts and parallel
applications may not be checkpointed

ospP

Lecture 7, Checkpoint Mechanisms

11/33

A

paper crunch

Operating System Level Checkpoint

v

Special support in the operating system kernel

v

Avoids replicating kernel data structures (e.g. opened files)

v

Data like process id, session id or original parent can be
managed only in kernel level implementation

v

Allows applications to be checkpointed at any time

v

Very few implementations

osP Lecture 7, Checkpoint Mechanisms 12/33

A

paper crunch

Parallel Application Checkpoint

» Process comunication: shared memory, pipes, local domain
sockets

» During checkpoint, the operating system must suspend all
processes and save their states

» During restart, the operating system must reconstruct all
processes and IPC channels

osP Lecture 7, Checkpoint Mechanisms 13/33

A

paper crunch

Multinode Application Checkpoint

» Requires active involvement of the checkpointing processes or
coordination with a remote kernel

» Ensures consistency: nodes cooperation
» Ensures all sent messages have been received or buffered

osP Lecture 7, Checkpoint Mechanisms 14/33

S‘(\jA Checkpoint Implementation Details

paper crunch

» Process address space
» Library implementation
» Obtains the start and end addresses for each region using
system calls interception and kernel specific knowledge
» Problems for mapped regions: mmap system call cannot be
intercepted - it is used before checkpoint library is initialized;
alternative: /proc filesystem
» Operating system implementation - direct access to data
structures describing the mapped regions
» Optimization: application level implementation allow to
designate "unimportant” data regions

» CPU registers - IP, SP, general purpose registers, etc
» Library implementation: uses a signal handler (when a signal is
received, the kernel stores the registers on stack)

» Operating system implementation: direct access to data
structures that store the process registers

osP Lecture 7, Checkpoint Mechanisms 15/33

STA Checkpoint Implementation Details (2)
» Signal handlers and pending signal state
» Library implementation: sigaction or signal system calls,
sigpending
» Operating system implementation: direct access to data
structures that save the signal handler and pending signals
» Files and file descriptors
> Issues
» Files may change between the checkpoint and the
corresponding restart
> Application interactions with the filesystem (if the application
closed a file descriptor, there are no available data structures
to recover file's state)
» Improvements: save hidden copies of all the opened files
» Reestablish the association between file descriptors and
terminals
» Opened directories: no existing implementation has addressed
this issue
» Sockets: shutdown and restart sockets through callback;
message bufering mechanisms

osP Lecture 7, Checkpoint Mechanisms 16/33

S‘é‘A Types of Checkpoint Implementation

> Library
> libckpt
» Condor
> libtckpt
» System
» VMADump
» CRAK

osP Lecture 7, Checkpoint Mechanisms

17/33

st‘jA libckpt

» One of the first library implementations for UNIX

» Provides a number of special optimizations to reduce the size
of checkpoint files
» Memory exclusion (mark unused pages or pages that will not
be modified)
» Incremental checkpoint using mprotect()
» Forked checkpointing
» Synchronous checkpoint

osP Lecture 7, Checkpoint Mechanisms 18/33

v

v

v

v

libckpt (2)

Requires a modification to the application source code
(renaming main routine)

The application must be recompiled and statically linked to
libckpt
Support for shared libraries

Can not restore segments mapped in by the application
through mmap()

ospP

Lecture 7, Checkpoint Mechanisms 19/33

Condor

Implements process migration for the Condor load balancing
system

Supports applications using memory mapped segments

Mapped segments and dynamic libraries are read through the
/proc filesystem

Requires applications to be linked with a special checkpoint
library

No recompilation is necessary

ospP

Lecture 7, Checkpoint Mechanisms 20/33

st‘jA libtckpt

» Checkpoints multithreaded applications using Linux or Solaris
threads

» Adds a checkpoint thread to the application used to
synchronize the other threads and invoke user callbacks

» User may install callbacks to be invoked before or after a
checkpoint is taken or after a restart is performed

osP Lecture 7, Checkpoint Mechanisms 21/33

SSA VMADump

paper crunch

» Part of Scyld's Bproc system

> Designed mainly for this style of process migration
» Explicit cooperation from process

» System call for ckeckpoint and restore

» VMADump also allows process images to be executed directly
through exec()

» Optimization in saving memory (saving shared libraries name
and not the content)
» Drawbacks:
> is application-initiated
» ignores file contents and file descriptors
» only individual single-threaded processes, not sessions, process
groups, or multithreaded applications

osP Lecture 7, Checkpoint Mechanisms 22/33

—

paper crunch

VMADump (2)

Dump type

VMADump Header

Process credentials

Command name

Umask General purpose registers
Trace flags Floating point re gisters
Priority Blocked signals

Resource usa ge

slg_action structures

Current working directory

Address space descriptor

Bproc 10 descriptor

1

Virtual memory area descriptor

BPRoc

1

Shared library name

Modified pages m library

Virtual memory area descriptol

Pages

VMA Dump

ospP

Lecture 7, Checkpoint Mechanisms

23/33

A

paper crunch

CRAK

Designed for process migration

Implemented as kernel module

Minimal modifications to the operating system kernel
Split between user space and kernel space

User space is responsible for identifying the set of processes to
be checkpointed, and for reconnecting open file descriptors
and pipes

Children can be save

Signals to synchronize processes to be checkpointed

ospP

Lecture 7, Checkpoint Mechanisms 24/33

A

paper crunch

>

>

>

CRAK (2)

Saves data in a manner quite similar with VMADump with
the difference that CRAK checkpoint isn't necessary called by
the process to be checkpointed

» Cannot use current

» Find the location of a checkpointing process’ memory
Saves files descriptors attached to sockets, unnamed pipes,
and regular files
Pipes between processes are reconnected in user space

» Any data undelivered in pipes is restored in kernel space

ospP

Lecture 7, Checkpoint Mechanisms

25/33

SSA CRAK (3)

paper crunch

» Sockets are restored in three phases

» New socket is created in user space

> In kernel space, local socket data structure is modified

» The remote socket data structure is modified to reflect the
restarting address

» CRAK is system-initiated, so no modifications are necessary to
user code
» Drawbacks:

» Cannot restart multithreading processes
» No checkpoint handlers
» Cannot block checkpoints

» Far from a general purpose checkpoint/restart

osP Lecture 7, Checkpoint Mechanisms 26/33

—

paper crunch

Checkpoint Implementation Comparison

Name |Type| Scope | File | Resource |Credent|Checkpoint|Signals File Address | Registers
Data Usage ials Handlers Descriptors | Space
libckp lib | Process | - - - - - o] o] []
libekpt lib | Process | O - - - - Q Q o
Condor lib | Process | - - - A L] Q Q []
libtckpt lib | Thread | - - - Q [] @] o] []
CRAK sys | Child - - o] A L] s} o] []
BPRoc sys | Process | - Q A - L] - e} []
Score lib | Parallel | - - - Q ° o] o] ®
CoCheck | lib | Parallel | - - - A L] o Q []

= Missing. A = Weak. Q

Good. @ = Complete

ospP

Lecture 7, Checkpoint Mechanisms

27/33

A

paper crunch

QOutline

Conclusion

ospP

Lecture 7, Checkpoint Mechanisms

28/33

S‘(\D‘A Conclusion

paper crunch

» Although checkpoint/restart is a useful technology, it is still
mainly a research subject and has not come to production use.
The reasons are:

» Lack of support from popular operating systems
> Most operating systems such as Unix were not designed for
checkpoint/restart. It's very hard to add such functionality
without significant change of the kernel
» Lack of commercial demand
» Checkpoint/restart is primarily used for high performance
distributed systems
» Transparency and reliability
» Checkpoint/restart ought to be both transparent and reliable
for general use, which is difficult

osP Lecture 7, Checkpoint Mechanisms 29/33

A

paper crunch

QOutline

Keywords

ospP

Lecture 7, Checkpoint Mechanisms

30/33

A

paper crunch

Keywords

» checkpoint
> restart
» memory

> registers

> migration

fault tolerance

v

> process communication

libckpt

v

ospP

Lecture 7, Checkpoint Mechanisms

31/33

A

paper crunch

QOutline

Questions

ospP

Lecture 7, Checkpoint Mechanisms

32/33

A

paper crunch

Questions

ospP

Lecture 7, Checkpoint Mechanisms

33/33

	Checkpoint
	Checkpoint Implementations
	Conclusion
	Keywords
	Questions

