Lecture 5

User-Mode Linux

Jeff Dike

Operating Systems Practical

November 7, 2012

ospP Lecture 5, UML

1/33

paper crunch

A

Contents

User-Mode Linux

Keywords

Resources

Questions

ospP

Lecture 5, UML

2/33

A

paper crunch

QOutline

User-Mode Linux

ospP

Lecture 5, UML

3/33

A

paper crunch

v

v

UML

A linux kernel port on Linux
A virtual machine in user-space

The simulated hardware is built on top of the native kernel
services

The UML kernel is ported on top of the native's kernel system
calls

The associated code is in the arch interface (arch/um/)
There are no drivers

Processes run in a closed environment

ospP

Lecture 5, UML 4/33

[}
Lecture 5, UML

Q>

5/33

A

paper crunch

Devices

» console
» the main console is the one in which the UML kernel was
started
» subsequent consoles run inside an xterm
» block devices
» emulated through files
» serial links
» emulated through pseudo-terminals (/dev/pts/0)
» networking
» daemon used to send Ethernet frames between virtual
machines

» can link the virtual device to the real one

osP Lecture 5, UML 6/33

6A Processor

paper crunch

» implemented using the arch interface
» the entire code is a separate architecture named “um”
Is Jusr/src/linux/arch/um/

Kconfig Kconfig.x86_64 Makefile—skas [...]
Kconfig.char Makefile Makefile—tt [...]
Kconfig.debug Makefile—i386 Makefile —x86_64 os—Linux
Kconfig.i386 Makefile—ia64 config.release scripts
Kconfig.net Makefile—os—Linux defconfig sys—i386
Kconfig. scsi Makefile —ppc drivers sys—iab64

» user space code need to be able to run unmodified in the
virtual machine
» system calls are interpreted and run on the virtual machine

» UML runs in user space as a process

osP Lecture 5, UML 7/33

6‘A Intercepting system calls

paper crunch

> uses ptrace - controlled execution (gdp uses ptrace)

» one thread uses ptrace to control the other threads and
processes

> the thread is notified by a system call from another thread

> the arguments are gathered
» redirects to kernel code running in user space for execution

ospP Lecture 5, UML

8/33

st‘jA Trap

> traps are used to switch from user mode to kernel mode
> on physical systems are generated by hardware components
» the result is forcing the processor to jump to a certain address
in kernel space
> traps are implemented using Linux signals

SIGALRM/SIGVTALRM - clock

SIGIO - hardware interrupts

SIGSEGV - memory faults

the user-space kernel declares handlers for these signals

vV vy vVvYy

osP Lecture 5, UML 9/33

SSA Trap (2)

paper crunch

» signal handlers need to run in kernel-mode (in the UML
process)
1. need to use a kernel stack
2. need to deactivate the interception of system calls

osP Lecture 5, UML 10/33

osP

—

paper crunch

Trap (3)

Lecture 5, UML

Q>

11/33

STA Kernel address space

» when a process enters kernel mode, it automatically changes
the address space
» the UML problem?
> the kernel and the process co-exist in the same address space -
the UML process address space
> solution:
» placing the UML kernel in a memory area that is not likely to

be accessed (0xa0000000 — OxbfFfffff)
» mmaps a file in each process space

osP Lecture 5, UML 12/33

A

paper crunch

Process address space

Each process on the virtual machine has a real process on the
physical machine associated with it
All processes share kernel data

» mmap a file with kernel data in the address space of each

andevery process (shared segment)

context changes are implemented using real (native) context
changes
what preempts a process?

» clock interrupt on the native kernel
» SIGVTALRM on the UML kernel

ospP

Lecture 5, UML 13/33

osP

—

paperorunch

1GB

Address space

3GB

process space

Lecture 5, UML

Q>

14/33

Initialization and shutdown

example:
./linux-2.6.19-rc5 ubda=FedoraCore5-x86-root_fs mem=128M

arguments are sent through a buffer

init memory, start idle thread

the monitoring thread starts intercepting
start_kernel, mem_init, paging_init
register and init drivers

on shutdown, all processes and threads are killed

ospP

Lecture 5, UML

15/33

A Processes

» for creating a new process, the generic code in the kernle calls
the specific architecture code from /arch/

> in the UML case, a new process is created on the host system

» the monitoring thread is used (MT)
» new process/thread executes init operation (handlers for
SIGVTALRM, SIGIO, SIGSEGV, etc.)
» after init it sends itself a SIGSTOP
» the MT detects the stopping of the process and ends the
system call and returns a return value specific to ‘fork’

» the process is killed on the host system and the memory is
freed

ospP

Lecture 5, UML 16/33

A

paper crunch

System calls

» The virtualization of the system calls is done through MT

» system calls are redirected to the virtual kernel
> the system call is mapped to a “getpid” on the host system

osP Lecture 5, UML 17/33

A

paper crunch

v

v

v

v

System calls (2)

how to call the system call switch on the kernel stack?

1. creating an execution context that positions the process at the
beginning of the switch statement

2. use a signal at the return from the kernel; the handler for this
signal is the execution of the system call switch statement

the MT is notified at the end of the system call in the MT
the MT stores the return value in the specialized register

the process continues to execute user level code

ospP

Lecture 5, UML 18/33

—

paper crunch

System calls (3)

system call
return

=} = = = £ DA

OoSsP Lecture 5, UML 19/33

osP

—

paperorunch

System calls (4)

process space

Lecture 5, UML

A

20/33

S‘(‘jA Context switch

paper crunch

> in the case of a process switch - a process calls schedule

> a new process is chosen and the architecture dependent code
is called

the MT is notified from the arch/um/ code

the MT stops the process and starts the new one

v

v

osP Lecture 5, UML 21/33

STA Context switch (2)

> after re-planning, some pages can be swapped - but the
mapping exists

> the pages are stored in a circular buffer

» after re-planning this buffer is checked and the address space
is updated

osP Lecture 5, UML 22/33

A Delivering signals

» delivered signals are stored in a queue in the process’
task_struct

» the queue is inspected upon every exit from kernel mode

> the signal is delivered to the process running on the host
kernel through SIGUSR2

> the SIGUSR2 handler executes the actual signal handler

ospP

Lecture 5, UML 23/33

Memory faults

what is demand paging?
a memory fault causes the delivery of SIGSEGV to the UML
process

the handler checks the nature of the fault: user-mode fault or
kernel-mode fault

if the page is valid - it is mapped

» otherwise SIGSEGYV is sent to the user process or kernel panic
> exception: sending of a invalid pointer from user-space or

kernel space
» checks the address of the instruction that generated the fault

ospP

Lecture 5, UML 24/33

s‘c‘jA IRQ

» copied from i386
» for i386: the interrupt routine is called through do_irq
» for um: interrupts are simulated through SIGIO

> the routine is chosen through the file descriptor that is
associated with the device

osP Lecture 5, UML 25/33

v

The result

a Linux virtual machine runs on a Linux host operating system
native applications run un-modified on UML

has the advantage of using the latest kernel (over other
virtualization techniques)

from 2.6 up, the um “architecture” is included in the kernel

from 2.6 up SKAS (separate kernel address space) is used
instead of MT

ospP

Lecture 5, UML 26/33

v

v

v

v

Applications

kernel debugging
isolation

prototiping (testing on a virtual system before launching on
the physical system)

multiple environments on the same physical system

ospP

Lecture 5, UML 27/33

A

paper crunch

QOutline

Keywords

ospP

Lecture 5, UML

28/33

A

paper crunch

Keywords

Linux kernel

v

user-mode

v

context switch

v

v

address space

v

v

v

system calls
traps
memory faults

IRQ

ospP

Lecture 5, UML

29/33

A

paper crunch

QOutline

Resources

ospP

Lecture 5, UML

30/33

Resources

http://www.usenix.org/publications/library/
proceedings/als00/2000papers/papers/full_papers/
dike/
https://www.usenix.org/publications/library/
proceedings/als01/full_papers/dike/
http://user-mode-1linux.sourceforge.net/
http://user-mode-1linux.sourceforge.net/old/
UserModeLinux-HOWTO.html

http://www.coherenthosting.com/prj/uml/henrique/
pool_h01/

ospP

Lecture 5, UML 31/33

http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
http://www.usenix.org/publications/library/proceedings/als00/2000papers/papers/full_papers/dike/
https://www.usenix.org/publications/library/proceedings/als01/full_papers/dike/
https://www.usenix.org/publications/library/proceedings/als01/full_papers/dike/
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/old/UserModeLinux-HOWTO.html
http://user-mode-linux.sourceforge.net/old/UserModeLinux-HOWTO.html
http://www.coherenthosting.com/prj/uml/henrique/pool_h01/
http://www.coherenthosting.com/prj/uml/henrique/pool_h01/

A

paper crunch

QOutline

Questions

ospP

Lecture 5, UML

32/33

Questions

ospP

Lecture 5, UML

33/33

	User-Mode Linux
	Keywords
	Resources
	Questions

