Session 12
Software Supply Chain Security

Software Security and Privacy
Computer Science and Engineering Department

January 14, 2026

1/40

What is the Software Supply Chain?

> Anything that goes into your software (code, binaries,
libraries).
Who wrote it?
When was it contributed?

>
>
» How was it reviewed?
» How was it built?

>

How is it delivered?

Supply Chain Security ensures the integrity and provenance of all
these artifacts throughout the lifecycle.

4/40

Attack Taxonomy

1. Upstream Attacks: Malicious code injected into open source
dependencies.

» Typosquatting: request vs requests.
» Dependency Confusion: Internal vs Public package names.
» Maintainer Compromise: Stolen credentials.

2. Midstream Attacks: Compromising the build pipeline.
» SolarWinds: Injecting malware during the build process.
» Codecov: Modifying the uploader script in Cl.
3. Downstream Attacks: Compromising update mechanisms or
signing keys.

7/40
Case Study: Log4Shell (Log4j)

» Vulnerability: JNDI Injection in log4j-core.
» Significance:
» Ubiquity: Used in millions of Java applications.
» Deep Dependency: Often included transitively (Dep A — Dep
B — Log4j).
» Lesson: You need to know what you are running.
» Challenge: How do we find every instance of Log4j deep in
our dependency graphs?

9/40

The Modern Software Ecosystem

» Modern software is rarely written from scratch.

» It is assembled from open source libraries, frameworks, and
containers.

» Statistic: 70-90% of modern application code consists of
open source components.

» The Challenge: You inherit the security posture of your
dependencies (and their dependencies).

> "lt's turtles all the way down.”

3/40

Visualizing the Supply Chain

Source
Control
(Git)
Compromised Device Typosquatting

Malicious Commit / Compromised Build
Tag Env

Artifact

Developer -

Every link in this chain is a potential attack vector.

5/40

Case Study: SolarWinds (Sunburst)

» Target: Orion Network
Management System.

» Method: Attackers
compromised the build
system.

» Mechanism: The build
'Server was pa?:c.hed to [Source Code ——{ Malware Injection |——{Build Process]
include a malicious DLL

-(Solarw:‘mds.DrlonACore.Bus:LnessLayer.dl
into legitimate updates.

» Impact: Thousands of
organizations, including US
gov agencies, installed the
signed but backdoored

update.
8/40
Dependency Confusion
> Many companies use internal package registries (e.g., PyPI,
npm) mixed with public ones.
» Attack: Attacker registers a public package with the same
name as an internal private package but a higher version
number.
> Result: Package manager (pip, npm) defaults to the higher
version from the public repo.
> Mitigation: Scoped packages (@myorg/pkg), strict registry
configuration.
10/40

SLSA (Supply-chain Levels for Software Artifacts)

» Pronounced "salsa".
» A security framework from ensuring artifact integrity.

» Goal: Prevent tampering, improve integrity, and secure
packages.

SLSA Levels
Level 1: Build process is scripted and version controlled.
Provenance exists.
Level 2: Build runs on a dedicated build service. Provenance
is authenticated.
Level 3: Build platform is hardened. Provenance is
non-falsifiable.

12/40

What is an SBOM?

> A nested inventory (a list of ingredients) that makes up
software components.
» Contains:
» Library Names
Versions
License Information
Checksums / Hashes
Dependencies of Dependencies

vvyy

v

» Analogy: Nutrition label on food packaging.

15/40

Tool: Syft (Generation)

» CLI tool and library for generating SBOMs from container
images and filesystems.

» Developed by Anchore.
Example Usage

Generate SBOM for a docker image

$ syft packages docker:alpine:latest -o cyclonedx-json > sbom.json

Scan a local directory
$ syft packages dir:. -o spdx

» Can detect OS packages (APK, DEB, RPM) and Language
packages (gems, pip, npm, jars).

17/40

Tool: Trivy (Comprehensive Scanner)

» An all-in-one security scanner (Filesystem, Git, Container,
K8s).
» Very popular in Cl/CD pipelines due to ease of use.

Example Usage

Scan a container image
$ trivy image python:3.4-alpine

Scan a filesystem for vulnerabilities & misconfigs
$ trivy fs --scanners vuln,misconfig .

Scan a git repository
$ trivy repo https://github.com/knqyf263/trivy-ci-test

19/40

NIST SSDF (Secure Software Development Framework)

> SP 800-218.
» Set of fundamental, sound, and secure software development
practices.
» Four Groups:
1. Prepare the Organization (PO): People, processes, tech.
2. Protect the Software (PS): Tamper protection.
3. Produce Well-Secured Software (PW): Minimal
vulnerabilities.
4. Respond to Vulnerabilities (RV): Remediation.
» Often a requirement for US Federal Government software
vendors (EO 14028).

SBOM Formats

SPDX (Software Package
Data Exchange)

» ISO/IEC 5962:2021
standard.

CycloneDX
» OWASP flagship project.

» Designed specifically for
security contexts /

> i L .
Heavy focus on license application security.

compliance initially, now

security too. > Lightweight, typically

JSON/XML.

» Linux Foundation.

Tool: Grype (Vulnerability Scanning)

» A vulnerability scanner for container images and filesystems.
> Works best when paired with Syft (scan the SBOM, not just
the image).

Example Usage

Scan an SBOM generated by Syft
$ grype sbom:sbom.json

Scan an image directly
$ grype docker:nginx:latest

» Outputs CVEs, severity, and fix versions.

Automated Dependency Management (GitHub
Dependabot)

» What is it? An automated bot that scans your dependency
files for outdated or insecure requirements.
> How it works (Behind the Scenes):
1. Detection: Parses manifest files (e.g., package. json,
go.mod) and checks against the GitHub Advisory Database.
2. Resolution: Determines the "secure” version that is
compatible with your version constraints.
3. Action: Creates a new branch, updates the manifest/lock file,
and opens a Pull Request (PR).
4. Cl/CD: Triggers your Cl pipeline to ensure the update doesn’t
break tests.

» Impact: Significantly reduces the " Time to Remediate” for
known CVEs.

13/40

16/40

18/40

20/40

The Problem of Noise: VEX

» Scanners (like Grype) find potential vulnerabilities based on
version matching.
» Reality: Is the vulnerable function actually called? Is it
reachable?
» VEX (Vulnerability Exploitability eXchange):
» A machine-readable statement claiming whether a product is
affected by a vulnerability.
> Statuses: Not Affected, Affected, Fixed, Under Investigation.

» Allows vendors to suppress false positives in scanners.

21/40

Example: VEX Statement

vex.json (Snippet)

{

"statements": [

"vulnerability": "CVE-2021-44228",
"status": "not_affected",

"justification": "code_not_reachable",

"impact": "Logdj is used only for testing, not in prod.",
"products”: ["pkg:docker/myapp@v1.0.0"

23/40

Sigstore & Cosign

> Sigstore: A project to make signing easy and transparent.
» Cosign: CLI tool to sign containers and blobs.

Keyless Signing (The Magic)
Instead of managing long-lived keys:
1. Authenticate via OIDC (Google, GitHub, Microsoft).
2. Generate ephemeral keys.
3. Sign artifact with ephemeral key.
4

. Record the signature and OIDC identity in a public
Transparency Log (Rekor).

5. Discard the key.

26/40

Using Cosign

Signing a Container

$ cosign sign --key cosign.key user/demo
Or Keyless (opens browser for 0IDC)
$ cosign sign user/demo

Verifying a Container

$ cosign verify --key cosign.pub user/demo

Or Keyless

$ cosign verify \
-—certificate-identity=alice@example.com \
——certificate-oidc-issuer=https://accounts.google.com \
user/demo

28/40

Example: CycloneDX SBOM (JSON)

sbom.json (Snippet)

1
"bomFormat": "CycloneDX",
"specVersion": "1.4",
"components": [
{

"purl": "pkg:pypi/requestse2.25.1",
"licenses": [{ "license": { "id": "Apache-2.0" } }]

22/40
The Signing Problem
» Historically, signing software (PGP) is hard.
> Key management is painful (rotation, storage, revocation).
» Developers lose keys or commit them to git.
» Result: Nobody signs artifacts, or nobody verifies signatures.
25 /40
Keyless Signing Flow
Rekor (Log)
Verification checks the transparency log to prove that the cert was
valid at the time of signing.
27/40
Reproducible Builds
» Definition: Given the same source code, build environment,
and instructions, any party can recreate bit-for-bit identical
copies of all specified artifacts.
> Why?
> Prevents the "compromised build server” attack (SolarWinds).
» If | build it and you build it, and hashes match, we trust the
compiler didn't inject malware.
» Challenges: Timestamps, non-deterministic compiler outputs,
file ordering.
30/40

Hermetic Builds

» Builds that are isolated from the network and the host system.

» Rule: All dependencies must be declared explicitly. No
fetching from the internet during ‘make’.

» Tools: Bazel, Nix.

» Ensures that the build is predictable and dependencies are
pinned/hashed.

31/40

Demo Scenarios

We will explore the following scenarios:

1. Vulnerability Scanning:
» Build a Docker image with known vulnerabilities (old Python).
» Generate an SBOM using syft.
» Scan the SBOM using grype and trivy.

2. Signing & Verification:
» Generate a key pair with cosign.
» Sign a local file/image.
» Verify the signature to ensure integrity.

3. Supply Chain Attack Simulation:

» Simulate a " Typosquatting” attack in Python.
» Show how easy it is to install the wrong package.

34/40

Future Trends

» Mandatory SBOMs: Government regulations (US EO
14028, EU Cyber Resilience Act).

» Chainguard / Distroless: Minimal images with zero known
vulnerabilities.

» Graph-based Analysis: Understanding " reachability” of
vulnerabilities to reduce alert fatigue.

» Policy as Code: Preventing unsigned or vulnerable images
from running in Kubernetes (Kyverno, OPA Gatekeeper).

37/40

Keywords

» TODO » TODO

39/40

Attestations

An authenticated statement about a software artifact.
" built this artifact from this git commit on this runner.”
stored in the container registry alongside the image.

vyvyyvyy

in-toto: A framework to secure the integrity of the software
supply chain. Defines the layout of the pipeline and verifies
that steps were carried out as intended.

Best Practices for Supply Chain Security

1. Know your dependencies: Generate SBOMs regularly.

2. Scan for vulnerabilities: Automate tools like Grype or Trivy
in Cl.

3. Pin dependencies: Use lock files (package-lock. json,
go.sum). Avoid generic versions like latest or "1.2.3 in
critical infra.

4. Sign your artifacts: Use Cosign/Sigstore.

5. Secure the pipeline: SLSA Level 2+ (Hosted runners,
ephemeral environments).

6. Monitor for new threats: VEX and continuous scanning.

Summary

» Supply Chain Security is about trust in the entire lifecycle, not
just your code.
» Attacks are shifting from run-time to build-time.

» Tools like Syft, Grype, and Cosign form the modern defense
stack.

» Frameworks like SLSA provide the roadmap for maturity.

Resources

» TODO
» TODO

32/40

36/40

38/40

40/ 40

	Introduction
	Threat Landscape & Attacks
	Frameworks & Standards
	SBOM: Software Bill of Materials
	Integrity & Signing (Cosign)
	Build Security
	Practical Scenarios
	Mitigation & Conclusion

