
Session 12
Software Supply Chain Security

Software Security and Privacy

Computer Science and Engineering Department

January 14, 2026

1 / 40

The Modern Software Ecosystem

▶ Modern software is rarely written from scratch.

▶ It is assembled from open source libraries, frameworks, and
containers.

▶ Statistic: 70-90% of modern application code consists of
open source components.

▶ The Challenge: You inherit the security posture of your
dependencies (and their dependencies).

▶ ”It’s turtles all the way down.”

3 / 40

What is the Software Supply Chain?

▶ Anything that goes into your software (code, binaries,
libraries).

▶ Who wrote it?

▶ When was it contributed?

▶ How was it reviewed?

▶ How was it built?

▶ How is it delivered?

Supply Chain Security ensures the integrity and provenance of all
these artifacts throughout the lifecycle.

4 / 40

Visualizing the Supply Chain

Developer

Source
Control
(Git)

Build
System
(CI/CD)

Artifact
Registry

Production

Compromised Device

Malicious Commit /
Tag

Compromised Build
Env

Typosquatting

Every link in this chain is a potential attack vector.

5 / 40

Attack Taxonomy

1. Upstream Attacks: Malicious code injected into open source
dependencies.
▶ Typosquatting: request vs requests.
▶ Dependency Confusion: Internal vs Public package names.
▶ Maintainer Compromise: Stolen credentials.

2. Midstream Attacks: Compromising the build pipeline.
▶ SolarWinds: Injecting malware during the build process.
▶ Codecov: Modifying the uploader script in CI.

3. Downstream Attacks: Compromising update mechanisms or
signing keys.

7 / 40

Case Study: SolarWinds (Sunburst)

▶ Target: Orion Network
Management System.

▶ Method: Attackers
compromised the build
system.

▶ Mechanism: The build
server was patched to
include a malicious DLL
(SolarWinds.Orion.Core.BusinessLayer.dll)
into legitimate updates.

▶ Impact: Thousands of
organizations, including US
gov agencies, installed the
signed but backdoored
update.

Source Code Malware Injection Build Process

Signed UpdateCustomer

8 / 40

Case Study: Log4Shell (Log4j)

▶ Vulnerability: JNDI Injection in log4j-core.
▶ Significance:

▶ Ubiquity: Used in millions of Java applications.
▶ Deep Dependency: Often included transitively (Dep A → Dep

B → Log4j).

▶ Lesson: You need to know what you are running.

▶ Challenge: How do we find every instance of Log4j deep in
our dependency graphs?

9 / 40

Dependency Confusion

▶ Many companies use internal package registries (e.g., PyPI,
npm) mixed with public ones.

▶ Attack: Attacker registers a public package with the same
name as an internal private package but a higher version
number.

▶ Result: Package manager (pip, npm) defaults to the higher
version from the public repo.

▶ Mitigation: Scoped packages (@myorg/pkg), strict registry
configuration.

10 / 40

SLSA (Supply-chain Levels for Software Artifacts)

▶ Pronounced ”salsa”.

▶ A security framework from ensuring artifact integrity.

▶ Goal: Prevent tampering, improve integrity, and secure
packages.

SLSA Levels

Level 1: Build process is scripted and version controlled.
Provenance exists.

Level 2: Build runs on a dedicated build service. Provenance
is authenticated.

Level 3: Build platform is hardened. Provenance is
non-falsifiable.

12 / 40

NIST SSDF (Secure Software Development Framework)

▶ SP 800-218.

▶ Set of fundamental, sound, and secure software development
practices.

▶ Four Groups:

1. Prepare the Organization (PO): People, processes, tech.
2. Protect the Software (PS): Tamper protection.
3. Produce Well-Secured Software (PW): Minimal

vulnerabilities.
4. Respond to Vulnerabilities (RV): Remediation.

▶ Often a requirement for US Federal Government software
vendors (EO 14028).

13 / 40

What is an SBOM?

▶ A nested inventory (a list of ingredients) that makes up
software components.

▶ Contains:
▶ Library Names
▶ Versions
▶ License Information
▶ Checksums / Hashes
▶ Dependencies of Dependencies

▶ Analogy: Nutrition label on food packaging.

15 / 40

SBOM Formats

SPDX (Software Package
Data Exchange)

▶ ISO/IEC 5962:2021
standard.

▶ Heavy focus on license
compliance initially, now
security too.

▶ Linux Foundation.

CycloneDX

▶ OWASP flagship project.

▶ Designed specifically for
security contexts /
application security.

▶ Lightweight, typically
JSON/XML.

16 / 40

Tool: Syft (Generation)

▶ CLI tool and library for generating SBOMs from container
images and filesystems.

▶ Developed by Anchore.

Example Usage

Generate SBOM for a docker image

$ syft packages docker:alpine:latest -o cyclonedx-json > sbom.json

Scan a local directory

$ syft packages dir:. -o spdx

▶ Can detect OS packages (APK, DEB, RPM) and Language
packages (gems, pip, npm, jars).

17 / 40

Tool: Grype (Vulnerability Scanning)

▶ A vulnerability scanner for container images and filesystems.

▶ Works best when paired with Syft (scan the SBOM, not just
the image).

Example Usage

Scan an SBOM generated by Syft

$ grype sbom:sbom.json

Scan an image directly

$ grype docker:nginx:latest

▶ Outputs CVEs, severity, and fix versions.

18 / 40

Tool: Trivy (Comprehensive Scanner)

▶ An all-in-one security scanner (Filesystem, Git, Container,
K8s).

▶ Very popular in CI/CD pipelines due to ease of use.

Example Usage

Scan a container image

$ trivy image python:3.4-alpine

Scan a filesystem for vulnerabilities & misconfigs

$ trivy fs --scanners vuln,misconfig .

Scan a git repository

$ trivy repo https://github.com/knqyf263/trivy-ci-test

19 / 40

Automated Dependency Management (GitHub
Dependabot)

▶ What is it? An automated bot that scans your dependency
files for outdated or insecure requirements.

▶ How it works (Behind the Scenes):
1. Detection: Parses manifest files (e.g., package.json,

go.mod) and checks against the GitHub Advisory Database.
2. Resolution: Determines the ”secure” version that is

compatible with your version constraints.
3. Action: Creates a new branch, updates the manifest/lock file,

and opens a Pull Request (PR).
4. CI/CD: Triggers your CI pipeline to ensure the update doesn’t

break tests.

▶ Impact: Significantly reduces the ”Time to Remediate” for
known CVEs.

20 / 40

The Problem of Noise: VEX

▶ Scanners (like Grype) find potential vulnerabilities based on
version matching.

▶ Reality: Is the vulnerable function actually called? Is it
reachable?

▶ VEX (Vulnerability Exploitability eXchange):
▶ A machine-readable statement claiming whether a product is

affected by a vulnerability.
▶ Statuses: Not Affected, Affected, Fixed, Under Investigation.

▶ Allows vendors to suppress false positives in scanners.

21 / 40

Example: CycloneDX SBOM (JSON)

sbom.json (Snippet)

{

"bomFormat ": "CycloneDX",

"specVersion ": "1.4",

"components ": [

{

"type": "library",

"name": "requests",

"version ": "2.25.1" ,

"purl": "pkg:pypi/requests@2 .25.1" ,

"licenses ": [{ "license ": { "id": "Apache -2.0" } }]

}

]

}

22 / 40

Example: VEX Statement

vex.json (Snippet)

{

"statements ": [

{

"vulnerability ": "CVE -2021 -44228" ,

"status ": "not_affected",

"justification ": "code_not_reachable",

"impact ": "Log4j is used only for testing , not in prod.",

"products ": ["pkg:docker/myapp@v1 .0.0"]

}

]

}

23 / 40

The Signing Problem

▶ Historically, signing software (PGP) is hard.

▶ Key management is painful (rotation, storage, revocation).

▶ Developers lose keys or commit them to git.

▶ Result: Nobody signs artifacts, or nobody verifies signatures.

25 / 40

Sigstore & Cosign

▶ Sigstore: A project to make signing easy and transparent.

▶ Cosign: CLI tool to sign containers and blobs.

Keyless Signing (The Magic)

Instead of managing long-lived keys:

1. Authenticate via OIDC (Google, GitHub, Microsoft).

2. Generate ephemeral keys.

3. Sign artifact with ephemeral key.

4. Record the signature and OIDC identity in a public
Transparency Log (Rekor).

5. Discard the key.

26 / 40

Keyless Signing Flow

Developer OIDC Provider Fulcio (CA) Rekor (Log)
1. Login2. Token

3. Send Token + PubKey

4. Short-lived Cert

5. Sign Artifact

6. Store Entry

Verification checks the transparency log to prove that the cert was
valid at the time of signing.

27 / 40

Using Cosign

Signing a Container

$ cosign sign --key cosign.key user/demo

Or Keyless (opens browser for OIDC)

$ cosign sign user/demo

Verifying a Container

$ cosign verify --key cosign.pub user/demo

Or Keyless

$ cosign verify \

--certificate-identity=alice@example.com \

--certificate-oidc-issuer=https://accounts.google.com \

user/demo

28 / 40

Reproducible Builds

▶ Definition: Given the same source code, build environment,
and instructions, any party can recreate bit-for-bit identical
copies of all specified artifacts.

▶ Why?
▶ Prevents the ”compromised build server” attack (SolarWinds).
▶ If I build it and you build it, and hashes match, we trust the

compiler didn’t inject malware.

▶ Challenges: Timestamps, non-deterministic compiler outputs,
file ordering.

30 / 40

Hermetic Builds

▶ Builds that are isolated from the network and the host system.

▶ Rule: All dependencies must be declared explicitly. No
fetching from the internet during ‘make‘.

▶ Tools: Bazel, Nix.

▶ Ensures that the build is predictable and dependencies are
pinned/hashed.

31 / 40

Attestations

▶ An authenticated statement about a software artifact.

▶ ”I built this artifact from this git commit on this runner.”

▶ stored in the container registry alongside the image.

▶ in-toto: A framework to secure the integrity of the software
supply chain. Defines the layout of the pipeline and verifies
that steps were carried out as intended.

32 / 40

Demo Scenarios

We will explore the following scenarios:

1. Vulnerability Scanning:
▶ Build a Docker image with known vulnerabilities (old Python).
▶ Generate an SBOM using syft.
▶ Scan the SBOM using grype and trivy.

2. Signing & Verification:
▶ Generate a key pair with cosign.
▶ Sign a local file/image.
▶ Verify the signature to ensure integrity.

3. Supply Chain Attack Simulation:
▶ Simulate a ”Typosquatting” attack in Python.
▶ Show how easy it is to install the wrong package.

34 / 40

Best Practices for Supply Chain Security

1. Know your dependencies: Generate SBOMs regularly.

2. Scan for vulnerabilities: Automate tools like Grype or Trivy
in CI.

3. Pin dependencies: Use lock files (package-lock.json,
go.sum). Avoid generic versions like latest or ^1.2.3 in
critical infra.

4. Sign your artifacts: Use Cosign/Sigstore.

5. Secure the pipeline: SLSA Level 2+ (Hosted runners,
ephemeral environments).

6. Monitor for new threats: VEX and continuous scanning.

36 / 40

Future Trends

▶ Mandatory SBOMs: Government regulations (US EO
14028, EU Cyber Resilience Act).

▶ Chainguard / Distroless: Minimal images with zero known
vulnerabilities.

▶ Graph-based Analysis: Understanding ”reachability” of
vulnerabilities to reduce alert fatigue.

▶ Policy as Code: Preventing unsigned or vulnerable images
from running in Kubernetes (Kyverno, OPA Gatekeeper).

37 / 40

Summary

▶ Supply Chain Security is about trust in the entire lifecycle, not
just your code.

▶ Attacks are shifting from run-time to build-time.

▶ Tools like Syft, Grype, and Cosign form the modern defense
stack.

▶ Frameworks like SLSA provide the roadmap for maturity.

38 / 40

Keywords

▶ TODO ▶ TODO

39 / 40

Resources

▶ TODO

▶ TODO

40 / 40

	Introduction
	Threat Landscape & Attacks
	Frameworks & Standards
	SBOM: Software Bill of Materials
	Integrity & Signing (Cosign)
	Build Security
	Practical Scenarios
	Mitigation & Conclusion

