Notes

Session 12

Software Supply Chain Security

Software Security and Privacy

Computer Science and Engineering Department

January 14, 2026

1/40

The Modern Software Ecosystem

Notes
» Modern software is rarely written from scratch.
» It is assembled from open source libraries, frameworks, and
containers.
» Statistic: 70-90% of modern application code consists of
open source components.
» The Challenge: You inherit the security posture of your
dependencies (and their dependencies).
» "lt's turtles all the way down.”
3/40
What is the Software Supply Chain?
Notes
> Anything that goes into your software (code, binaries,
libraries).
» Who wrote it?
» When was it contributed?
» How was it reviewed?
» How was it built?
» How is it delivered?
Supply Chain Security ensures the integrity and provenance of all
these artifacts throughout the lifecycle.
4/40
Visualizing the Supply Chain
Notes

Source Build

Control System

Artifact

Developer Production

(Git) (C1/CD) Registry

Compromised Device Typosquatting
Malicious Commit / Compromised Build

Tag

Every link in this chain is a potential attack vector.

5/40

Attack Taxonomy

1. Upstream Attacks: Malicious code injected into open source
dependencies.
» Typosquatting: request vs requests.
» Dependency Confusion: Internal vs Public package names.
» Maintainer Compromise: Stolen credentials.

2. Midstream Attacks: Compromising the build pipeline.

» SolarWinds: Injecting malware during the build process.
» Codecov: Modifying the uploader script in CI.

3. Downstream Attacks: Compromising update mechanisms or

signing keys.

7/40

Case Study: SolarWinds (Sunburst)

>

>

Target: Orion Network
Management System.
Method: Attackers
compromised the build
system.

Mechanism: The build

.server was pa‘tc.hed to [Source Code |——{ Malware Injection |——{ Build Process|
include a malicious DLL
(SolarWinds.Orion.Core.BusinessLayer.dl
into legitimate updates.

Signed Update

Impact: Thousands of
organizations, including US
gov agencies, installed the
signed but backdoored
update.

8/40

Case Study: Log4Shell (Log4j)

» Vulnerability: JNDI Injection in log4j-core.
» Significance:
» Ubiquity: Used in millions of Java applications.
» Deep Dependency: Often included transitively (Dep A — Dep
B — Log4j).
» Lesson: You need to know what you are running.
» Challenge: How do we find every instance of Log4j deep in
our dependency graphs?

9/40

Dependency Confusion

» Many companies use internal package registries (e.g., PyPl,
npm) mixed with public ones.

» Attack: Attacker registers a public package with the same
name as an internal private package but a higher version
number.

> Result: Package manager (pip, npm) defaults to the higher
version from the public repo.

> Mitigation: Scoped packages (@myorg/pkg), strict registry
configuration.

10/40

Notes

Notes

Notes

Notes

SLSA (Supply-chain Levels for Software Artifacts)

» Pronounced "salsa”.
» A security framework from ensuring artifact integrity.

» Goal: Prevent tampering, improve integrity, and secure
packages.

SLSA Levels

Level 1: Build process is scripted and version controlled.
Provenance exists.

Level 2: Build runs on a dedicated build service. Provenance
is authenticated.

Level 3: Build platform is hardened. Provenance is
non-falsifiable.

12/40

NIST SSDF (Secure Software Development Framework)

> SP 800-218.

» Set of fundamental, sound, and secure software development
practices.
» Four Groups:
1. Prepare the Organization (PO): People, processes, tech.
2. Protect the Software (PS): Tamper protection.
3. Produce Well-Secured Software (PW): Minimal
vulnerabilities.
4. Respond to Vulnerabilities (RV): Remediation.
» Often a requirement for US Federal Government software
vendors (EO 14028).

13/40

What is an SBOM?

> A nested inventory (a list of ingredients) that makes up
software components.
» Contains:

Library Names

Versions

License Information
Checksums / Hashes
Dependencies of Dependencies

vvyyvyy

v

» Analogy: Nutrition label on food packaging.

15/40

SBOM Formats

SPDX (Software Package
Data Exchange)
» ISO/IEC 5962:2021
standard.

CycloneDX
» OWASP flagship project.

» Designed specifically for
security contexts /

> i L .
Heavy focus on license application security.

compliance initially, now

security too. » Lightweight, typically

. . JSON/XML.
» Linux Foundation.

16 /40

Notes

Notes

Notes

Notes

Tool: Syft (Generation)

Notes
» CLI tool and library for generating SBOMs from container
images and filesystems.
» Developed by Anchore.
Example Usage
Generate SBOM for a docker image
$ syft packages docker:alpine:latest -o cyclonedx-json > sbom.json
Scan a local directory
$ syft packages dir:. -o spdx
> Can detect OS packages (APK, DEB, RPM) and Language
packages (gems, pip, npm, jars).
17/40
Tool: Grype (Vulnerability Scanning)
Notes
» A vulnerability scanner for container images and filesystems.
> Works best when paired with Syft (scan the SBOM, not just
the image).
Example Usage
Scan an SBOM generated by Syft
$ grype sbom:sbom.json
Scan an image directly
$ grype docker:nginx:latest
» Outputs CVEs, severity, and fix versions.
18/40
Tool: Trivy (Comprehensive Scanner)
Notes
» An all-in-one security scanner (Filesystem, Git, Container,
K8s).
» Very popular in CI/CD pipelines due to ease of use.
Example Usage
Scan a container image
$ trivy image python:3.4-alpine
Scan a filesystem for vulnerabilities & misconfigs
$ trivy fs --scanners vuln,misconfig .
Scan a git repository
$ trivy repo https://github.com/knqyf263/trivy-ci-test
19/40
Automated Dependency Management (GitHub Not
otes

Dependabot)

» What is it? An automated bot that scans your dependency

files for outdated or insecure requirements.
> How it works (Behind the Scenes):
1. Detection: Parses manifest files (e.g., package. json,

go.mod) and checks against the GitHub Advisory Database.
2. Resolution: Determines the "secure” version that is

compatible with your version constraints.
3. Action: Creates a new branch, updates the manifest/lock file,
and opens a Pull Request (PR).

4. C1/CD: Triggers your Cl pipeline to ensure the update doesn't
break tests.

» Impact: Significantly reduces the " Time to Remediate” for
known CVEs.

20/40

The Problem of Noise: VEX

Notes
» Scanners (like Grype) find potential vulnerabilities based on
version matching.
» Reality: Is the vulnerable function actually called? Is it
reachable?
» VEX (Vulnerability Exploitability eXchange):
» A machine-readable statement claiming whether a product is
affected by a vulnerability.
> Statuses: Not Affected, Affected, Fixed, Under Investigation.
» Allows vendors to suppress false positives in scanners.
21/40
Example: CycloneDX SBOM (JSON)
Notes
sbom.json (Snippet)
{
"bomFormat": "CycloneDX",
"specVersio "1.4",
"components": [
"type": "library",
"name requests",
"vers "2.26.1",
"purl": g:pypi/requests@2.25.1",
"licenses": [{ "license": { "id": "Apache-2.0" } }]
¥
]
}
22/40
Example: VEX Statement
Notes
vex.json (Snippet)
{
"statements”: [
<
"vulnerability": "CVE-2021-44228",
"status": "not_affected",
"justification": "code_not_reachable",
"impact": "Log4j is used only for testing, not in prod.",
"products": ["pkg:docker/myapp@v1.0.0"]
X
]
¥
23 /40
The Signing Problem
Notes

Historically, signing software (PGP) is hard.

Developers lose keys or commit them to git.

>
> Key management is painful (rotation, storage, revocation).
>
>

Result: Nobody signs artifacts, or nobody verifies signatures.

25/40

Sigstore & Cosign

> Sigstore: A project to make signing easy and transparent.
» Cosign: CLI tool to sign containers and blobs.

Keyless Signing (The Magic)
Instead of managing long-lived keys:
1. Authenticate via OIDC (Google, GitHub, Microsoft).
2. Generate ephemeral keys.
3. Sign artifact with ephemeral key.
4

. Record the signature and OIDC identity in a public
Transparency Log (Rekor).

5. Discard the key.
26 /40

Keyless Signing Flow

Rekor (Log)

Verification checks the transparency log to prove that the cert was
valid at the time of signing.

27/40

Using Cosign

Signing a Container

$ cosign sign --key cosign.key user/demo
Or Keyless (opens browser for 0IDC)
$ cosign sign user/demo

Verifying a Container

$ cosign verify --key cosign.pub user/demo

Or Keyless

$ cosign verify \
—-certificate-identity=alice@example.com \
—-—certificate-oidc-issuer=https://accounts.google.com \
user/demo

28/40

Reproducible Builds

» Definition: Given the same source code, build environment,
and instructions, any party can recreate bit-for-bit identical
copies of all specified artifacts.

» Why?

> Prevents the "compromised build server” attack (SolarWinds).
» If | build it and you build it, and hashes match, we trust the
compiler didn't inject malware.

» Challenges: Timestamps, non-deterministic compiler outputs,
file ordering.

30/40

Notes

Notes

Notes

Notes

Hermetic Builds

>
>

Builds that are isolated from the network and the host system.

Rule: All dependencies must be declared explicitly. No

fetching from the internet during ‘make’.

» Tools: Bazel, Nix.

>

Ensures that the build is predictable and dependencies are
pinned/hashed.

31/40

Attestations

vvyVvyy

An authenticated statement about a software artifact.
"I built this artifact from this git commit on this runner.”
stored in the container registry alongside the image.

in-toto: A framework to secure the integrity of the software
supply chain. Defines the layout of the pipeline and verifies
that steps were carried out as intended.

32/40

Demo Scenarios

We will explore the following scenarios:

1.

2.

3.

Vulnerability Scanning:
» Build a Docker image with known vulnerabilities (old Python).
> Generate an SBOM using syft.
» Scan the SBOM using grype and trivy.
Signing & Verification:
> Generate a key pair with cosign.
> Sign a local file/image.
> Verify the signature to ensure integrity.
Supply Chain Attack Simulation:
> Simulate a " Typosquatting” attack in Python.
» Show how easy it is to install the wrong package.

34/40

Best Practices for Supply Chain Security

. Know your dependencies: Generate SBOMs regularly.

. Scan for vulnerabilities: Automate tools like Grype or Trivy

in Cl.

. Pin dependencies: Use lock files (package-lock. json,

go.sum). Avoid generic versions like latest or "1.2.3 in
critical infra.

. Sign your artifacts: Use Cosign/Sigstore.
. Secure the pipeline: SLSA Level 2+ (Hosted runners,

ephemeral environments).

. Monitor for new threats: VEX and continuous scanning.

36/40

Notes

Notes

Notes

Notes

Future Trends

Notes
» Mandatory SBOMs: Government regulations (US EO
14028, EU Cyber Resilience Act).
» Chainguard / Distroless: Minimal images with zero known
vulnerabilities.
» Graph-based Analysis: Understanding "reachability” of
vulnerabilities to reduce alert fatigue.
» Policy as Code: Preventing unsigned or vulnerable images
from running in Kubernetes (Kyverno, OPA Gatekeeper).
37/40
Summary
Notes
» Supply Chain Security is about trust in the entire lifecycle, not
just your code.
» Attacks are shifting from run-time to build-time.
» Tools like Syft, Grype, and Cosign form the modern defense
stack.
» Frameworks like SLSA provide the roadmap for maturity.
38/40
Keywords
Notes
» TODO » TODO
39/40
Resources
Notes
» TODO

» TODO

40/40

	Introduction
	Threat Landscape & Attacks
	Frameworks & Standards
	SBOM: Software Bill of Materials
	Integrity & Signing (Cosign)
	Build Security
	Practical Scenarios
	Mitigation & Conclusion

