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Motivation
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Defensive programming

• Treat all data as malicious

• Use design-by-contract programming by enforcing 

• Preconditions

• Postconditions

• Invariants

• Fail often and loud

• Trigger exceptions instead of returning error values

• Use asserts

• Avoid language undefined behaviors

• (In C/C++) buffer overruns

• Integer overflows
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Motivation redux

• Software complexity and size grow over time

• As shallow bugs are found, deeper bugs remain harder to find

Manual testing is rapidly becoming unfeasible!
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Motivation redux (II)
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Success stories

Highlights (AFL only)

• Firefox (4)

• Internet Explorer (4)

• Adobe Flash (7)

• OpenSSL (7)

• Tcpdump (9)

• OpenSSH (5)

• Clang/LLVM (8)



8

Fuzzing

1. Start with a computer program and (optionally) a test corpus

2. Feed the inputs in the test corpus to the program

3. (Optionally) monitor program behavior

4. Generate new tests taking into account the results @ step 3

5. Repeat steps 2-4 until an interesting behavior is found

“Fuzzing or fuzz testing is an automated software testing technique 
that involves providing invalid, unexpected, or random data as inputs 
to a computer program.” – Wikipedia
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Fuzzer taxonomy

• Depending on the fuzzed target

• Source code fuzzers vs. binary fuzzers

• Depending on the awareness of the input structure

• Dumb fuzzers vs. smart fuzzers

• Depending on the awareness of the program structure

• Black-box fuzzers vs. Gray-box fuzzers vs. White-box fuzzers

• Depending on way new tests are generated

• Generation-based fuzzers vs. Mutation-based fuzzers
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Main fuzzer architecture
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Source code fuzzers vs. binary fuzzers

Source code available

• Necessary instrumentation can be inserted at compile time

• The fuzzing target is a function call

• The input consists of one or more function parameters

Binary only available

• Instructions translated using dynamic binary instrumentation

• The fuzzing target is a function inside a static/dynamic library

• The input consists of one or more function parameters

• The fuzzing target is a separate executable

• The input can be a file (including stdin), the command line, etc.
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Dumb fuzzers vs. smart fuzzers

• Dumb fuzzers treat inputs as a simple buffer array

• Smart fuzzers know the input structure

• Can be hinted manually 

• Can be extracted by a compiler pass in case of a source code fuzzer

• Knowing input structure can lead to faster bug discovery

• By avoiding invalid values (floating point)

• By testing invalid pointers only once

• By testing limit cases (0x00000000 and 0xFFFFFFFF for DWORDs)
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Black- vs. Gray- vs. White-box fuzzers

• White-box fuzzers are aware of program structure and 
systematically increase program coverage

• Gray-box fuzzers use instrumentation in order to increase program 
coverage

• Black-box fuzzers use random searches for increasing program 
coverage

Program coverage is a measure used to describe the degree to 
which the program is tested. Program coverage is typically measured 
in basic blocks or state transitions.
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Generation-based vs. Mutation-based

• Generation-based fuzzers limit themselves 
to creating new tests

• (Optionally) use a dictionary

• Mutation-based fuzzers create new tests 
based on previous iterations

• Bit flips

• Addition of small integers

• Insertion of interesting integers (0, 1, 
INT_MAX)

• Mixed approaches

• Genetic algorithms

• Deep neural networks
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Detecting abnormal behaviors

• Maximizing program coverage is only half the problem

• Additionally we need components that detect unwanted features

• Buffer overruns

• Uninitialized variables

• Functions ending without returning a value

• Division by zero

• many-many more…

• When source code is available these components can be 
implemented as compiler passes
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Coverage sanitizer (COVSAN)

• Compiler pass for GCC and Clang

• Compile with -fsanitize-coverage=trace-pc-guard or -fsanitize-
coverage=inline-8bit-counters

• Inserts calls for logging the instruction pointer at function-, basic-
block- or edge- levels, with optional 8-bit counters

• https://clang.llvm.org/docs/SanitizerCoverage.html

https://clang.llvm.org/docs/SanitizerCoverage.html
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Address sanitizer (ASAN)

• Compiler pass for GCC and Clang (-fsanitize=address)

• Able to detect memory corruption bugs such as

• Use after free

• Buffer overflows (stack, heap and global)

• Use after return

• https://clang.llvm.org/docs/AddressSanitizer.html

https://clang.llvm.org/docs/AddressSanitizer.html
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Address sanitizer (ASAN) (II)

• Uses shadow memory to store a map of “poisoned” memory

• Shadow = (Mem >> 3) + 0x20000000; (32-bit)

• Every memory access is rewritten in order to check whether the 
memory is poisoned

• Touching poisoned memory generates an error report

• Global and local variables are wrapped in areas of poisoned memory

• Allocated memory is prepended and appended with poisoned 
regions

• Freed memory is marked as poisoned
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Undefined behavior sanitizer (UBSAN)

• Compiler pass for GCC and Clang

• A lot of available options (signed integer overflow, division by zero, 
static array out of bounds indexing, shifting with values larger than 
the bit-width)

• Implemented as additional checks before the instruction is actually 
performed

• A failed check triggers an error report

• https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
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Memory Sanitizer (MSAN)

• Compiler pass for GCC and Clang

• Tracks uninitialized memory usage of both stack and heap variables

• Newly allocated memory is marked as uninitialized

• Writes to uninitialized memory turn it to initialized memory

• Reads of uninitialized memory triggers an error report

• Moving uninitialized memory is allowed (with optional origin 
tracking)

• https://clang.llvm.org/docs/MemorySanitizer.html

https://clang.llvm.org/docs/MemorySanitizer.html
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Libfuzzer

Source code, dumb, gray-box and evolutionary.

$ git clone https://git.llvm.org/git/compiler-rt.git/
$ cd lib/fuzzer
$ ./build.sh 
## builds libFuzzer.a
## compile your library and test function in the `fuzzer` executable
$ clang++ -fsanitize=address -fsanitize-coverage=trace-pc-guard test_function.cc 
library.c libFuzzer.a -o fuzzer
## test_function.cc contains the implementation of function:
## extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
## this function should cover the functionality of your library
## run the fuzzer using the parameters available in the documentation:
## https://llvm.org/docs/LibFuzzer.html#options
$ ./fuzzer

https://git.llvm.org/git/compiler-rt.git/
https://llvm.org/docs/LibFuzzer.html#options


22

AFL
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Symbolic execution

• An automated way of testing software
Works both on source code as well as compiled binaries

• Able to generate test cases for debugging purposes
Very useful  for human inspection

• Similar to fuzz-testing but with a lot more brain-power
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Fuzz testing vs. Symbolic execution

• Generate random inputs
• Either in some structured format or 

completely random

• Mutate a previous input

• Native run of the exercised 
program

• Collect information
• Crashes

• Memory & resource leaks

• Failed assertions

• Abnormal runtimes

• Repeat until confident 
enough

• Fixed number of tests reached

• Code coverage above a certain threshold

• Bug reached

• Treat inputs as symbolic
• Having no concrete value

• Run the program in a 
specialized virtual machine

• When execution branches, 
duplicate VM state and 
take both branches
• Accumulate conditions along the 

execution paths

• Use a theorem prover to 
determine whether the 
conditions are consistent
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Satisfiability modulo theories (SMT) solvers

• SMT solvers can be viewed as solvers of large equation systems

• Most popular Z3, CVC4, CVC3

• Not limited to Boolean equations like SAT solvers

#!/usr/bin/python 
from z3 import * 
x = Real('x') 
y = Real('y') 
z = Real('z') 
s = Solver() 
s.add(3*x + 2*y - z == 1) 
s.add(2*x - 2*y + 4*z == -2) 
s.add(-x + 0.5*y - z == 0) 
print s.check() 
print s.model()

3𝑥 + 2𝑦 − 𝑧 = 1
2𝑥 − 2𝑦 + 4𝑧 = −2

−𝑥 +
1

2
𝑦 − 𝑧 = 0

sat
[z = -2, y = -2, x = 1] 
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example
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Symbolic execution example

• Four execution paths have been analyzed

• Each path has a distinct set of conditions

• Conditions are fed into a satisfiability modulo theorem (SMT) solver

• The SMT solver determines whether the conditions are consistent

• Optionally the solver can generate a test case that satisfies the input 
conditions
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Symbolic execution drawbacks

• Path execution is an issue

• Usually number of execution cores << path count. Some kind of scheduling 
is necessary.

• Even if hardware is not an issue, duplicating a path may be a costly 
operation.

• If left unaddressed, path explosion can be an issue

• Mitigation strategies include:

• Selective symbolic execution – carefully select execution paths to be 
evaluated

• Path collapsing – find common traits between paths and treat them as a 
single entity

• There is no hardware support for symbolic values

• Exercised code is run in a heavily simulated environment
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Enter “Concolic execution”

• Used to better take advantage of the underlying hardware

• The term concolic is a contraction of “concrete symbolic”

• I know, right?

• Instead of being 100% symbolic, the inputs have a concrete value

• The concrete value is a representative of the symbolic domain

• Use some form of taint analysis to track symbolic values

• Execution is sped up

• Exercised code is run natively using concrete values

• Taint analysis structures are usually pretty fast
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Concolic execution example

• Execution starts with a random 
value as input

X = 
5
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Concolic execution example

• Execution starts with a random 
value as input

• Conditions are accumulated at 
runtime

• !(X < 0)

X = 
5
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Concolic execution example

• Execution starts with a random 
value as input

• Conditions are accumulated at 
runtime

• !(X < 0)

• !(X * X > 100)

X = 
5
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Concolic execution example

• Execution starts with a random 
value as input

• Conditions are accumulated at 
runtime

• !(X < 0)

• !(X * X > 100)

• The execution has stopped, we 
have a test case!

X = 
5
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Concolic execution example

• In order to discover more test 
cases without repetitions an 
existing condition is selected

• In our particular case !(X * X > 100)

• Inverting the condition and 
using the SMT solver will give us 
a new test case

X = 
5
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Concolic execution example

• If solvable, the SMT solver picks 
a test case

• The execution is restarted, 
having a new input value

X = 12
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Concolic execution example

• If solvable, the SMT solver picks 
a test case

• The execution is restarted, 
having a new input value

• Conditions are accumulated at 
runtime

• !(X < 0)

X = 12



43

Concolic execution example

• If solvable, the SMT solver picks 
a test case

• The execution is restarted, 
having a new input value

• Conditions are accumulated at 
runtime

• !(X < 0)

• X * X > 100

X = 12



44

Concolic execution example

• If solvable, the SMT solver picks 
a test case

• The execution is restarted, 
having a new input value

• Conditions are accumulated at 
runtime

• !(X < 0)

• X * X > 100

• Execution terminates

X = 12
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Concolic execution example

• Another condition is selected for 
reversing

X = 12
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Concolic execution example

• Execution is restarted having a 
new input value

X = -12
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Concolic execution example

• Execution is restarted having a 
new input value

• Once more conditions are 
accumulated along the way

• X < 0

X = -12
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Concolic execution example

You get the idea!

X = -
12
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Concolic execution example

• We have reached the same result as pure symbolic execution!

• There is no need to simulate symbolic variables

• The whole symbolic execution VM is replaced with

• A symbolic context for accumulating conditions

• Some method of keeping the symbolic context in sync with the native 
execution



50

Existing technologies

• Klee, https://klee.github.io/

• Symbolic virtual machine capable of running LLVM code

• S2E, http://s2e.epfl.ch/

• Based on KLEE

• Uses a x86-to-LLVM translator in order to run x86 code

• Capable of running a full OS (using a modified QEMU)

• Triton, http://triton.quarkslab.com/

• In development framework from University of Bordeaux

• Lots of tools such as a taint engine, a symbolic execution engine, a snapshot 
engine

• Interacts with a lot of SMT solvers (common interface named SMT-LIB2)

• Angr, https://github.com/angr/angr

• Binary analysis framework from UC Santa Barbara

• Python framework providing symbolic execution, control-flow analysis, data-
dependency analysis and value-set analysis

https://klee.github.io/
http://s2e.epfl.ch/
http://triton.quarkslab.com/
https://github.com/angr/angr
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Hybrid approaches

Driller = AFL + angr

• Determine when AFL is stuck

• Use Driller to feed new inputs to AFL

• Inputs are generated by resolving AFL’s unsatisfied conditions

• https://github.com/shellphish/driller

https://github.com/shellphish/driller
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Libfuzzer & tracing CMP instructions

• Compiler flag for extracting operands of CMP 
instructions (-fsanitize-coverage=trace-cmp)

• The fuzzer will guide mutations based on the CMP 
arguments

• Additional compiler flag (-use-value-profile=1) will 

use CMP operands as part of the coverage
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Fuzzing Kernel Drivers with Interface 
Awareness

• Fuzzing specialized for ioctl’s

int ioctl(int fd, unsigned long command, unsigned long param);

• Use static analisys to determine command and parameter type

• https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-
Difuzzing-Android-Kernel-Drivers.pdf

https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-Difuzzing-Android-Kernel-Drivers.pdf
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DIFUZZER
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DIFUZZER (II)
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Thank you for your time!


