
Automated program analysis

Program fuzzing and symbolic execution

Alexandra Săndulescu
Teodor Stoenescu

2

Outline

• Motivation

• Fuzzing

• Symbolic execution

• Hybrid approaches

3

Motivation

DESIGN IMPLEMENTATION TESTING PRODUCTIONREQUIREMENTS

Verification
 Completeness

 Correctness

 Testability

Verification
 Feasibility

 Maintenance

Coding standards
and compliance
verification

Consistency
 Internal

 External

Verification
 Completeness

 Correctness

 Testability

Code metrics
analysis

Compliance with
requirements

White-box testing

Black-box testing

User experience
testing

Monitoring

Crash reporting

INCREASING COST OF MITIGATING AN ERROR

4

Defensive programming

• Treat all data as malicious

• Use design-by-contract programming by enforcing

• Preconditions

• Postconditions

• Invariants

• Fail often and loud

• Trigger exceptions instead of returning error values

• Use asserts

• Avoid language undefined behaviors

• (In C/C++) buffer overruns

• Integer overflows

5

Motivation redux

• Software complexity and size grow over time

• As shallow bugs are found, deeper bugs remain harder to find

Manual testing is rapidly becoming unfeasible!

6

Motivation redux (II)

7

Success stories

Highlights (AFL only)

• Firefox (4)

• Internet Explorer (4)

• Adobe Flash (7)

• OpenSSL (7)

• Tcpdump (9)

• OpenSSH (5)

• Clang/LLVM (8)

8

Fuzzing

1. Start with a computer program and (optionally) a test corpus

2. Feed the inputs in the test corpus to the program

3. (Optionally) monitor program behavior

4. Generate new tests taking into account the results @ step 3

5. Repeat steps 2-4 until an interesting behavior is found

“Fuzzing or fuzz testing is an automated software testing technique
that involves providing invalid, unexpected, or random data as inputs
to a computer program.” – Wikipedia

9

Fuzzer taxonomy

• Depending on the fuzzed target

• Source code fuzzers vs. binary fuzzers

• Depending on the awareness of the input structure

• Dumb fuzzers vs. smart fuzzers

• Depending on the awareness of the program structure

• Black-box fuzzers vs. Gray-box fuzzers vs. White-box fuzzers

• Depending on way new tests are generated

• Generation-based fuzzers vs. Mutation-based fuzzers

10

Main fuzzer architecture

OPTIONAL

GRAY- & WHITE-BOX
FUZZERS ONLY

INITIAL CORPUS QUEUE EXECUTOR EVALUATOR

TEST
GENERATOR

11

Source code fuzzers vs. binary fuzzers

Source code available

• Necessary instrumentation can be inserted at compile time

• The fuzzing target is a function call

• The input consists of one or more function parameters

Binary only available

• Instructions translated using dynamic binary instrumentation

• The fuzzing target is a function inside a static/dynamic library

• The input consists of one or more function parameters

• The fuzzing target is a separate executable

• The input can be a file (including stdin), the command line, etc.

12

Dumb fuzzers vs. smart fuzzers

• Dumb fuzzers treat inputs as a simple buffer array

• Smart fuzzers know the input structure

• Can be hinted manually

• Can be extracted by a compiler pass in case of a source code fuzzer

• Knowing input structure can lead to faster bug discovery

• By avoiding invalid values (floating point)

• By testing invalid pointers only once

• By testing limit cases (0x00000000 and 0xFFFFFFFF for DWORDs)

13

Black- vs. Gray- vs. White-box fuzzers

• White-box fuzzers are aware of program structure and
systematically increase program coverage

• Gray-box fuzzers use instrumentation in order to increase program
coverage

• Black-box fuzzers use random searches for increasing program
coverage

Program coverage is a measure used to describe the degree to
which the program is tested. Program coverage is typically measured
in basic blocks or state transitions.

14

Generation-based vs. Mutation-based

• Generation-based fuzzers limit themselves
to creating new tests

• (Optionally) use a dictionary

• Mutation-based fuzzers create new tests
based on previous iterations

• Bit flips

• Addition of small integers

• Insertion of interesting integers (0, 1,
INT_MAX)

• Mixed approaches

• Genetic algorithms

• Deep neural networks

15

Detecting abnormal behaviors

• Maximizing program coverage is only half the problem

• Additionally we need components that detect unwanted features

• Buffer overruns

• Uninitialized variables

• Functions ending without returning a value

• Division by zero

• many-many more…

• When source code is available these components can be
implemented as compiler passes

16

Coverage sanitizer (COVSAN)

• Compiler pass for GCC and Clang

• Compile with -fsanitize-coverage=trace-pc-guard or -fsanitize-
coverage=inline-8bit-counters

• Inserts calls for logging the instruction pointer at function-, basic-
block- or edge- levels, with optional 8-bit counters

• https://clang.llvm.org/docs/SanitizerCoverage.html

https://clang.llvm.org/docs/SanitizerCoverage.html

17

Address sanitizer (ASAN)

• Compiler pass for GCC and Clang (-fsanitize=address)

• Able to detect memory corruption bugs such as

• Use after free

• Buffer overflows (stack, heap and global)

• Use after return

• https://clang.llvm.org/docs/AddressSanitizer.html

https://clang.llvm.org/docs/AddressSanitizer.html

18

Address sanitizer (ASAN) (II)

• Uses shadow memory to store a map of “poisoned” memory

• Shadow = (Mem >> 3) + 0x20000000; (32-bit)

• Every memory access is rewritten in order to check whether the
memory is poisoned

• Touching poisoned memory generates an error report

• Global and local variables are wrapped in areas of poisoned memory

• Allocated memory is prepended and appended with poisoned
regions

• Freed memory is marked as poisoned

19

Undefined behavior sanitizer (UBSAN)

• Compiler pass for GCC and Clang

• A lot of available options (signed integer overflow, division by zero,
static array out of bounds indexing, shifting with values larger than
the bit-width)

• Implemented as additional checks before the instruction is actually
performed

• A failed check triggers an error report

• https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

20

Memory Sanitizer (MSAN)

• Compiler pass for GCC and Clang

• Tracks uninitialized memory usage of both stack and heap variables

• Newly allocated memory is marked as uninitialized

• Writes to uninitialized memory turn it to initialized memory

• Reads of uninitialized memory triggers an error report

• Moving uninitialized memory is allowed (with optional origin
tracking)

• https://clang.llvm.org/docs/MemorySanitizer.html

https://clang.llvm.org/docs/MemorySanitizer.html

21

Libfuzzer

Source code, dumb, gray-box and evolutionary.

$ git clone https://git.llvm.org/git/compiler-rt.git/
$ cd lib/fuzzer
$./build.sh
builds libFuzzer.a
compile your library and test function in the `fuzzer` executable
$ clang++ -fsanitize=address -fsanitize-coverage=trace-pc-guard test_function.cc
library.c libFuzzer.a -o fuzzer
test_function.cc contains the implementation of function:
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size);
this function should cover the functionality of your library
run the fuzzer using the parameters available in the documentation:
https://llvm.org/docs/LibFuzzer.html#options
$./fuzzer

https://git.llvm.org/git/compiler-rt.git/
https://llvm.org/docs/LibFuzzer.html#options

22

AFL

23

Symbolic execution

• An automated way of testing software
Works both on source code as well as compiled binaries

• Able to generate test cases for debugging purposes
Very useful for human inspection

• Similar to fuzz-testing but with a lot more brain-power

24

Fuzz testing vs. Symbolic execution

• Generate random inputs
• Either in some structured format or

completely random

• Mutate a previous input

• Native run of the exercised
program

• Collect information
• Crashes

• Memory & resource leaks

• Failed assertions

• Abnormal runtimes

• Repeat until confident
enough

• Fixed number of tests reached

• Code coverage above a certain threshold

• Bug reached

• Treat inputs as symbolic
• Having no concrete value

• Run the program in a
specialized virtual machine

• When execution branches,
duplicate VM state and
take both branches
• Accumulate conditions along the

execution paths

• Use a theorem prover to
determine whether the
conditions are consistent

25

Satisfiability modulo theories (SMT) solvers

• SMT solvers can be viewed as solvers of large equation systems

• Most popular Z3, CVC4, CVC3

• Not limited to Boolean equations like SAT solvers

#!/usr/bin/python
from z3 import *
x = Real('x')
y = Real('y')
z = Real('z')
s = Solver()
s.add(3*x + 2*y - z == 1)
s.add(2*x - 2*y + 4*z == -2)
s.add(-x + 0.5*y - z == 0)
print s.check()
print s.model()

3𝑥 + 2𝑦 − 𝑧 = 1
2𝑥 − 2𝑦 + 4𝑧 = −2

−𝑥 +
1

2
𝑦 − 𝑧 = 0

sat
[z = -2, y = -2, x = 1]

26

Symbolic execution example

27

Symbolic execution example

28

Symbolic execution example

29

Symbolic execution example

30

Symbolic execution example

31

Symbolic execution example

32

Symbolic execution example

33

Symbolic execution example

• Four execution paths have been analyzed

• Each path has a distinct set of conditions

• Conditions are fed into a satisfiability modulo theorem (SMT) solver

• The SMT solver determines whether the conditions are consistent

• Optionally the solver can generate a test case that satisfies the input
conditions

34

Symbolic execution drawbacks

• Path execution is an issue

• Usually number of execution cores << path count. Some kind of scheduling
is necessary.

• Even if hardware is not an issue, duplicating a path may be a costly
operation.

• If left unaddressed, path explosion can be an issue

• Mitigation strategies include:

• Selective symbolic execution – carefully select execution paths to be
evaluated

• Path collapsing – find common traits between paths and treat them as a
single entity

• There is no hardware support for symbolic values

• Exercised code is run in a heavily simulated environment

35

Enter “Concolic execution”

• Used to better take advantage of the underlying hardware

• The term concolic is a contraction of “concrete symbolic”

• I know, right?

• Instead of being 100% symbolic, the inputs have a concrete value

• The concrete value is a representative of the symbolic domain

• Use some form of taint analysis to track symbolic values

• Execution is sped up

• Exercised code is run natively using concrete values

• Taint analysis structures are usually pretty fast

36

Concolic execution example

• Execution starts with a random
value as input

X =
5

37

Concolic execution example

• Execution starts with a random
value as input

• Conditions are accumulated at
runtime

• !(X < 0)

X =
5

38

Concolic execution example

• Execution starts with a random
value as input

• Conditions are accumulated at
runtime

• !(X < 0)

• !(X * X > 100)

X =
5

39

Concolic execution example

• Execution starts with a random
value as input

• Conditions are accumulated at
runtime

• !(X < 0)

• !(X * X > 100)

• The execution has stopped, we
have a test case!

X =
5

40

Concolic execution example

• In order to discover more test
cases without repetitions an
existing condition is selected

• In our particular case !(X * X > 100)

• Inverting the condition and
using the SMT solver will give us
a new test case

X =
5

41

Concolic execution example

• If solvable, the SMT solver picks
a test case

• The execution is restarted,
having a new input value

X = 12

42

Concolic execution example

• If solvable, the SMT solver picks
a test case

• The execution is restarted,
having a new input value

• Conditions are accumulated at
runtime

• !(X < 0)

X = 12

43

Concolic execution example

• If solvable, the SMT solver picks
a test case

• The execution is restarted,
having a new input value

• Conditions are accumulated at
runtime

• !(X < 0)

• X * X > 100

X = 12

44

Concolic execution example

• If solvable, the SMT solver picks
a test case

• The execution is restarted,
having a new input value

• Conditions are accumulated at
runtime

• !(X < 0)

• X * X > 100

• Execution terminates

X = 12

45

Concolic execution example

• Another condition is selected for
reversing

X = 12

46

Concolic execution example

• Execution is restarted having a
new input value

X = -12

47

Concolic execution example

• Execution is restarted having a
new input value

• Once more conditions are
accumulated along the way

• X < 0

X = -12

48

Concolic execution example

You get the idea!

X = -
12

49

Concolic execution example

• We have reached the same result as pure symbolic execution!

• There is no need to simulate symbolic variables

• The whole symbolic execution VM is replaced with

• A symbolic context for accumulating conditions

• Some method of keeping the symbolic context in sync with the native
execution

50

Existing technologies

• Klee, https://klee.github.io/

• Symbolic virtual machine capable of running LLVM code

• S2E, http://s2e.epfl.ch/

• Based on KLEE

• Uses a x86-to-LLVM translator in order to run x86 code

• Capable of running a full OS (using a modified QEMU)

• Triton, http://triton.quarkslab.com/

• In development framework from University of Bordeaux

• Lots of tools such as a taint engine, a symbolic execution engine, a snapshot
engine

• Interacts with a lot of SMT solvers (common interface named SMT-LIB2)

• Angr, https://github.com/angr/angr

• Binary analysis framework from UC Santa Barbara

• Python framework providing symbolic execution, control-flow analysis, data-
dependency analysis and value-set analysis

https://klee.github.io/
http://s2e.epfl.ch/
http://triton.quarkslab.com/
https://github.com/angr/angr

51

Hybrid approaches

Driller = AFL + angr

• Determine when AFL is stuck

• Use Driller to feed new inputs to AFL

• Inputs are generated by resolving AFL’s unsatisfied conditions

• https://github.com/shellphish/driller

https://github.com/shellphish/driller

52

Libfuzzer & tracing CMP instructions

• Compiler flag for extracting operands of CMP
instructions (-fsanitize-coverage=trace-cmp)

• The fuzzer will guide mutations based on the CMP
arguments

• Additional compiler flag (-use-value-profile=1) will

use CMP operands as part of the coverage

53

Fuzzing Kernel Drivers with Interface
Awareness

• Fuzzing specialized for ioctl’s

int ioctl(int fd, unsigned long command, unsigned long param);

• Use static analisys to determine command and parameter type

• https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-
Difuzzing-Android-Kernel-Drivers.pdf

https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-Difuzzing-Android-Kernel-Drivers.pdf

54

DIFUZZER

55

DIFUZZER (II)

56

Thank you for your time!

