Session 10

Fuzzing

Security of Information Systems (SIS)

Computer Science and Engineering Department

December 4, 2024

1/38

Papers

» kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

» Dissecting American Fuzzy Lop: A FuzzBench Evaluation

2/38

https://nyx-fuzz.com/papers/
https://www.ndss-symposium.org/wp-content/uploads/fuzzing2022_23004_paper.pdf

Software Testing

» validating implementation
» “oracles”: specification, contracts

» find bugs, vulnerabilities

4/38

Types of Testing

Typesof
Software Testing

Automation
Testing

Manual
Testing

Grey Box

Black Box

Functional Non-Functional
Testing Testing
L
I 1
P Integration System Performance Usability Compatibility
Unit Testing Testing Testing Testing Testing Testing

Load
Testing

Incremental Non- Incremental
Testing Testing

Stress
Testing
Top -d —
KR Scalability
esting

Bottom- up

Stability
Testing

5/38

Blackbox / Interface Testing

» do not care / know the internals
> validate input according to specification
» send input, validate output

» similar approach used by fuzzing

6/38

Property-based Testing

» define property for functions
P generate inputs

» use inputs and "shrink” to find issues

7/38

Property-based Testing vs. Fuzzing

Fuzzy testing -

Unit testing

Integration testing

>
>

Input scope coverage

Static
analyses

Feature coverage

8/38

Fuzzing (as testing)

VvYvYyVvyy

send quasi-random inputs

collect results and failures

do automatically

have feedback loop based on results / behavior

https://github.com/google/fuzzing/blob/master/
docs/glossary.md

9/38

https://github.com/google/fuzzing/blob/master/docs/glossary.md
https://github.com/google/fuzzing/blob/master/docs/glossary.md

Pre and Post Fuzzing

> prepare initial set of inputs (if any)
» do "harnesses” (see later)
> analyze output (crashes)

> fix program

10/38

Fuzzer Architecture

Fuzzer

12/38

Dumb vs Smart Fuzzing

> dumb:
» smart:
> dump:

» smart:

pure random data
know data format
simpler, but random

more complex

13/38

Blackbox vs Whitebox Fuzzing

14/38

Fuzzer Harness

P a testing harness
P an entry in the program executable

» update the code to provide input

15/38

Mutation vs Generational Fuzzing

Mutation vs Generation

Mutation- Super easy to Little to no Limited by May fail for
based setup and protocol initial corpus protocols with
automate knowledge checksums, or
required other
+ + == complexity ==
Generation- Writing have to have Completeness Can deal with
based generator is spec of complex
labor intesive protocol checksums
for complext (frequently and
protocols not a problem dependencies
for common

ones http,
= snmp, etc..]™ E‘F ‘+

Coming up: What is Fuzzing?

16 /38

Payload Fuzzing vs API| Fuzzing

v

payload: create input, send input to program, capture output

program has input functions: standard input (generally), files,
socket

API fuzzing: library, input is sent via calls (structures)
do API call, receive output

analyze crashes

17/38

Coverage-based Fuzzing

Coverage-Guided Fuzzing
AFL, libFuzzer, honggfuzz

Initial = pick |

<asbe/a> | | <wpsa>

—

'I = :
Y mutate execute [xmllint
<ap>b

rags_match(input)

save

New Branch Covered?

18/38

Coverage-based Fuzzing Process

Mutation [II ‘ Monitor
] Program
Under Test

G

v

Discarded

19/38

GCOV, KCOV

» GNU Coverage tool: instruments source code, at build-time
> KCOV: coverage for the Linux kernel, exposed via debugfs
P both enabled at build time

» also bcov, lcov

20/38

Runtime Instrumentation Coverage

vVvYvyy

can also work on binary code
intrument programs at runtime
slower than build time instrumentation

no need to rebuild

21/38

Using Sanitizers

» for fuzzing builds

» force crashes to appear

» without sanitizers, some crashes may not appear
> ASan, KASAN

22/38

Fork Server

P start new instances per input
» quick start of new instances

P working as a "harness” to quickly get an application to serve
a new input

» can parallelize runs

23/38

API Fuzzing

v

instead of a payload, construct arguments (structures)
it's similar to a set of payloads

make call to function with arguments, instead of sending
payload

receive function return value, instead of looking at output

still aim to capture crashes

25/38

OS Fuzzing

» fuzz the OS syscall interface
» run inside the virtual machine

» have some sort of manager interface to capture crashes and
restart virtual machines

» how to capture coverage?

26/38

Syzkaller

I dir/crashes/crashN-T
dir/corpus/*
hle/,/ Syz-manager \'\.
/ \
/ ‘a VM management
RPC
scp, ssh

sshd invoke

syz-fuzzer

VM

inputs

coverage info
/sys/kernel/debug/kcov

syz—executor

syscalls|

Kernel

27/38

KAFL / Nyx

» KVM-based
» use Intel PT (processor trace for coverage)

» no build-level coverage part required

28/38

kKAFL

KVM-PT
F'
(@ | |
@ I©
KAFL V V@

29/38

. KVM-PT Hypervisor Agent OS
| Nyx Fuzzer | | QEMU-PT | (Host VMM) | (Level 1 Guest) I | (Level 2 Guest)

I Allocate
p < L2 Hypercall: Prepare Buffer Payload Buffer
@ Payload Buffer Exit: Prepare Payload Buffer [oa] Translate L2 PF to L1 PF
Remap NYX SHM

Setup 1o ol X Sttt [=) Gontinue Execution in L2

S e P L2 Hypercall Stert Fuzzing |
Snapshot It VW€t (D] pertorm W Bxt2 101y]
Setup Exit: Groate Snapshot Trap on next VM-Entry to L2
Greate Snapshot
S PP T | [-0
|
Generate
Input E% JoctkvM RUN VePY_ Continue Execution In L2
VM-Exit Reques I’ 10) ™
(@ Fuzzing b Enable PTEE] porform VM-Exit L2 to L1
Loop by Handle PIO Request 5:;7(:;
Perform VM-Entry L1 to L2
L2 Hypercall: Fuzzing Done
e PT D
L and Restore Snapshot L1

30/38

k/FX

> https:
//github.com/intel/kernel-fuzzer-for-xen-project
> kernel fuzzer

» uses Xen, VMI, AFI

31/38

https://github.com/intel/kernel-fuzzer-for-xen-project
https://github.com/intel/kernel-fuzzer-for-xen-project

Modern Fuzzers

AFL
honggfuzz
libfuzzer

OSS Fuzz: https://github.com/google/oss-fuzz,
https://google.github.io/oss-fuzz/

vVvyYVvyy

A\

Google Fuzzbench
https://github.com/google/fuzzbench,
https://google.github.io/fuzzbench/

33/38

https://github.com/google/oss-fuzz
https://google.github.io/oss-fuzz/
https://github.com/google/fuzzbench
https://google.github.io/fuzzbench/

Cyber-Reasoning Systems (CRS)

» fully autonomous

> analyze a system, detect vulnerabilities, create exploits, self
healing

» combines fuzzing, symbolic execution and other techniques

» DARPA CyberGrand Challenge 2016: https:
//www.darpa.mil/program/cyber-grand-challenge

34/38

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge

Keywords

» TODO » TODO

36/38

Resources

» TODO

37/38

References

» TODO

38/38

	Overview
	Fuzzer Types
	API / OS Fuzzing
	State of the Art
	Summary

