
Session 10
Fuzzing

Security of Information Systems (SIS)

Computer Science and Engineering Department

December 4, 2024

1 / 38



Papers

▶ kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

▶ Dissecting American Fuzzy Lop: A FuzzBench Evaluation

2 / 38

https://nyx-fuzz.com/papers/
https://www.ndss-symposium.org/wp-content/uploads/fuzzing2022_23004_paper.pdf


Software Testing

▶ validating implementation

▶ “oracles”: specification, contracts

▶ find bugs, vulnerabilities

4 / 38



Types of Testing

5 / 38



Blackbox / Interface Testing

▶ do not care / know the internals

▶ validate input according to specification

▶ send input, validate output

▶ similar approach used by fuzzing

6 / 38



Property-based Testing

▶ define property for functions

▶ generate inputs

▶ use inputs and ”shrink” to find issues

7 / 38



Property-based Testing vs. Fuzzing

8 / 38



Fuzzing (as testing)

▶ send quasi-random inputs

▶ collect results and failures

▶ do automatically

▶ have feedback loop based on results / behavior

▶ https://github.com/google/fuzzing/blob/master/

docs/glossary.md

9 / 38

https://github.com/google/fuzzing/blob/master/docs/glossary.md
https://github.com/google/fuzzing/blob/master/docs/glossary.md


Pre and Post Fuzzing

▶ prepare initial set of inputs (if any)

▶ do ”harnesses” (see later)

▶ analyze output (crashes)

▶ fix program

10 / 38



Fuzzer Architecture

12 / 38



Dumb vs Smart Fuzzing

▶ dumb: pure random data

▶ smart: know data format

▶ dump: simpler, but random

▶ smart: more complex

13 / 38



Blackbox vs Whitebox Fuzzing

14 / 38



Fuzzer Harness

▶ a testing harness

▶ an entry in the program executable

▶ update the code to provide input

15 / 38



Mutation vs Generational Fuzzing

16 / 38



Payload Fuzzing vs API Fuzzing

▶ payload: create input, send input to program, capture output

▶ program has input functions: standard input (generally), files,
socket

▶ API fuzzing: library, input is sent via calls (structures)

▶ do API call, receive output

▶ analyze crashes

17 / 38



Coverage-based Fuzzing

18 / 38



Coverage-based Fuzzing Process

19 / 38



GCOV, KCOV

▶ GNU Coverage tool: instruments source code, at build-time

▶ KCOV: coverage for the Linux kernel, exposed via debugfs

▶ both enabled at build time

▶ also bcov, lcov

20 / 38



Runtime Instrumentation Coverage

▶ can also work on binary code

▶ intrument programs at runtime

▶ slower than build time instrumentation

▶ no need to rebuild

21 / 38



Using Sanitizers

▶ for fuzzing builds

▶ force crashes to appear

▶ without sanitizers, some crashes may not appear

▶ ASan, KASAN

22 / 38



Fork Server

▶ start new instances per input

▶ quick start of new instances

▶ working as a ”harness” to quickly get an application to serve
a new input

▶ can parallelize runs

23 / 38



API Fuzzing

▶ instead of a payload, construct arguments (structures)

▶ it’s similar to a set of payloads

▶ make call to function with arguments, instead of sending
payload

▶ receive function return value, instead of looking at output

▶ still aim to capture crashes

25 / 38



OS Fuzzing

▶ fuzz the OS syscall interface

▶ run inside the virtual machine

▶ have some sort of manager interface to capture crashes and
restart virtual machines

▶ how to capture coverage?

26 / 38



Syzkaller

27 / 38



kAFL / Nyx

▶ KVM-based

▶ use Intel PT (processor trace for coverage)

▶ no build-level coverage part required

28 / 38



kAFL

29 / 38



Nyx

30 / 38



k/FX

▶ https:

//github.com/intel/kernel-fuzzer-for-xen-project

▶ kernel fuzzer

▶ uses Xen, VMI, AFl

31 / 38

https://github.com/intel/kernel-fuzzer-for-xen-project
https://github.com/intel/kernel-fuzzer-for-xen-project


Modern Fuzzers

▶ AFL

▶ honggfuzz

▶ libfuzzer

▶ OSS Fuzz: https://github.com/google/oss-fuzz,
https://google.github.io/oss-fuzz/

▶ Google Fuzzbench:
https://github.com/google/fuzzbench,
https://google.github.io/fuzzbench/

33 / 38

https://github.com/google/oss-fuzz
https://google.github.io/oss-fuzz/
https://github.com/google/fuzzbench
https://google.github.io/fuzzbench/


Cyber-Reasoning Systems (CRS)

▶ fully autonomous

▶ analyze a system, detect vulnerabilities, create exploits, self
healing

▶ combines fuzzing, symbolic execution and other techniques

▶ DARPA CyberGrand Challenge 2016: https:
//www.darpa.mil/program/cyber-grand-challenge

34 / 38

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge


Keywords

▶ TODO ▶ TODO

36 / 38



Resources

▶ TODO

37 / 38



References

▶ TODO

38 / 38


	Overview
	Fuzzer Types
	API / OS Fuzzing
	State of the Art
	Summary

