
Session 09
Code Analysis

Security of Information Systems (SIS)

Computer Science and Engineering Department

December 9, 2020

1 / 45



Ways of Securing Software

I secure by construction: prevent existence of
bugs/vulnerabilities

I secure environment: prevent exploitation of
bugs/vulnerabilities

I isolated environment: damage control

3 / 45



Secure by Construction

I providing it as secure (build from specs)

I building it secure

I secure before shipping

4 / 45



Secure by Construction (2)

I formal verification, provably secure

I programming language features

I programming practices

I defensive programming

I software development process

I code review

I code auditing

I testing

I fuzzing, symbolic execution

5 / 45



Common Practices/Principles

I keep it simple: small footprint, few dependencies, no fancy
hacks

I input validation

I added care when dealing with buffers and strings

I use linters and static checkers

I make code readable, document while writing

I simple and intuitive interfaces

I mindset: assume the worse

I do unit tests

6 / 45



Program Analysis

I focus on applications (i.e. programs) not systems

I analyze program behavior
I performance

I profiling
I reduced resource usage
I reduced overhead

I correctness
I debugging
I security
I robustness

I no side channel focus

8 / 45



Ways of Doing Program Analysis

I control flow analysis: reachability

I data flow analysis: propagation

9 / 45



Types of Program Analysis

I static analysis: no running of program

I dynamic analysis: running the program

I source code analysis: source code is available, use it

I binary analysis: work on executables and binary files, source
code may be unavailable

10 / 45



Static Analysis

I don’t run the program

I go through its source/binary code

I control flow and data flow analysis

11 / 45



Dynamic Analysis

I monitor process

I usually involves instrumentation

I valgrind, profilers, Pin
(https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool)

12 / 45

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


Source Code Analysis

I automated, semi-automated, manual

I manual: code auditing

I programming defects, API misuse, lack of compliance,
correctness

I software/code interpretation, pattern matching

I software formal verification

13 / 45



Binary Analysis

I reverse engineering

I binary debugging

I disassembling, forensics

14 / 45



Terms

I program comprehension: understand source code

I code review: fix mistakes, improve code quality and
programming practices

I code auditing: comprehensive analysis with intent of
discovering bugs

I static analysis: automated action performed

16 / 45



Static Analysis

I analyze computer programs without executing them

I usually performed on source code

I automated process

17 / 45



Tools of the Trade

I editors/reading tools

I pattern matching tools

I static analyzers

I pen & pad

18 / 45



Tools of the Trade (2)

I open source
I Sonar: http://www.sonarsource.org/ (Java)
I Flawfinder: https://dwheeler.com/flawfinder/ (C/C++)
I RATS
I Clang Static Analyzer: http://clang-analyzer.llvm.org/
I Splint: http://splint.org/ (C) – no longer developed
I cppceck: http://cppcheck.sourceforge.net/ (C, C++) –

plugins for IDEs

I proprietary
I Coverity SAVE: http:

//www.coverity.com/products/coverity-save.html
I Klocwork Insight:

http://www.klocwork.com/products/insight/ (C, C++,
Java, C#)

I CodeSonar: http://www.grammatech.com/codesonar
I Semmle: http://semmle.com/solutions/
I HP Fortify

19 / 45

http://www.sonarsource.org/
https://dwheeler.com/flawfinder/
http://clang-analyzer.llvm.org/
http://splint.org/
http://cppcheck.sourceforge.net/
http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://www.klocwork.com/products/insight/
http://www.grammatech.com/codesonar
http://semmle.com/solutions/


Binary Static Analysis

I requires reverse engineering

I focused on discovering bugs and creating exploitation PoCs
form them to be fixed

I basic tools: disassemblers, symbol mappers, decompilers

I automated tools: Veracode, CodeSonar, BitBlaze

I security analysts, enhancing proprietary solutions

20 / 45



Code Auditing

I browse source code

I look for security breaches and possible bugs

I tools for static code analysis

I in-depth audit to be done by the developer

22 / 45



Black Box Approach

I non-open-source code

I understand protocol or user input format

I provide “bad” input and test possible violations

I reverse engineering

I fuzzing

23 / 45



White Box Approach

I the “real stuff” – actual code auditing, highlight input
processing

I top-to-bottom: start from main, go down functions

I bottom-to-top: find all places of external input, system input
and start from there

24 / 45



Tools to be Employed

I static analyzers (cppcheck, Clang Static Analyzer, Coverity)

I IDA for binary static analysis

I ctags, cscope, source nav for source code navigation

I debuggers for runtime analysis

I valgrind, Rational Purify for dynamic analysis

25 / 45



Code Auditor Requirements

I know API, OS and machine (background knowledge)

I recognize patterns (pattern recognition)

I understand application (functional understanding)

I audit all code (completeness)

26 / 45



Types of Programs

I http://www.ouah.org/mixtercguide.html

I setuid/setgid programs

I daemons and servers

I frequently run system programs

I system libraries (libc)

I widepread protocol libraries (kerberos, ssl)

I administrative tools

I CGI scripts, server plugins

27 / 45

http://www.ouah.org/mixtercguide.html


Classes of Bugs to Audit

I API-based bugs

I external resource interactions

I programming construct errors

I state mechanics

28 / 45



API-based Bugs

I misuse of OS, library of framework APIs

I dangerous string or formatting functions: e.g., sprintf(),
strcpy(), strcat(), printf(), syslog() . . .

I dangerous implicit behavior: e.g., allocators that round

I cumbersome/complicated API reference contents: e.g.,
threading, IPC

29 / 45



External Resource Interactions

I privilege escalation through IPCs

I system(), execve(), CreateProcess()

I file interaction

30 / 45



Programming Construct Errors

I CWE: Common Weakness Enumeration
https://cwe.mitre.org/data/index.html

I integer signedness

I integer boundaries

I checks that are logically wrong or susceptible to integer
problems

I loops that have bad boundaries

I unchecked variables

31 / 45

https://cwe.mitre.org/data/index.html


State Mechanics

I programs left in an inconsistent state

I thread safety issues

I async-safety issues

I global variables left in an undesired state

32 / 45



Methodology

I target components, meta targeting

I grep targeting – won’t provide understanding
I read code quickly – ignore what is not important

I copy and move data
I input/output

33 / 45



List of Issues

I implementation bugs (miscalculation, check result, not
validate input)

I data types

I memory corruption

34 / 45



Defensive Programming

I sh*t happens

I assume the worst, program accordingly

I secure programming / secure coding

I offensive programming

I formal verification

I rewrite vs reuse

36 / 45



Secure Coding

I https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

I techniques for building secure programs

I handling input

I working with memory and buffers

I handle error/exceptions

I handling data types

37 / 45

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard


Input Validation

I anything can be malitious

I look for injections

I take into account encoding

I only allow required format

38 / 45



Buffer Management

I start address and length

I boundary checking

I indexes

39 / 45



String Management

I length management

I NUL-byte termination

I string truncation

I printable characters

40 / 45



Integer Management

I conversions (size)

I overflows

I signedness

41 / 45



Keywords

I secure by design /
implementation

I program analysis

I static analysis

I dynamic analysis

I source code analysis

I binary analysis

I code auditing

I bugs

I vulnerabilities

I programming errors

I CWE (Common Weakness
Enumeration)

I defensive programming

I secure coding

43 / 45



Resources

I https://www.amazon.com/

Building-Secure-Software-Addison-wesley-Professional/

dp/0321774957

I https://www.amazon.com/

Secure-Coding-2nd-Software-Engineering/dp/

0321822137

I https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

I https://www.owasp.org/index.php/OWASP_Secure_

Coding_Practices_-_Quick_Reference_Guide

I David Binkley: Source Code Analysis: A Road Map

I https://cwe.mitre.org/data/index.html

I https://samate.nist.gov/SRD/testsuite.php

44 / 45

https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://cwe.mitre.org/data/index.html
https://samate.nist.gov/SRD/testsuite.php


References

I http://pentest.cryptocity.net/code-audits/

I http://software.intel.com/en-us/articles/

collection-of-examples-of-64-bit-errors-in-real-programs/

I http://www.ouah.org/mixtercguide.html

I http://www.vanheusden.com/linux/audit.html

I http://spinroot.com/static/

I http://spinroot.com/p10/

I The Science of Code Auditing, BlackHat EU 2006

I https:

//www.grammatech.com/products/binary-analysis

I http://bitblaze.cs.berkeley.edu/

I https://www.veracode.com/

45 / 45

http://pentest.cryptocity.net/code-audits/
http://software.intel.com/en-us/articles/collection-of-examples-of-64-bit-errors-in-real-programs/
http://software.intel.com/en-us/articles/collection-of-examples-of-64-bit-errors-in-real-programs/
http://www.ouah.org/mixtercguide.html
http://www.vanheusden.com/linux/audit.html
http://spinroot.com/static/
http://spinroot.com/p10/
https://www.grammatech.com/products/binary-analysis
https://www.grammatech.com/products/binary-analysis
http://bitblaze.cs.berkeley.edu/
https://www.veracode.com/

	Securing Software
	Program Analysis
	Code Analysis
	Code Auditing
	Defensive Programming
	Summary

