Notes

Session 09

Code Analysis

Security of Information Systems (SIS)

Computer Science and Engineering Department

December 9, 2020

Ways of Securing Software

Notes
» secure by construction: prevent existence of
bugs/vulnerabilities
> secure environment: prevent exploitation of
bugs/vulnerabilities
» isolated environment: damage control
3/45
Secure by Construction
Notes
» providing it as secure (build from specs)
» building it secure
» secure before shipping
4/45
Secure by Construction (2)
Notes

formal verification, provably secure

programming language features

programming practices

defensive programming

software development process

code review

code auditing

testing

VVYyVYVYVYVYVYYVYY

fuzzing, symbolic execution




Common Practices/Principles

v

vVVYyVYyVYVYVYY

keep it simple: small footprint, few dependencies, no fancy

hacks

input validation

added care when dealing with buffers and strings
use linters and static checkers

make code readable, document while writing
simple and intuitive interfaces

mindset: assume the worse

do unit tests

Program Analysis

v

focus on applications (i.e. programs) not systems
analyze program behavior
performance
> profiling
> reduced resource usage
> reduced overhead
correctness
> debugging
> security
> robustness

no side channel focus

Ways of Doing Program Analysis

>
>

Types

control flow analysis: reachability

data flow analysis: propagation

of Program Analysis

static analysis: no running of program

dynamic analysis: running the program

source code analysis: source code is available, use it

binary analysis: work on executables and binary files, source

code may be unavailable

Notes
6/45

Notes
8/45

Notes
9/45

Notes

10/45



Static Analysis

» don't run the program
» go through its source/binary code

» control flow and data flow analysis

Dynamic Analysis

» monitor process
» usually involves instrumentation

» valgrind, profilers, Pin
(https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool)

Source Code Analysis

» automated, semi-automated, manual

v

manual: code auditing

» programming defects, AP| misuse, lack of compliance,
correctness

» software/code interpretation, pattern matching

» software formal verification

Binary Analysis

P reverse engineering
» binary debugging

» disassembling, forensics

11/45

12/45

13/45

14/45

Notes

Notes

Notes

Notes



https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Terms

» program comprehension: understand source code

» code review: fix mistakes, improve code quality and
programming practices

» code auditing: comprehensive analysis with intent of
discovering bugs

> static analysis: automated action performed

Static Analysis

» analyze computer programs without executing them

» usually performed on source code

» automated process

Tools of the Trade

> editors/reading tools

» pattern matching tools

> static analyzers
» pen & pad

Tools of the Trade (2)

» open source

>

>
>
>
>
>

Sonar: http://www.sonarsource.org/ (Java)

Flawfinder: https://dwheeler.com/flawfinder/ (C/C++)
RATS

Clang Static Analyzer: http://clang-analyzer.llvm.org/
Splint: http://splint.org/ (C) — no longer developed
cppceck: http://cppcheck.sourceforge.net/ (C, C++) —
plugins for IDEs

» proprietary

>

>

v

Coverity SAVE: http:
//www.coverity.com/products/coverity-save.html
Klocwork Insight:
http://www.klocwork.com/products/insight/ (C, C++,
Java, C#)

CodeSonar: http://www.grammatech.com/codesonar
Semmle: http://semmle.com/solutions/

HP Fortify

16/45

17/45

18/45

19/45

Notes

Notes

Notes

Notes



http://www.sonarsource.org/
https://dwheeler.com/flawfinder/
http://clang-analyzer.llvm.org/
http://splint.org/
http://cppcheck.sourceforge.net/
http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://www.klocwork.com/products/insight/
http://www.grammatech.com/codesonar
http://semmle.com/solutions/

Binary Static Analysis
Notes

» requires reverse engineering

» focused on discovering bugs and creating exploitation PoCs

form them to be fixed

» basic tools: disassemblers, symbol mappers, decompilers

v

automated tools: Veracode, CodeSonar, BitBlaze

» security analysts, enhancing proprietary solutions

20/45

Code Auditing Not
otes

» browse source code

» look for security breaches and possible bugs

» tools for static code analysis

» in-depth audit to be done by the developer

22/45

Black Box Approach
Notes

non-open-source code

understand protocol or user input format

provide “bad” input and test possible violations

reverse engineering

vVvyVvyVvyy

fuzzing

23/45

White Box Approach
Notes

» the “real stuff” — actual code auditing, highlight input
processing

» top-to-bottom: start from main, go down functions

» bottom-to-top: find all places of external input, system input

and start from there

24/45



Tools to be Employed
Notes

static analyzers (cppcheck, Clang Static Analyzer, Coverity)
IDA for binary static analysis

ctags, cscope, source nav for source code navigation

debuggers for runtime analysis

vVvyVvyVvyy

valgrind, Rational Purify for dynamic analysis

25/45

Code Auditor Requirements
Notes

know API, OS and machine (background knowledge)

recognize patterns (pattern recognition)

understand application (functional understanding)

vvyVvVyy

audit all code (completeness)

26/45

Types of Programs
Notes

http://www.ouah.org/mixtercguide.html

setuid/setgid programs

daemons and servers

frequently run system programs

system libraries (libc)

widepread protocol libraries (kerberos, ssl)

administrative tools

vVVYyVYyVvVyVYVYYVYY

CGl scripts, server plugins

27/45

Classes of Bugs to Audit
Notes

» API-based bugs

» external resource interactions

» programming construct errors

» state mechanics

28/45


http://www.ouah.org/mixtercguide.html

API-based Bugs

» misuse of OS, library of framework APIs

» dangerous string or formatting functions: e.g., sprintf(),
strepy(), strcat(), printf(), syslog() ...

» dangerous implicit behavior: e.g., allocators that round

» cumbersome/complicated API reference contents: e.g.,
threading, IPC

External Resource Interactions

» privilege escalation through IPCs
» system(), execve(), CreateProcess()

» file interaction

Programming Construct Errors

» CWE: Common Weakness Enumeration
https://cwe.mitre.org/data/index.html

» integer signedness
» integer boundaries

» checks that are logically wrong or susceptible to integer
problems

» loops that have bad boundaries

» unchecked variables

State Mechanics

» programs left in an inconsistent state
» thread safety issues
» async-safety issues

» global variables left in an undesired state

29/45

30/45

31/45

32/45

Notes

Notes

Notes

Notes



https://cwe.mitre.org/data/index.html

Methodology

» target components, meta targeting

» grep targeting — won't provide understanding

>

List of

>

>
>

read code quickly — ignore what is not important
» copy and move data
> input/output

Issues

implementation bugs (miscalculation, check result, not
validate input)

data types

memory corruption

Defensive Programming

vyVvVyVYyVvYyYYVvyy

sh*t happens

assume the worst, program accordingly
secure programming / secure coding
offensive programming

formal verification

rewrite vs reuse

Secure Coding

v

vyvyVvyyvyy

https://wiki.sei.cmu.edu/confluence/display/c/
SEI+CERT+C+Coding+Standard

techniques for building secure programs
handling input

working with memory and buffers
handle error/exceptions

handling data types

33/45

34/45

36/45

37/45

Notes

Notes

Notes

Notes



https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Input Validation

» anything can be malitious
» look for injections

» take into account encoding
>

only allow required format

Buffer Management

v

start address and length

v

boundary checking

v

indexes

String Management

length management
NUL-byte termination

string truncation

vvyVyy

printable characters

Integer Management

> conversions (size)
» overflows

» signedness

38/45

39/45

40/45

41/45

Notes

Notes

Notes

Notes




Keywords

» secure by design /
. . » bugs
implementation
> . » vulnerabilities
program analysis
> static analysis » programming errors
> dynamic analysis » CWE (Common Weakness
. Enumeration)
» source code analysis . .
. . » defensive programming
» binary analysis .
. » secure coding
» code auditing
Resources

v

» https://www.amazon.com/
Building-Secure-Software-Addison-wesley-Professional/

dp/0321774957

» https://www.amazon.com/

Secure-Coding-2nd-Software-Engineering/dp/
0321822137

» https://wiki.sei.cmu.edu/confluence/display/c/

SEI+CERT+C+Coding+Standard

» https://www.owasp.org/index.php/0OWASP_Secure_

Coding_Practices_-_Quick_Reference_Guide

» David Binkley: Source Code Analysis: A Road Map

https://cwe.mitre.org/data/index.html

» https://samate.nist.gov/SRD/testsuite.php

References

vy

vVvyVvyVvyyvyy

vy

http://pentest.cryptocity.net/code-audits/

http://software.intel.com/en-us/articles/

Notes

43/45

Notes

44/45

Notes

collection-of-examples-of-64-bit-errors-in-real-programs/

http://www.ouah.org/mixtercguide.html
http://www.vanheusden.com/linux/audit.html
http://spinroot.com/static/
http://spinroot.com/p10/

The Science of Code Auditing, BlackHat EU 2006
https:

//wwu .grammatech.com/products/binary-analysis
http://bitblaze.cs.berkeley.edu/

https://www.veracode.com/

45/45

Notes



https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Building-Secure-Software-Addison-wesley-Professional/dp/0321774957
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://www.amazon.com/Secure-Coding-2nd-Software-Engineering/dp/0321822137
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://cwe.mitre.org/data/index.html
https://samate.nist.gov/SRD/testsuite.php
http://pentest.cryptocity.net/code-audits/
http://software.intel.com/en-us/articles/collection-of-examples-of-64-bit-errors-in-real-programs/
http://software.intel.com/en-us/articles/collection-of-examples-of-64-bit-errors-in-real-programs/
http://www.ouah.org/mixtercguide.html
http://www.vanheusden.com/linux/audit.html
http://spinroot.com/static/
http://spinroot.com/p10/
https://www.grammatech.com/products/binary-analysis
https://www.grammatech.com/products/binary-analysis
http://bitblaze.cs.berkeley.edu/
https://www.veracode.com/

	Securing Software
	Program Analysis
	Code Analysis
	Code Auditing
	Defensive Programming
	Summary

