
Session 07
Application Confinement

Security of Information Systems (SIS)

Computer Science and Engineering Department

November 15, 2023

1 / 30



Papers

▶ Efficient software-based fault isolation

▶ Boxify: Full-fledged App Sandboxing for Stock Android

2 / 30

https://dl.acm.org/doi/abs/10.1145/168619.168635
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes


Story So Far

▶ systems and system components have an attack surface

▶ flaws in systems and system components may be exploited

▶ input may be used maliciously

▶ prevent existance and prevent exploitation of vulnerabilities

▶ defender needs to limit damage

3 / 30



Limiting Damage

▶ isolate entire system, e.g. virtualization

▶ isolate/confine system component (application), e.g.
sandboxing

▶ limit possible actions, limit accessible resources, e.g. prevent
an app from using the network, prevent an app from reading
data from other apps

4 / 30



Application Confinement

▶ What can an application do? What can an application access?

▶ access control: subject, object

▶ typically enforced at kernel level

▶ What if it were enforced by a library at application level?

▶ overhead

▶ filesystem: users, file permissions, access control lists

▶ configurable permissions: Android permissions, iOS Privacy
Settings, Linux capabilities

▶ sandboxing: jailing (filesystem), application sandboxing
(kernel-enforced rules)

5 / 30



Remember: Malware

▶ application deployed on user device/workstation

▶ may abuse resource use and access

▶ doesn’t require a vulnerability in an app, only a defect in the
configuration or system

▶ confining it reduces damage

6 / 30



Filesystem Access Control

▶ subject: process (UID)

▶ object: file (UID, GID)

▶ permissions or access control lists (attached to a file)

7 / 30



Android Permissions

▶ requests permissions at runtime

▶ permission approval

▶ enforcement at Android SDK level

▶ signed permissions

8 / 30



iOS Privacy Settings

▶ database mappping between app and resource/service

▶ Preferences app writes to database

▶ may be turned on/off

9 / 30



Linux Capabilities

▶ security tokens providing privileges

▶ attached to a given process

▶ allow different permissions for processes belonging to the
same user

▶ may also be attached to an executable (similar to the setuid
bit)

10 / 30



Linux Security Modules

▶ framework in Linux kernel

▶ hooks for user-level system call

▶ introduced in Linux kernel 2.6

12 / 30



MAC Implementations

▶ SELinux (2.6.0)

▶ AppArmor (2.6.36)

▶ Smack (2.6.25)

▶ TOMOYO (2.6.30)

▶ Yama (3.4)

13 / 30



SELinux

▶ inode based

▶ uses labels - user:role:type:mls

▶ policy based
▶ modes

▶ disabled
▶ permissive
▶ enforcing

▶ other features
▶ Role-Based Access Control (RBAC)
▶ Multi-Level Security (MLS)
▶ Multi-Category Security (MCS)

14 / 30



AppArmor

▶ path based

▶ filesystem agnostic

▶ profile based
▶ hybrid modes

▶ per object mode
▶ learning mode

15 / 30



SMACK

▶ inode based

▶ uses labels (most are kept in extended attribute – xattrs)

▶ policy based
▶ access

▶ rwxa - same as DAC
▶ t - transmutation
▶ b - report in bringup mode

▶ custom labels: *̂ ? @

16 / 30



Assets to Protect

▶ file descriptors

▶ file system space

▶ other processes

▶ memory

▶ network

▶ everything else

18 / 30



Sandbox Implementations

▶ capabilities

▶ jail

▶ rule based (MAC)

▶ Java Virtual Machine

▶ HTML5 iframe sandbox

▶ .NET Code Access Security

19 / 30



Breaking Sandboxing

▶ faulty sandbox rules

▶ other faulty configuration

▶ kernel vulnerability

20 / 30



Linux Seccomp

▶ minimize the exposed kernel surface

▶ to be used by developers

▶ uses BPF (Berkeley Packet Filtering)

▶ requires support in kernel

21 / 30



Kernel Config

▶ CONFIG HAVE ARCH SECCOMP FILTER=y

▶ CONFIG SECCOMP FILTER=y

▶ CONFIG SECCOMP=y

22 / 30



Default Allowed Syscalls

▶ read

▶ write

▶ exit

▶ sigreturn

23 / 30



Android Application Sandbox

▶ The sandbox is simple, auditable, and based on decades-old
UNIX-style user separation of processes and file permissions.

▶ SELinux-based

▶ uses application UID to map sandbox to application

24 / 30



Sandbox Profiles

▶ set of rules

▶ sandbox operations, sandbox filters

▶ provided as binary blobs in the kernel image

▶ attached to an application

▶ some apps may use the same sandbox profile

▶ some system services use no sandbox profile

▶ entitlement-checks and sandbox extensions for differentiation
between apps using same sandbox profile

26 / 30



container Sandbox Profile

▶ default sandbox profiles for all 3rd party apps

▶ biggest sandbox profile

27 / 30



SandScout

▶ https://dl.acm.org/citation.cfm?id=2978336

▶ SandScout: Automatic Detection of Flaws in iOS Sandbox
Profiles

▶ systematic analysis of container sandbox profiles

▶ found flaws: application collusion, device abuse, control
bypass

28 / 30

https://dl.acm.org/citation.cfm?id=2978336


Keywords

▶ access control

▶ Linux Security Module

▶ subject, object, permission

▶ capabilities

▶ profiles

▶ MAC

▶ SELinux, AppArmor,
SMACK

▶ seccomp

▶ iOS sandboxing

▶ privacy settings

30 / 30


	Confinement and Enforcement in the Linux Kernel
	Sandboxing
	Apple Application Sandbox
	Summary

