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Papers

▶ Efficient software-based fault isolation

▶ Boxify: Full-fledged App Sandboxing for Stock Android
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https://dl.acm.org/doi/abs/10.1145/168619.168635
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes


Story So Far

▶ systems and system components have an attack surface

▶ flaws in systems and system components may be exploited

▶ input may be used maliciously

▶ prevent existance and prevent exploitation of vulnerabilities

▶ defender needs to limit damage
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Limiting Damage

▶ isolate entire system, e.g. virtualization

▶ isolate/confine system component (application), e.g.
sandboxing

▶ limit possible actions, limit accessible resources, e.g. prevent
an app from using the network, prevent an app from reading
data from other apps
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Application Confinement

▶ What can an application do? What can an application access?

▶ access control: subject, object

▶ typically enforced at kernel level

▶ What if it were enforced by a library at application level?

▶ overhead

▶ filesystem: users, file permissions, access control lists

▶ configurable permissions: Android permissions, iOS Privacy
Settings, Linux capabilities

▶ sandboxing: jailing (filesystem), application sandboxing
(kernel-enforced rules)
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Remember: Malware

▶ application deployed on user device/workstation

▶ may abuse resource use and access

▶ doesn’t require a vulnerability in an app, only a defect in the
configuration or system

▶ confining it reduces damage
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Filesystem Access Control

▶ subject: process (UID)

▶ object: file (UID, GID)

▶ permissions or access control lists (attached to a file)
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Android Permissions

▶ requests permissions at runtime

▶ permission approval

▶ enforcement at Android SDK level

▶ signed permissions
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iOS Privacy Settings

▶ database mappping between app and resource/service

▶ Preferences app writes to database

▶ may be turned on/off
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Linux Capabilities

▶ security tokens providing privileges

▶ attached to a given process

▶ allow different permissions for processes belonging to the
same user

▶ may also be attached to an executable (similar to the setuid
bit)
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Linux Security Modules

▶ framework in Linux kernel

▶ hooks for user-level system call

▶ introduced in Linux kernel 2.6
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MAC Implementations

▶ SELinux (2.6.0)

▶ AppArmor (2.6.36)

▶ Smack (2.6.25)

▶ TOMOYO (2.6.30)

▶ Yama (3.4)
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SELinux

▶ inode based

▶ uses labels - user:role:type:mls

▶ policy based
▶ modes

▶ disabled
▶ permissive
▶ enforcing

▶ other features
▶ Role-Based Access Control (RBAC)
▶ Multi-Level Security (MLS)
▶ Multi-Category Security (MCS)
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AppArmor

▶ path based

▶ filesystem agnostic

▶ profile based
▶ hybrid modes

▶ per object mode
▶ learning mode
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SMACK

▶ inode based

▶ uses labels (most are kept in extended attribute – xattrs)

▶ policy based
▶ access

▶ rwxa - same as DAC
▶ t - transmutation
▶ b - report in bringup mode

▶ custom labels: *̂ ? @
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Assets to Protect

▶ file descriptors

▶ file system space

▶ other processes

▶ memory

▶ network

▶ everything else
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Sandbox Implementations

▶ capabilities

▶ jail

▶ rule based (MAC)

▶ Java Virtual Machine

▶ HTML5 iframe sandbox

▶ .NET Code Access Security
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Breaking Sandboxing

▶ faulty sandbox rules

▶ other faulty configuration

▶ kernel vulnerability
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Linux Seccomp

▶ minimize the exposed kernel surface

▶ to be used by developers

▶ uses BPF (Berkeley Packet Filtering)

▶ requires support in kernel
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Kernel Config

▶ CONFIG HAVE ARCH SECCOMP FILTER=y

▶ CONFIG SECCOMP FILTER=y

▶ CONFIG SECCOMP=y
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Default Allowed Syscalls

▶ read

▶ write

▶ exit

▶ sigreturn
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Android Application Sandbox

▶ The sandbox is simple, auditable, and based on decades-old
UNIX-style user separation of processes and file permissions.

▶ SELinux-based

▶ uses application UID to map sandbox to application
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Sandbox Profiles

▶ set of rules

▶ sandbox operations, sandbox filters

▶ provided as binary blobs in the kernel image

▶ attached to an application

▶ some apps may use the same sandbox profile

▶ some system services use no sandbox profile

▶ entitlement-checks and sandbox extensions for differentiation
between apps using same sandbox profile
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container Sandbox Profile

▶ default sandbox profiles for all 3rd party apps

▶ biggest sandbox profile
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SandScout

▶ https://dl.acm.org/citation.cfm?id=2978336

▶ SandScout: Automatic Detection of Flaws in iOS Sandbox
Profiles

▶ systematic analysis of container sandbox profiles

▶ found flaws: application collusion, device abuse, control
bypass
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https://dl.acm.org/citation.cfm?id=2978336
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