
Session 06
Modern Offensive and Defensive Solutions

Security of Information Systems (SIS)

Computer Science and Engineering Department

November 8, 2023

1 / 46

Papers

▶ HCFI: Hardware-enforced Control-Flow Integrity

▶ Losing Control: On the Effectiveness of Control-Flow Integrity
under Stack Attacks

2 / 46

Attack and Defense

▶ attack: exploit vulnerabilities

▶ defense: prevent attacks, make attacks difficult, confine
attacks

▶ attacker needs to find one security hole

▶ defender has to protect all security holes

▶ attacker invests time

▶ defense mechanisms incur overhead

3 / 46

Attacker Perspective and Mindset

▶ find one vulnerability and build from that

▶ look for something that is valuable

▶ do reconnaisance, look for weak spots

▶ create an attack chain

▶ use every trick in the book

▶ start from existing knowledge

4 / 46

Defender Perspective and Mindset

▶ protect all entry points

▶ users are vulnerable, as well as technology

▶ use multiple defensive layers

▶ monitor, be proactive

▶ discipline, best practices are worth more than skills

▶ invest more on valuable targets

5 / 46

Attacker Pros/Cons

▶ apart from ethical hackers, security researchers, it’s a shady
business

▶ you may not need skills, just a weak target and a database of
attack vectors

▶ you may get caught

▶ you only need to find one spot

▶ possible great gains

▶ little time for fame (annonymous)

▶ the Internet gives you tons of targets

▶ but many targets give little more than fun

6 / 46

Defender Pros/Cons

▶ less resources (time) than an attacker

▶ must think of everything

▶ is being paid constructively

▶ you have a purpose: keep the system running

▶ it never ends

7 / 46

Honeypots

▶ baits

▶ a system appearing as vulnerable but closely monitored

▶ deflect, change attention and collect attacker information

8 / 46

https://dl.acm.org/doi/abs/10.1145/2857705.2857722
https://dl.acm.org/doi/abs/10.1145/2810103.2813671
https://dl.acm.org/doi/abs/10.1145/2810103.2813671


Evolution of Application Security

▶ buffer overflows

▶ shellcodes

▶ memory protection (DEP, WX̂)

▶ memory randomization

▶ canaries

▶ code reuse

▶ CFI (Control Flow Integrity)

▶ memory safety, safe programming languages

▶ static and dynamic analysis

▶ hardware enhanced security

10 / 46

Fine-grained ASLR

▶ https://dl.acm.org/citation.cfm?id=2498135

▶ issue with ASLR: memory disclosure / information leak

▶ one address leaked reveals all information

▶ do it at page level

▶ one leak may lead to other leaks that are chained together

11 / 46

SafeStack

▶ https://clang.llvm.org/docs/SafeStack.html

▶ part of the Code Pointer Integrity project:
http://dslab.epfl.ch/proj/cpi/

▶ moves sensitive information (such as return addresses) on a
safe stack, leaving problematic ones on the unsafe stack

▶ reduced overhead, protects against stack buffer overflows

▶ microStache:
https://www.springerprofessional.de/en/

microstache-a-lightweight-execution-context-for-in-process-safe-/

16103742

12 / 46

Address Sanitizer

▶ ASan

▶ https:

//research.google.com/pubs/archive/37752.pdf

▶ https://github.com/google/sanitizers/

▶ instruments code

▶ only useful in development

▶ detects out-of-bounds bugs, memory leaks

13 / 46

CFI/CPI

▶ https://dl.acm.org/citation.cfm?id=1102165

▶ https://www.usenix.org/node/186160

▶ http://dslab.epfl.ch/proj/cpi/

▶ coarse-grained CFI vs fine-grained CFI

▶ Control Flow Integrity, Code Pointer Integrity

▶ protect against control flow hijack attacks

▶ CPI is weaker than CFI but more practical (reduced overhead)

▶ CPI protects all code pointers, data based attacks may still
happen

▶ CPS (Code Pointer Separation) is a weaker yet more practical
for of CPI

14 / 46

Shellcodes

▶ difficult to inject due to DEP, small buffers and input
validation

▶ preliminary parts of the attack may remap memory region

▶ shellcode may do stack pivoting and then load another
shellcode

▶ alphanumeric shellcodes: still need a binary address to
bootstrap

15 / 46

Code Reuse

▶ bypass DEP by using existing pieces of code

▶ code gadgets

▶ used in ROP (Return-Oriented Programming) and JOP
(Jump-Oriented programming)

16 / 46

Return-Oriented Programming

▶ gadgets ending in ret

▶ may be chained together to form an attack

▶ Turing-complete languge

▶ http://www.suse.de/~krahmer/no-nx.pdf

▶ https://dl.acm.org/citation.cfm?id=2133377

▶ most common way of creating runtime attack vectors
▶ JOP: https://dl.acm.org/citation.cfm?id=1966919

▶ gadgets end up in an indirect branch not a ret

17 / 46

https://dl.acm.org/citation.cfm?id=2498135
https://clang.llvm.org/docs/SafeStack.html
http://dslab.epfl.ch/proj/cpi/
https://www.springerprofessional.de/en/microstache-a-lightweight-execution-context-for-in-process-safe-/16103742
https://www.springerprofessional.de/en/microstache-a-lightweight-execution-context-for-in-process-safe-/16103742
https://www.springerprofessional.de/en/microstache-a-lightweight-execution-context-for-in-process-safe-/16103742
https://research.google.com/pubs/archive/37752.pdf
https://research.google.com/pubs/archive/37752.pdf
https://github.com/google/sanitizers/
https://dl.acm.org/citation.cfm?id=1102165
https://www.usenix.org/node/186160
http://dslab.epfl.ch/proj/cpi/
http://www.suse.de/~krahmer/no-nx.pdf
https://dl.acm.org/citation.cfm?id=2133377
https://dl.acm.org/citation.cfm?id=1966919


Anti-ROP Defense

▶ prevent atacks
▶ SafeStack
▶ CFI/CPI, ASan
▶ Microsoft CFG, RFG

▶ detect attacks
▶ Microsoft EMET (Enhanced Mitigation Experience Toolkit),

ProcessMitigations module

18 / 46

Data-Oriented Attacks

▶ https://www.usenix.org/node/190963

▶ https://huhong-nus.github.io/advanced-DOP/

▶ overwrites data, not code pointers

▶ bypasses CFI

19 / 46

Evolution of OS Security

▶ traditional main goals: functionality and reduced overhead

▶ recent focus on OS security: plethora of devices and use cases

▶ malware may easily take place among legitimate applications

▶ kernel exploits become more common

▶ OS virtualization, reduce TCB to hypervisor

▶ include hardware-enforced security features

21 / 46

Mandatory Access Control

▶ opposed to Discretionary Access Control, where owner
controls permissions

▶ system-imposed settings

▶ increased, centralized security

▶ difficult to configure and maintain

▶ rigid, non-elastic

▶ Bell-LaPadula Model: http:
//csrc.nist.gov/publications/history/bell76.pdf

▶ SELinux, TrustedBSD, Mandatory Integrity Control

22 / 46

Role-Based Access Control

▶ https:

//ieeexplore.ieee.org/abstract/document/485845

▶ https://dl.acm.org/citation.cfm?id=266751

▶ aggregate permissions into roles

▶ role assignment, role authorization, permission authorization

▶ useful in organizations

23 / 46

Sandboxing

▶ assume application may be malware

▶ reduce potential damage

▶ confine access to a minimal set of allowed actions

▶ typically implemented at sandbox level (kernel enforced)

▶ iOS sandboxing, Linux seccomp

24 / 46

Application Signing

▶ ensure application is validated

▶ used by application stores and repositories: GooglePlay, Apple
AppStore

▶ device may not run non-signed apps

25 / 46

iOS Jekyll Apps

▶ https:

//www.usenix.org/conference/usenixsecurity13/

technical-sessions/presentation/wang_tielei

▶ apparently legimitate iOS app

▶ bypasses Apple vetting

▶ obfuscates calls to private libraries (part of the same address
space, fixed from iOS 7)

▶ once installed turns out to be malware

▶ exfiltrates private data, exploits vulnerabilities

26 / 46

https://www.usenix.org/node/190963
https://huhong-nus.github.io/advanced-DOP/
http://csrc.nist.gov/publications/history/bell76.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
https://ieeexplore.ieee.org/abstract/document/485845
https://ieeexplore.ieee.org/abstract/document/485845
https://dl.acm.org/citation.cfm?id=266751
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_tielei


Jailreaking/Rooting

▶ https://dl.acm.org/citation.cfm?id=3196527

▶ get root access on a device

▶ close to full control

▶ requires a critical vulnerability that gets root access

▶ tethered (requires re-jailbreaking after reboot) cs non-tethered

▶ essential for security researchers

27 / 46

Hardware-centric Attacks

▶ side channels

▶ undocumented hardware features

▶ imperfect hardware features that leak information

▶ proprietary features that get exploited

▶ hardware is part of TCB, reveals kernel memory

28 / 46

Sidechannel Attacks

▶ do not exploit vulnerabilities in applications or kernel code

▶ mostly use features such as

29 / 46

x86 Instruction Fuzzing

▶ https://www.blackhat.com/docs/us-17/thursday/

us-17-Domas-Breaking-The-x86-Instruction-Set-wp.

pdf

▶ https://github.com/xoreaxeaxeax/sandsifter

▶ https://i.blackhat.com/us-18/Thu-August-9/

us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.

pdf

▶ instruction of length N is placed at the end of the page

▶ creates a fuzzer for the x86 instruction set

▶ found glitches, hidden instructions

30 / 46

IME

▶ Intel Management Engine

▶ AMD Secure Techonology

▶ hardware features and highly proprietary firmware

▶ https://www.theverge.com/2018/1/3/16844630/

intel-processor-security-flaw-bug-kernel-windows-linux

▶ user space app could access kernel space memory access

▶ accused of being a backdoor to the system

31 / 46

rowhammer Attack

▶ https://users.ece.cmu.edu/~yoonguk/papers/

kim-isca14.pdf

▶ https://www.vusec.net/projects/drammer/

▶ https://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html

▶ https://www.blackhat.com/docs/us-15/materials/

us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.

pdf

▶ hardware fault in DRAM chips

▶ constant bit flip pattern in certain rows can cause a flip in
another row (not belonging to the current process)

▶ may be exploited to get root access

32 / 46

Spectre and Meltdown

▶ https://meltdownattack.com

▶ https://www.usenix.org/system/files/conference/

usenixsecurity18/sec18-lipp.pdf

▶ application may access data from another application

▶ Meltdown exploits a hardware race condition allowing an
unprivileged process to read privileged data

▶ Spectre does a side channel attack on speculative execution
features of modern CPUs

▶ hardware fixes by Intel, software solutions

33 / 46

KPTI

▶ Kernel Page Table Isolation

▶ https://lwn.net/Articles/741878/

▶ place kernel in separate address space

▶ mitigation against hardware-centric attacks

34 / 46

https://dl.acm.org/citation.cfm?id=3196527
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Domas-Breaking-The-x86-Instruction-Set-wp.pdf
https://github.com/xoreaxeaxeax/sandsifter
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs.pdf
https://www.theverge.com/2018/1/3/16844630/intel-processor-security-flaw-bug-kernel-windows-linux
https://www.theverge.com/2018/1/3/16844630/intel-processor-security-flaw-bug-kernel-windows-linux
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://www.vusec.net/projects/drammer/
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://meltdownattack.com
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://lwn.net/Articles/741878/


Hypervisor Attacks

▶ https://dl.acm.org/citation.cfm?id=2484406

▶ attack/compromise hypervisor, get control of VMs

▶ may exploit a vulnerability in the hypercall interface or may
exploit a hardware bug

▶ hyperjacking

35 / 46

Evolution of Web Security

▶ path traversals, misconfigurations

▶ injections

▶ XSS

▶ misconfiguration

▶ unsafe communication

▶ application/language bugs

37 / 46

Secure Communication

▶ provide secure communication between client and server

▶ HTTPS everywhere

▶ Secure Cookie

▶ strong encryption, strong protocols

38 / 46

Attacks on Security Protocols

▶ https://tools.ietf.org/html/rfc7457

▶ https://www.mitls.org/pages/attacks

▶ flaws in protocol logic

▶ cryptographic design flaws

▶ implementation flaws

39 / 46

Connection Downgrade

▶ part of man-in-the-middle attack

▶ negociate a connection with weaker protocol features than the
current one

▶ ideally drop HTTPS alltogether

▶ POODLE (Padding Oracle On Downgraded Legacy
Encryption)

▶ https://www.openssl.org/~bodo/ssl-poodle.pdf

40 / 46

Advanced Injection Attacks

▶ LDAP, XPath injection

▶ blind SQL injection: content-based and time-based

▶ https://www.owasp.org/images/7/74/Advanced_SQL_

Injection.ppt

▶ https://nvisium.com/blog/2015/06/17/

advanced-sql-injection.html

41 / 46

Language Bugs

▶ bugs/vulnerabilities in frameworks

▶ bugs/vulnerabilities in web modules or languate interpreter

42 / 46

Modern Offensive and Defensive Techniques

▶ attacks focus on low-level aspects of a system: hide features,
exploit hardware, side channels, protocol design

▶ assume better/improved applications but imperfect
system/protocol/configuration design

▶ defense takes more time and incurs significant overhead

▶ battle rages on

44 / 46

https://dl.acm.org/citation.cfm?id=2484406
https://tools.ietf.org/html/rfc7457
https://www.mitls.org/pages/attacks
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
https://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
https://nvisium.com/blog/2015/06/17/advanced-sql-injection.html
https://nvisium.com/blog/2015/06/17/advanced-sql-injection.html


Keywords

▶ honeypot

▶ fine-grained ASLR

▶ SafeStack

▶ AddressSanitizer

▶ CFI/CPI

▶ code reuse

▶ ROP, JOP

▶ data-oriented attacks

▶ MAC, RBAC

▶ sandboxing

▶ Jekyll apps

▶ jailbreak, rooting

▶ side channel attacks

▶ IME attack

▶ Meltdown, Spectre

▶ KPTI

▶ rowhammer

▶ connection downgrade

▶ POODLE

▶ blind SQL injection

45 / 46

Resources

▶ see URLs accross slides

46 / 46


	Modern Application Security
	Modern OS Security
	Modern Web Security
	Summary

