		Notes
Session 06		
Modern Offensive and Defensive Solutions		
Security of Information Systems (SIS)		
Computer Science and Engineering Department		
November 8, 2023		
	1 / 46	
D		
Papers		Notes
 HCFI: Hardware-enforced Control-Flow Integrity Losing Control: On the Effectiveness of Control-Flow Integrity 		
under Stack Attacks		
	2 / 46	
Attack and Defense		Notes
► attack: exploit vulnerabilities		
defense: prevent attacks, make attacks difficult, confine attacks		
attacker needs to find one security holedefender has to protect all security holes		
attacker invests timedefense mechanisms incur overhead		
	3 / 46	
Attacker Perspective and Mindset		Notes
► find one vulnerability and build from that		
look for something that is valuabledo reconnaisance, look for weak spots		
 create an attack chain use every trick in the book 		
start from existing knowledge		

Defender Perspective and Mindset		Notes
protect all entry points		
 users are vulnerable, as well as technology use multiple defensive layers 		
monitor, be proactive		
discipline, best practices are worth more than skillsinvest more on valuable targets		
Ç		
	5 / 46	
Attacker Pros/Cons		
,		Notes
► apart from ethical hackers, security researchers, it's a shady		
business you may not need skills, just a weak target and a database of		
attack vectors		
you may get caughtyou only need to find one spot		
 possible great gains 		
little time for fame (annonymous)the Internet gives you tons of targets		
but many targets give little more than fun		
	6 / 46	
D. C. J. D. 16		
Defender Pros/Cons		Notes
less resources (time) than an attacker		
must think of everythingis being paid constructively		
you have a purpose: keep the system running		
▶ it never ends		
	7 / 46	
Honeypots		Notes
 baits a system appearing as vulnerable but closely monitored 		
▶ deflect, change attention and collect attacker information		

Evolution of Application Security		Notes
 buffer overflows shellcodes memory protection (DEP, WX) memory randomization canaries code reuse CFI (Control Flow Integrity) memory safety, safe programming languages static and dynamic analysis hardware enhanced security 		
	10 / 46	
Fine-grained ASLR		Notes
 https://dl.acm.org/citation.cfm?id=2498135 issue with ASLR: memory disclosure / information leak 		
 one address leaked reveals all information do it at page level one leak may lead to other leaks that are chained together 		
	11 / 46	
SafeStack		Notes
 https://clang.llvm.org/docs/SafeStack.html part of the Code Pointer Integrity project: http://dslab.epfl.ch/proj/cpi/ 		
 moves sensitive information (such as return addresses) on a safe stack, leaving problematic ones on the unsafe stack reduced overhead, protects against stack buffer overflows 		
<pre>microStache: https://www.springerprofessional.de/en/ microstache-a-lightweight-execution-context-for-</pre>	in-process-saf	e-/
16103742		
	12 / 46	
Address Sanitizer		Notes
► ASan		
https: //research.google.com/pubs/archive/37752.pdfhttps://github.com/google/sanitizers/		
 instruments code only useful in development detects out-of-bounds bugs, memory leaks 		
- detects out-or-bounds bugs, memory leaks		

CFI/CPI		Notes
 https://dl.acm.org/citation.cfm?id=1102165 https://www.usenix.org/node/186160 http://dslab.epfl.ch/proj/cpi/ 		
 coarse-grained CFI vs fine-grained CFI Control Flow Integrity, Code Pointer Integrity 		
 protect against control flow hijack attacks CPI is weaker than CFI but more practical (reduced overhead) CPI protects all code pointers, data based attacks may still 		
happen CPS (Code Pointer Separation) is a weaker yet more practical for of CPI		
	14 / 46	
Shellcodes		
Snellcodes		Notes
▶ difficult to inject due to DEP, small buffers and input		
validation ▶ preliminary parts of the attack may remap memory region ▶ abeliands may do stall distribution and then lead another.		
 shellcode may do stack pivoting and then load another shellcode alphanumeric shellcodes: still need a binary address to 		
bootstrap		
	15 / 46	
Code Reuse		Notes
bypass DEP by using existing pieces of codecode gadgets		
 used in ROP (Return-Oriented Programming) and JOP (Jump-Oriented programming) 		
	16 / 46	
Return-Oriented Programming		Notes
▶ gadgets ending in ret		
may be chained together to form an attackTuring-complete language		
http://www.suse.de/~krahmer/no-nx.pdfhttps://dl.acm.org/citation.cfm?id=2133377		
most common way of creating runtime attack vectorsJOP: https://dl.acm.org/citation.cfm?id=1966919		
gadgets end up in an indirect branch not a ret		

Anti-ROP Defense		Notes
prevent atacksSafeStack		
► CFI/CPI, ASan ► Microsoft CFG, RFG		
▶ detect attacks		
 Microsoft EMET (Enhanced Mitigation Experience Toolkit), ProcessMitigations module 		
	18 / 46	
Data-Oriented Attacks		Notes
		Notes
https://www.usenix.org/node/190963		
https://huhong-nus.github.io/advanced-DOP/overwrites data, not code pointers		
▶ bypasses CFI		
	19 / 46	
Evolution of OS Security		Notes
 traditional main goals: functionality and reduced overhead recent focus on OS security: plethora of devices and use cases 	5	
malware may easily take place among legitimate applicationskernel exploits become more common		
 OS virtualization, reduce TCB to hypervisor 		
➤ include hardware-enforced security features		
	21 / 46	
Mandatory Access Control		Notes
▶ opposed to Discretionary Access Control, where owner		
controls permissions system-imposed settings		
increased, centralized securitydifficult to configure and maintain		
➤ rigid, non-elastic		
Bell-LaPadula Model: http: //csrc.nist.gov/publications/history/bell76.pdf		
► SELinux, TrustedBSD, Mandatory Integrity Control		

Role-Based Access Control		Notes
<pre>https: //ieeexplore.ieee.org/abstract/document/485845</pre>		
https://dl.acm.org/citation.cfm?id=266751aggregate permissions into roles		
role assignment, role authorization, permission authorizationuseful in organizations		
	23 / 46	
Sandboxing		
Januboxing		Notes
► assume application may be malware		
reduce potential damageconfine access to a minimal set of allowed actions		
typically implemented at sandbox level (kernel enforced)iOS sandboxing, Linux seccomp		
103 Salidboxing, Linux Sectomp		
	24 / 46	
Application Signing		Notes
 ensure application is validated used by application stores and repositories: GooglePlay, Apple 		
AppStore device may not run non-signed apps		
device may not run non-signed apps		
	25 / 46	
	25/40	
iOS Jekyll Apps		Nation
		Notes
https:		
//www.usenix.org/conference/usenixsecurity13/ technical-sessions/presentation/wang_tielei		
apparently legimitate iOS appbypasses Apple vetting		
 obfuscates calls to private libraries (part of the same address space, fixed from iOS 7) 		
 once installed turns out to be malware exfiltrates private data, exploits vulnerabilities 		

Jailreaking/Rooting		Notes
 https://dl.acm.org/citation.cfm?id=3196527 get root access on a device close to full control 		
 requires a critical vulnerability that gets root access tethered (requires re-jailbreaking after reboot) cs non-tethered essential for security researchers 		
	27 / 46	
	21/40	
Hardware-centric Attacks		Notes
side channelsundocumented hardware features		
imperfect hardware features that leak informationproprietary features that get exploited		
► hardware is part of TCB, reveals kernel memory		
	28 / 46	
Sidechannel Attacks		
		Notes
do not exploit vulnerabilities in applications or kernel code		
► mostly use features such as		
	29 / 46	
x86 Instruction Fuzzing		Notes
https://www.blackhat.com/docs/us-17/thursday/ us-17-Domas-Breaking-The-x86-Instruction-Set-wp.		
<pre>pdf https://github.com/xoreaxeax/sandsifter</pre>		
https://i.blackhat.com/us-18/Thu-August-9/ us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-	In-x86-CPUs.	
pdf ▶ instruction of length N is placed at the end of the page		
creates a fuzzer for the x86 instruction setfound glitches, hidden instructions		

- ► Kernel Page Table Isolation
- https://lwn.net/Articles/741878/
- place kernel in separate address space
- mitigation against hardware-centric attacks

Hypervisor Attacks		Notes
 https://dl.acm.org/citation.cfm?id=2484406 attack/compromise hypervisor, get control of VMs may exploit a vulnerability in the hypercall interface or may exploit a hardware bug hyperjacking 		
	35 / 46	
Evolution of Web Security		Notes
 path traversals, misconfigurations injections XSS misconfiguration unsafe communication application/language bugs 		
	37 / 46	
Secure Communication		Notes
 provide secure communication between client and server HTTPS everywhere Secure Cookie strong encryption, strong protocols 	38 / 46	
Attacks on Security Protocols		Notes
 https://tools.ietf.org/html/rfc7457 https://www.mitls.org/pages/attacks flaws in protocol logic cryptographic design flaws implementation flaws 		

Connection Downgrade		Notes
 part of man-in-the-middle attack negociate a connection with weaker protocol features than the 	<u>.</u>	
current one ideally drop HTTPS alltogether	-	
► POODLE (Padding Oracle On Downgraded Legacy		
<pre>Encryption) https://www.openssl.org/~bodo/ssl-poodle.pdf</pre>		
	40 / 46	
Advanced Injection Attacks		Notes
N I DAD VD-shiringsing		
LDAP, XPath injectionblind SQL injection: content-based and time-based		
https://www.owasp.org/images/7/74/Advanced_SQL_ Injection.ppt		
https://nvisium.com/blog/2015/06/17/ advanced-sql-injection.html		
	41 / 46	
Language Bugs		
		Notes
bugs/vulnerabilities in frameworksbugs/vulnerabilities in web modules or languate interpreter		
	42 / 46	
Modern Offensive and Defensive Techniques		Notes
► attacks focus on low-level aspects of a system: hide features,		
exploit hardware, side channels, protocol designassume better/improved applications but imperfect		
system/protocol/configuration designdefense takes more time and incurs significant overhead		
▶ battle rages on		

Keywords Notes ► Jekyll apps ▶ honeypot ▶ fine-grained ASLR ▶ jailbreak, rooting ▶ SafeStack ▶ side channel attacks ► AddressSanitizer ► IME attack ► CFI/CPI ► Meltdown, Spectre code reuse ► KPTI ► ROP, JOP rowhammer data-oriented attacks connection downgrade ► MAC, RBAC ► POODLE ▶ blind SQL injection sandboxing 45 / 46 Resources Notes ▶ see URLs accross slides 46 / 46 Notes

Notes