Session 05

Defense and Mitigation

Security of Information Systems (SIS)
Computer Science and Engineering Department

November 1, 2023

1/49



Attack and Defense

> attack: exploit vulnerabilities

» defense: prevent attacks, make attacks difficult, confine
attacks

P attacker needs to find one security hole

» defender has to protect all security holes

P attacker invests time

» defense mechanisms incur overhead

2/49



Papers

> Mitigating Program Security Vulnerabilities: Approaches and
Challenges

» Securing Web Application Code by Static Analysis and
Runtime Protection

3/49


https://dl.acm.org/doi/abs/10.1145/2187671.2187673
https://dl.acm.org/doi/abs/10.1145/2187671.2187673
https://dl.acm.org/doi/abs/10.1145/988672.988679
https://dl.acm.org/doi/abs/10.1145/988672.988679

Attacker Goals

» control
> cripple
> steal

5/49



Exploit

» determine entries/input
» graph/automaton describes system/application behavior

» subvert graph

» add new nodes (inject)
» add new edges
> use existing paths in a different way

6/49



Attack Vector

P chain together multiple exploits
P gain access, gain privileged access, cripple, steal

» use vulnerabilities in software, system, web

7/49



Time

> always on the attacker side

P prevent attacks is better than handling attacks

9/49



System Components

P protect everything
> attacker need only find one flaw
» defense in depth

10/49



Prevention

> preventive/proactive is better than reactive
P harden system components

» monitor everything

11/49



Security vs Speed

» any defense mechanism incurs overhead

» use both offline (check at development time) and online
mechanisms (check/harden during run-time)

12/49



Handling Complexity

» automate processes
» verification and validation
» check before deployment

> prioritize critical parts

13/49



Monitoring

P paranoia is a virtue
> frequent updates
» be on the lookout for CVEs

14 /49



Defensive Steps

P prevent existence and prevent exploitation
» during development
» before deployment

» during deployment: prevent, react, confine

16 /49



Prevent Existence

vVvyVvVvYyypy

prevent existence of bugs and vulnerabilities
during development and before deployment
Secure Software Development

secure coding, defensive programming

code auditing, code linting

fuzzing, symbolic execution

17/49



Prevent Exploitation

» during deployment
> if vulnerabilities exist, you cannot exploit them
» either prevent or make it harder for the attacker

» harden the application, the system

18/49



Making Exploitation it Harder

» randomize
» obfuscate
» break application into multiple apps

» reduce number of inputs (attack surface)

19/49



Preventing Exploitation

> make memory areas inaccessible
> isolate components
» harden executable with checker and sanitizers during runtime

» disadvantage: incurs overhead

20/49



Confine

> more in session 7: Application Confinement
» when the attack happens, reduce damage
» sandboxing, permissions

> treat application as potential malware

21/49



React

P> monitor applications, system

» when attack happens, document, make app/system
inaccessible

» patch as soon as possible

> investigate, prevent future similar attacks

22/49



Mindset

P application is target of attacker
P input minimization, input validation
» you deploy an app that may have flaws or may be malware

» memory disclosure attacks, application control

24/49



Goal

> prevent control flow hijacking
» prevent memory/information disclosure

» be on the look for policy flaws that may allow the app to leak
information

25 /49



CFl

» Control Flow Integrity

> make sure control flow graph is unchanged during run
» high overhead

» fine-grained vs coarse grained CFI

26 /49



Code Pointers

» critical memory data
> target for attacker for control flow hijacking
» function return addresses, function pointers

» Code Pointer Integrity (faster approache to CFl), next lecture

27 /49



Prevent Vulnerabilities vs Prevent Exploiting vs Make
Unlikely vs Confine

» prevent vulnerabilities: secure coding, verification, fuzzing,
symbolic execution, type safety, safe programming languages
(later sessions)

» prevent exploiting: ASan, StackGuard (canaries), SafeStack,
CFl, input validation, DEP

» make unlikely: ASLR, multiple heaps

» confine: sandboxing, privacy settings, access control settings,
SFI (Software Fault Isolation) (later sessions)

28/49



Stack Guard / Address Sanitizer

VV VvV VYVYVY

stack canary, stack protector

added at compile time

value (canary) placed between buffer and return address
overwriting canary is detected and ends the program
may leak canary and overwrite it with itself

may overwrite other data (without overwriting canary)
may overwrite stack guard exit handler

Google Address Sanitizer adds multiple checks, albeit at
increased overhead

29/49



Input Validation

P assume input is “evil”

> prevent injection: command injection, SQL injection,
shellcode injection

P prevent attacks such as billion laughs attacks

P> prevent certain patterns, parse input

30/49



CFl

monitor control graph
monitor calls, jumps, branches

aim to do it without incurring significant overhead

vVvVvYvyy

may happen offline

31/49



SafeStack

P> store code pointers in a separate stack
» buffer overflows will not overflow code pointers

» provide specific methods to access safe stack data

32/49



DEP

Data Execution Prevention

mark writable memory area as non-executable
you cannot write and execute, i.e. inject code
data, heap, stack are marked with DEP

vVvYvyyVvyy

may be bypassed by using a mprotect ()-like call to update
memory area permissions

33/49



ASLR

» Address Space Layout Randomization

» new memory sections (especially libraries) are loaded at
random addresses

» makes it difficult to find addresses
not that effective on i386; useful on x86_64
> may be bypassed by information leaking

v

34/49



General

vVvVvYvyy

secure configuration
input sanitization
trusted connection

no vulnerable dependencies

36/49



Verification

» client side

> server side

37/49



Connection

» HTTPS, SSL/TLS
» certificate

» downgrade attacks

38/49



Secure HTTP Headers

HTTP Strict Transport Security (HSTS)
X-Frame-Options

X-XSS-Protection
X-Content-Type-Options
Content-Security-Policy

Referrer-Policy

Expect-CT

VVVYyVvVYVYVYY

39/49



Database protection

vVvVvYvyy

sanitize queries
encrypt data at rest
encrypt data in transit

sanitize queries

40/ 49



General System Defense

» Intrusion Detection System

» Intrusion Prevention System

42/49



Signing

» secure boot

» application signing

43 /49



Sandboxing

» Mandatory Access Control

» SELinux
» SMACK
» AppArmor
» TOMOYO

> seccomp

44 /49



Kernel Config

vVvyVvyvVvYyvyy

CONFIG.HARDENED_USERCOPY
CONFIG_FORTIFY_SOURCE
CONFIG_.RANDOMIZE_BASE (KASLR)
CONFIG_KASAN

CONFIG_UBSAN
In development

> KTSAN
> KMSAN

grsecurity

45 /49



Defensive Mechanisms

prevent existence, prevent exploitation
development, before deployment, during deployment

input is the root of all evil

vvvyYyy

look out for control flow hijacks, information leaks, malformed
input

47 /49



Keywords

VVYyVYVVVYVY

vulnerability
exploit
attack vector
prevention
isolation

CFI

code pointer
Stack Guard

VVvyVvyVvyVvVYVvyYy

DEP

ASLR

Address Sanitizer
downgrade attacks
secure HTTP headers
sandboxing

Mandatory Access Control

48 /49



Resources

> Let's Encrypt
» Defeating SSL Using Sslstrip
» OWASP Secure Headers Project

49 /49


https://letsencrypt.org/
https://www.youtube.com/watch?v=MFol6IMbZ7Y
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

	Attacker Perspective
	Defender Perspective
	Generic Defensive Techniques
	Application Defense
	Web Application Defense
	Operating System Defense
	Summary

