
Session 05
Defense and Mitigation

Security of Information Systems (SIS)

Computer Science and Engineering Department

October 30, 2024

1 / 49

Attack and Defense

▶ attack: exploit vulnerabilities

▶ defense: prevent attacks, make attacks difficult, confine
attacks

▶ attacker needs to find one security hole

▶ defender has to protect all security holes

▶ attacker invests time

▶ defense mechanisms incur overhead

2 / 49

Papers

▶ Mitigating Program Security Vulnerabilities: Approaches and
Challenges

▶ Securing Web Application Code by Static Analysis and
Runtime Protection

3 / 49

Attacker Goals

▶ control

▶ cripple

▶ steal

5 / 49

Exploit

▶ determine entries/input

▶ graph/automaton describes system/application behavior
▶ subvert graph

▶ add new nodes (inject)
▶ add new edges
▶ use existing paths in a different way

6 / 49

Attack Vector

▶ chain together multiple exploits

▶ gain access, gain privileged access, cripple, steal

▶ use vulnerabilities in software, system, web

7 / 49

Time

▶ always on the attacker side

▶ prevent attacks is better than handling attacks

9 / 49

System Components

▶ protect everything

▶ attacker need only find one flaw

▶ defense in depth

10 / 49

https://dl.acm.org/doi/abs/10.1145/2187671.2187673
https://dl.acm.org/doi/abs/10.1145/2187671.2187673
https://dl.acm.org/doi/abs/10.1145/988672.988679
https://dl.acm.org/doi/abs/10.1145/988672.988679


Prevention

▶ preventive/proactive is better than reactive

▶ harden system components

▶ monitor everything

11 / 49

Security vs Speed

▶ any defense mechanism incurs overhead

▶ use both offline (check at development time) and online
mechanisms (check/harden during run-time)

12 / 49

Handling Complexity

▶ automate processes

▶ verification and validation

▶ check before deployment

▶ prioritize critical parts

13 / 49

Monitoring

▶ paranoia is a virtue

▶ frequent updates

▶ be on the lookout for CVEs

14 / 49

Defensive Steps

▶ prevent existence and prevent exploitation

▶ during development

▶ before deployment

▶ during deployment: prevent, react, confine

16 / 49

Prevent Existence

▶ prevent existence of bugs and vulnerabilities

▶ during development and before deployment

▶ Secure Software Development

▶ secure coding, defensive programming

▶ code auditing, code linting

▶ fuzzing, symbolic execution

17 / 49

Prevent Exploitation

▶ during deployment

▶ if vulnerabilities exist, you cannot exploit them

▶ either prevent or make it harder for the attacker

▶ harden the application, the system

18 / 49

Making Exploitation it Harder

▶ randomize

▶ obfuscate

▶ break application into multiple apps

▶ reduce number of inputs (attack surface)

19 / 49



Preventing Exploitation

▶ make memory areas inaccessible

▶ isolate components

▶ harden executable with checker and sanitizers during runtime

▶ disadvantage: incurs overhead

20 / 49

Confine

▶ more in session 7: Application Confinement

▶ when the attack happens, reduce damage

▶ sandboxing, permissions

▶ treat application as potential malware

21 / 49

React

▶ monitor applications, system

▶ when attack happens, document, make app/system
inaccessible

▶ patch as soon as possible

▶ investigate, prevent future similar attacks

22 / 49

Mindset

▶ application is target of attacker

▶ input minimization, input validation

▶ you deploy an app that may have flaws or may be malware

▶ memory disclosure attacks, application control

24 / 49

Goal

▶ prevent control flow hijacking

▶ prevent memory/information disclosure

▶ be on the look for policy flaws that may allow the app to leak
information

25 / 49

CFI

▶ Control Flow Integrity

▶ make sure control flow graph is unchanged during run

▶ high overhead

▶ fine-grained vs coarse grained CFI

26 / 49

Code Pointers

▶ critical memory data

▶ target for attacker for control flow hijacking

▶ function return addresses, function pointers

▶ Code Pointer Integrity (faster approache to CFI), next lecture

27 / 49

Prevent Vulnerabilities vs Prevent Exploiting vs Make
Unlikely vs Confine

▶ prevent vulnerabilities: secure coding, verification, fuzzing,
symbolic execution, type safety, safe programming languages
(later sessions)

▶ prevent exploiting: ASan, StackGuard (canaries), SafeStack,
CFI, input validation, DEP

▶ make unlikely: ASLR, multiple heaps

▶ confine: sandboxing, privacy settings, access control settings,
SFI (Software Fault Isolation) (later sessions)

28 / 49



Stack Guard / Address Sanitizer

▶ stack canary, stack protector

▶ added at compile time

▶ value (canary) placed between buffer and return address

▶ overwriting canary is detected and ends the program

▶ may leak canary and overwrite it with itself

▶ may overwrite other data (without overwriting canary)

▶ may overwrite stack guard exit handler

▶ Google Address Sanitizer adds multiple checks, albeit at
increased overhead

29 / 49

Input Validation

▶ assume input is “evil”

▶ prevent injection: command injection, SQL injection,
shellcode injection

▶ prevent attacks such as billion laughs attacks

▶ prevent certain patterns, parse input

30 / 49

CFI

▶ monitor control graph

▶ monitor calls, jumps, branches

▶ aim to do it without incurring significant overhead

▶ may happen offline

31 / 49

SafeStack

▶ store code pointers in a separate stack

▶ buffer overflows will not overflow code pointers

▶ provide specific methods to access safe stack data

32 / 49

DEP

▶ Data Execution Prevention

▶ mark writable memory area as non-executable

▶ you cannot write and execute, i.e. inject code

▶ data, heap, stack are marked with DEP

▶ may be bypassed by using a mprotect()-like call to update
memory area permissions

33 / 49

ASLR

▶ Address Space Layout Randomization

▶ new memory sections (especially libraries) are loaded at
random addresses

▶ makes it difficult to find addresses

▶ not that effective on i386; useful on x86 64

▶ may be bypassed by information leaking

34 / 49

General

▶ secure configuration

▶ input sanitization

▶ trusted connection

▶ no vulnerable dependencies

36 / 49

Verification

▶ client side

▶ server side

37 / 49



Connection

▶ HTTPS, SSL/TLS

▶ certificate

▶ downgrade attacks

38 / 49

Secure HTTP Headers

▶ HTTP Strict Transport Security (HSTS)

▶ X-Frame-Options

▶ X-XSS-Protection

▶ X-Content-Type-Options

▶ Content-Security-Policy

▶ Referrer-Policy

▶ Expect-CT

39 / 49

Database protection

▶ sanitize queries

▶ encrypt data at rest

▶ encrypt data in transit

▶ sanitize queries

40 / 49

General System Defense

▶ Intrusion Detection System

▶ Intrusion Prevention System

42 / 49

Signing

▶ secure boot

▶ application signing

43 / 49

Sandboxing

▶ Mandatory Access Control
▶ SELinux
▶ SMACK
▶ AppArmor
▶ TOMOYO

▶ seccomp

44 / 49

Kernel Config

▶ CONFIG HARDENED USERCOPY

▶ CONFIG FORTIFY SOURCE

▶ CONFIG RANDOMIZE BASE (KASLR)

▶ CONFIG KASAN

▶ CONFIG UBSAN
▶ In development

▶ KTSAN
▶ KMSAN

▶ grsecurity

45 / 49

Defensive Mechanisms

▶ prevent existence, prevent exploitation

▶ development, before deployment, during deployment

▶ input is the root of all evil

▶ look out for control flow hijacks, information leaks, malformed
input

47 / 49



Keywords

▶ vulnerability

▶ exploit

▶ attack vector

▶ prevention

▶ isolation

▶ CFI

▶ code pointer

▶ Stack Guard

▶ DEP

▶ ASLR

▶ Address Sanitizer

▶ downgrade attacks

▶ secure HTTP headers

▶ sandboxing

▶ Mandatory Access Control

48 / 49

Resources

▶ Let’s Encrypt

▶ Defeating SSL Using Sslstrip

▶ OWASP Secure Headers Project

49 / 49

https://letsencrypt.org/
https://www.youtube.com/watch?v=MFol6IMbZ7Y
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

	Attacker Perspective
	Defender Perspective
	Generic Defensive Techniques
	Application Defense
	Web Application Defense
	Operating System Defense
	Summary

