
Session 03
Exploiting. Part 1: Applications

Security of Information Systems (SIS)

Computer Science and Engineering Department

October 18, 2023

1 / 24



Attacking a System

1. steal (information leak, information disclosure)

2. control (access, privileges)

3. cripple (crash, denial of service, sabotage)

2 / 24



Paths to Controlling a System

▶ breaking authentication

▶ side channel attacks

▶ bypass checks (misconfigurations)

▶ exploit vulnerabilities

3 / 24



Breaking Authentication

▶ guess passwords (or other credentials)

▶ crack passwords (or other credentials)

▶ social engineering

▶ impersonate

4 / 24



Side Channel Attacks

▶ do not alter or attack system directly

▶ covert channel

▶ infer information (passwords, keys, messages) from error
messages, power dissipation, electromagnetic signals, sounds
etc.

▶ system-centric attack not application-centric attack: you may
have a perfect app but a flawed system

5 / 24



Misconfigurations

▶ mostly wrong ACL checks

▶ restricted information is available

▶ caused by system complexity and/or
programmer/designer/administrator lack of complete view of
the system

6 / 24



Exploiting

▶ system/application has a vulnerability: can be used for
attacker benefit

▶ unintended behavior (not known or not checked by designer)

▶ can get inside the system/application, can control the
system/application

▶ issue created by the designer/developer of the
application/system

7 / 24



Papers

▶ Smashing the Stack for Fun and Profit (Phrack Magazine)

▶ Beyond Stack Smashing: Recent Advances in Buffer Overrun
Attacks (IEEE Security & Privacy 2004)

8 / 24

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://ieeexplore.ieee.org/abstract/document/1324594
https://ieeexplore.ieee.org/abstract/document/1324594


Attacking a System

▶ find a “way in”: misconfiguration, exploit

▶ get as much power as possible (look for privilege escalation,
go for complete privileges)

▶ extract information

▶ control the system

▶ hide presence

▶ make it persistent

10 / 24



Attack Vector

▶ steps for an attack

▶ do reconnaissance, do information leak, get access, escalate,
make permanent

▶ different vulnerabilities or flaws are exploited in an exploit
chain

11 / 24



Malware

▶ software with malicious intent

▶ it’s implanted on the target system, it runs on the target
system

▶ an exploit may be exploited remote or locally by malware

▶ a separate attack must be used to implant the malware

12 / 24



Types of Malware

▶ http:

//www.malwaretruth.com/the-list-of-malware-types/

▶ adware

▶ spyware

▶ virus

▶ worm

▶ trojan

▶ rootkit

▶ backdoor

▶ keylogger

▶ ransomware

13 / 24

http://www.malwaretruth.com/the-list-of-malware-types/
http://www.malwaretruth.com/the-list-of-malware-types/


System/Component Flows

▶ input → attack surface

▶ input processing by applications → input validation

▶ application uses internal control flow to process data

▶ flaws/vulnerabilities may appear inside the app, or in the
component interaction (access control lists, configuration files,
message passing)

▶ control flow vs. data flow

14 / 24



Application Exploiting

▶ vulnerability in app allows leak or control of app

▶ generally related to memory exploiting: memory disclosure,
memory overwrite

▶ goals
▶ critical data (read or overwrite)
▶ code pointers (overwrite and alter control flow)

16 / 24



Buffer Overflow

▶ most basic vulnerability

▶ go past the buffer boundary and overwrite data

▶ look for code pointers: return address on stack, function
pointers

17 / 24



Runtime Binary Application Attacks

▶ exploit running application

▶ identify vulnerability and corrupt memory

▶ generally aim to control the app, run arbitrary code, get shell

▶ ideal step is to get privileged access to the system

19 / 24



Attack Steps

▶ identify vulnerability (usually buffer overflow)

▶ determine offset from the start of the buffer to target to
overwrite (usually a code pointer)

▶ determine value used to overwrite target (points to “useful”
attacker code)

▶ craft payload

1. initial padding (size offset)
2. overwrite value
3. possible other values (function arguments, code gadgets)
4. possible initial shellcode

▶ inject payload in vulnerable application

▶ profit

20 / 24



Control-Flow Hijacking

▶ goal is to alter the control flow and take control of the
program

▶ we can create new edges in the control flow graph: code reuse
(ROP)

▶ we can add new vertices in the control flow graph: code
injection (shellcode)

▶ CFI (Control Flow Integrity) is used to prevent control-flow
highjacking: expensive

21 / 24



Data-Oriented Attacks

▶ overwrite data (no code pointers) and do not alter the control
flow

▶ use existing/valid paths in the control flow to get control of
the program or leak information

▶ Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong
Chua, Prateek Saxena, Zhenkai Liang: Data-Oriented
Programming: On the Expressiveness of Non-Control Data
Attacks, IEEE S&P 2016

22 / 24



Keywords

▶ system components

▶ exploit

▶ vulnerability

▶ malware

▶ attack vector

▶ attack surface

▶ input validation

▶ code pointer

▶ code reuse

▶ code injection

▶ shellcode

▶ Return Oriented
Programming (ROP)

▶ Data Oriented Programming
(DOP)

▶ control flow

▶ control flow hijacking

▶ control flow integrity

24 / 24


	Attacking a System. Malware
	Application Exploiting
	Runtime Binary Application Attacks
	Summary

