Notes

Session 01 Introduction to Systems Security

Security of Information Systems (SIS)

Computer Science and Engineering Department

October 4, 2023

2 / 62

1 / 62

History of OWASP Top 10

https://www.hahwul.com/cullinan/history-of-owasp-top-10/2021, 2017, 2013, 2010, 2007, 2003 The more things change, the more they stay the same.

- Injection (3, 1, 1, 1, 2, 6)
- XSS (-, 7, 3, 2, 1, 4)
- Broken Authentication and Session Management (7, 2, 2, 3, 7, 3)
- Security Misconfiguration (5, 6, 5, 6, -, -)

3 / 62

Cybersecurity Jobs

https://cybersecurityventures.com/jobs/

- 350 percent growth in open cybersecurity positions from 2013 to 2021
- 3.5 million unfilled cybersecurity jobs globally by 2021, up from one million positions in 2014

Notes

Cybersecurity Skills

pikation Development Security 📃							164%	
Cloud Security				115	26			
Risk Management		62%						
Threat Intelligence	42%							
incident Response	37%							
Compliance and Cantrols	36N							
Date Privacy and Security	36%							
Access Management	22%							
carity Strategy and Governance	20%							
Health Information Security	20%							
85	23% 43%	685	80%	180%	122%	149%	160%	389%
ased on the Burning Glass analysis of	employer demand in	periogs th	e skills proje	otted to gra	in fastest in	the rest I	lve years ar	e
pall	5-Year Projected	Grewth	Posting	oct. 2919	-Sept. 2020	50	lory Premis	im.
Application Development Security	164%		25.635			51	2.265	
Coul Security	115%		19,477			51	5.025	
Rick Management	60%		\$3,967			51	1,279	
Threat Intelligence	41%		65,039			59	609	
incident Response	37%		23,497			\$5	683	
Compliance and Cantrols	30%		54,770			81	2,423	
Data Privacy and Security	30%		88.527			85	256	
Access Management.	32%		118.096			56	451	
Security Strategy and Governance	20%		02,952			\$7	735	
Health Information Security	20%		413,687			\$7	20	

what-are-the-fastest-growing-cybersecurity-skills-in-2021/

5 / 62

System / Application Cybersecurity

h

6 / 62

Papers

- Reflections on Trusting Trust: https://dl.acm.org/doi/10.1145/358198.358210
- Understanding the Mirai Botnet: https: //www.usenix.org/conference/usenixsecurity17/ technical-sessions/presentation/antonakakis

7 / 62

Systems Security

► IT security, cyber security, computer security

▶ applications, operating system, infrastructure, networking

hardware, software, information

Notes

Notes

Notes

Security of Information Systems

- focus on computer, operating system, software stack and infrastructure security
- little focus on networking, crypto, hardware
- research focus

10	/	62

Notes

Notes

Notes

Notes

Topics

authentication, authorization

- attack, mitigation, bypass
- isolation, sandboxing
- fuzzing, symbolic execution
- defensive programming
- software analysis, verification and validation

11 / 62

Systems Security Research

- research: more on finding the right question, than the right answer
- not boring, but uncertain
- high risk, high impact
- secure build, attack, defend, repeat
- actual systems: software, hardware, infrastructure

12 / 62

Systems Security Research Venues

- big four: IEEE S&P (Oakland), ACM CCS, NDSS, Usenix Security Symposium
- ESORICS, RAID, ACSAC
- AsiaCCS, CNS, ACNS
- http:
- //faculty.cs.tamu.edu/guofei/sec_conf_stat.htm
- http://s3.eurecom.fr/~balzarot/notes/top4_v1/

Research Results

Notes

- white papers: company product information
- workshops: preliminary work, networking
- conferences: complete work, novel results, networking
- journals: aggregated work, archive
- CVEs
- features in existing products
- start ups
- public / open source

14 / 62

Resources

Notes

- content website: http://elf.cs.pub.ro/sis/
- b discussions, feedback: https://curs.upb.ro/
- MS Teams
- CTF platform: https://sis-ctf.security.cs.pub.ro/

► VM:

https://ocw.cs.pub.ro/courses/cns/resources/vm

16 / 62

Logistics

- lecture: Wednesday, 4pm-6pm, PR706
- labs
 - group 1: Wednesday, 6pm-8pm, EG403
 group 2: Tuesday, 8pm-10pm, PR706
- first lecture takes place on Wednesday, October 4, 2023, 4pm-6pm
- first lab (group 1) takes place on Wednesday, October 4, 2023, 6pm-8pm
- first lab (group 2) takes place on Tuesday, October 10, 2023, 8pm-10pm

17 / 62

Team

Rareş Visalom

Răzvan Deaconescu

Notes

- lecture + discussions
- research insights, trends
- demos, highlights
- DO ask questions, DO take part in discussion, DO challenge ideas, DO rebut ideas, DO open interesting topics (covering systems security)

19 / 62

Typical Lab Session

Notes

- lab/practical focused on problem solving, on approaches, not on tools
- CTF-like activity in lab: have problem, find solution
- challenge focused, not tutorial focused
- need focus, patience and perseverence
- we expect you to know the basics of: Linux/command line, network protocols and infrastructure, programming, assembly language, operating systems

20 / 62

CNS vs. SIS

Notes

Notes

- focus on offensive/exploiting vs focused on a building, attacking, defending
- narrow, focused, practical vs. diverse, holistic, conceptual
- binary/runtime application security vs. systems security
- engineer-centric vs. research-centric
- well-known steps vs. trends and models
- skill vs. approach

21 / 62

Grading

2p: lab activity

- 4p: assignments/projects (bonuses included)
- 4p: final exam (oral exam)
- lecture activity as a bonus (DO take part in lectures, see live and offline quizzes and surveys)

Contents

- 1. Introduction to Systems Security
- 2. Authentication and Password Management
- 3. Exploiting. Part 1: Applications
- 4. Exploiting. Part 2: Web & OS
- $5. \ \ Defense \ and \ \ Mitiation$
- 6. Modern Offensive and Defensive Solutions
- 7. Application Confinement
- 8. System Isolation
- 9. Code Analysis
- 10. Fuzzing. Symbolic Execution
- 11. Information Flow Security
- 12. Software Verification

23 / 62

Storyline

Notes

- we have a system/infrastucture
- one way to attack it is to crack or abuse authentication
- assuming valid entry points (i.e. authentication) are secure, the attacker looks for security holes (i.e. vulnerabilities)
- the attacker exploits vulnerabilities, we use defensive mechanisms, the attacker tries to bypass them
- we assume attacks are unavoidable, we aim to confine them; we confine applications
- since applications interact with other applications and system components, we isolate the system
- proper isolation relies on separation and marking roles and validating the information flow

24 / 62

Storyline (cont.)

- ideally, our application or system will be secure by specification, design, implementation, validated offline
- we use static analysis and dynamic analysis (including fuzzing and symbolic execution) to validate an application offline
- a thorough approach is to use (semi)formal validation on application specifications and build it securely from those

25 / 62

26 / 62

Prerequisites

good understanding of operating systems

- good Unix/Linux command line abilities
- good C programming skills
- fair knowledge of C shell scripting
- fair knowledge of Unix/Linux development tools
- basic understanding networking
- basic knowledge of computer architecture and assembly language

Notes

Notes

Notes

Notes

Notes

Linux/command line: USO labs:
http://ocw.cs.pub.ro/courses/uso

- networking: RL labs: http://ocw.cs.pub.ro/courses/rl
- assembly: http://ocw.cs.pub.ro/courses/iocla
- operating systems: http://ocw.cs.pub.ro/courses/so

27	/ 62
----	------

Attacker Perspective

attacker goals

- ▶ attacker arsenal: threat model
- attacker steps: attack vector

29 / 62

System Model

- application control flow graph
- ► applications + configuration + hardware
- privileges level
- input (and output)

30 / 62

Scenarios

- attack iOS Device
- attack social network
- attack bank website
- attack national power grid

- prevent
- isolate
- react & mitigate

Notes

Notes

Notes

32 / 62

Scope

- application
- operating system
- hardware
- ► I/0
- networking, infrastructure

34 / 62

Security Objectives

- privacy
- safety
- anonimity
- integrity
- confidentiality
- availability

35 / 62

Security vs. Safety

- safety is state
- security is process
- ► safety is outcome of a secure process/procedure
- $\blacktriangleright\,$ security: umbrella, safety: warm and not getting wet

36 / 62

- validation among parties
- chain of trust: bottom-up trust
- trust anchor
- certificate chain, digital signature, certification authority

37 / 62

A*

Notes

Notes

Notes

- authentication: letting an entity be part of the system
- authorization: providing privileges to a given entity (subject) for resources (object)
- \blacktriangleright access control: checking whether subject can access object
- audit: inspecting action history, validating behavior

38 / 62

A* commands

- authentication: login
- authorization: chmod
- access control: 1s
- audit: find, auditd

39 / 62

Least Privilege

each subject is only provided the permissions it needs

- ► if it's not mandatory, ditch it
- sandboxing, isolation

Notes

- split privileges among entities
- reduced actions for super user
- may require escalation (i.e. one subject may get priviliges from another)
 - be really careful about that
 sudo, setuid, capabilities

41 / 62

Trusted Computing Base

security-critical parts of the computer system

- bugs inside TCP compromise security
- ▶ i.e. priviliged parts of the computer system
- ▶ aim to reduce TCB

42 / 62

Attacker Mindset

- maximize profit
- time is on your side
- brute force may be an option
- you don't care as long as it works
- target many, get one

44 / 62

Attacker Objectives

- control
- cripple
- steal (information leak)

Notes

- decompose application, identify threats, determine coutermeasures
- classify possible attacker actions and attacker flow

46 / 62

Vulnerability

Notes

- misconfiguration, weakness
- exposes a risk that may be exploited for unintended outcome
- ▶ i.e. buffer overflow, integer overflow, unsanitized input

47 / 62

Exploit

- method to use a vulnerability for malicious outcome
- take advantage
- ▶ i.e. ret-to-libc, ROP, send injection code

48 / 62

Attack Vector

steps/path to deliver a malicious outcome

- composed of attack steps (attack gadgets)
- usually chaining together exploits towards outcome
- ▶ i.e. SQL injection, actual real world attacks

Notes

Notes

Notes

parts of the system exposed to attacks

- entry points into system
- \blacktriangleright either valid entry points that may be used invalidly
- ▶ or invalid entry points
- ▶ goal is to reduce attack surface (think TCB)

50 / 62

Defender Mindset

malicious vs. negligence

- time is limited
- proactive before reactive
- prevent
- monitor
- defense in depth

52 / 62

Proactive vs. Reactive

- similar to medicine, treating disease
- analyze threats beforehand
- deploy mitigation solutions
- react when sh*t happens
- ▶ have solutions in place

53 / 62

Defense in Depth

multiple defense layers

- redundancy in defense
- ▶ assume one layer falls, others take its place

Notes

Phases for Defensive Mechanisms

Notes

Notes

Notes

Notes

55 / 62

Harden

analysis, enhancement

off-line

harden prevent confine treat

- static, dynamic analysis
- verification and validation
- fuzzing, symbolic execution
- remove, treat vulnerabilities

56 / 62

Prevent

- make it difficult / impossibile for exploits to happen
- on-line, during runtime
- ▶ i.e. ASLR, DEP, stack guard, ASan

Confine

- when sh*t happens, reduce damage limit resources use, limit interface
- as reduced privileges as possible
- ▶ ideally customed (tailored) per app/system
- sandboxing, virtualization, access control

57 / 62

Notes

Notes

	if	sh*t	happens,	solve	it
--	----	------	----------	-------	----

- remove threat, remove damaged resources
- replace components
- apply lessons learned

59 / 62

Monitor

know when sh*t happens ASAP

- proper monitoring levels; otherwise you ignore it
- monitor as much as you can
- key for availability

60 / 62

Keywords

systems security

- Security of Information Systems
- goals
- safety
- trust
- trusted computing base
- least privilege
- threat model

vulnerabilityexploit

- attack vector
- attack surface
- defense in depth
- harden
- naraon
- prevent
- confine
 - treat
 - monitor

62 / 62