Propunem studierea următorilor algoritmi de sortare:
Analiza complexității unui algoritm are ca scop estimarea volumului de resurse de calcul necesare pentru execuția algoritmului. Prin resurse se înțelege:
• Spațiul de memorie necesar pentru stocarea datelor pe care le prelucrează algoritmul.
• Timpul necesar pentru execuția tuturor prelucrărilor specificate în algoritm.
Această analiză este utilă pentru a stabili dacă un algoritm utilizează un volum acceptabil de resurse pentru rezolvarea unei probleme. In acest fel timpul de executie va fi exprimat prin numarul de operatii elementare executate. Sunt considerate operatii elementare cele aritmetice (adunare, scadere, ınmulțire, ımpartire), comparatiile si cele logice (negatie, conjuncte și disjunctie).
Este așadar suficient sa se contorizeze doar anumite tipuri de operații elementare, numite operații de bază. Timpul de executie al ıntregului algoritm se obtine ınsumand timpii de executie ai prelucrarilor componente.
Exemplul 1 - Suma a n numere
Consideram problema calculului sumei . Dimensiunea acestei probleme poate fi considerata n. Algoritmul si tabelul cu costurile corespunzatoare prelucrărilor sunt prezentate ın Tabel. Insumand timpii de executie ai prelucrarilor elementare se obtine: T(n)=n(c3 + c4 + c5) + c1 + c2 + c3 deci T(n)=k1n + k2, adica timpul de executie depinde liniar de dimensiunea problemei. Costurile operatiilor elementare influenteaza doar constantele ce intervin ın functia T(n).
Exemplul 2 - Înmulțirea a 2 matrici
Consideram problema determinarii produsului a doua matrici: A de dimensiune m×n si B de dimensiune n×p. In acest caz dimensiunea problemei este determinata de trei valori: (m, n, p).
In practica nu este necesara o analiza atat de detaliata ci este suficient sa se identifice operatia dominantă si sa se estimeze numarul de repetari ale acesteia. Prin operatie dominanta se ıntelege operatia care contribuie cel mai mult la timpul de executie a algoritmului si de regulă este operatia ce apare ın ciclul cel mai interior. În exemplul ar putea fi considerata ca operatie dominanta, operatia de ınmultire. In acest caz costul executiei algoritmului ar fi T(m, n, p)=mnp
Numim sortare orice aşezare(sau - mai clar - reaşezare) a unor elemente date în aşa fel încât, după aşezare, să existe o ordine completă în funcţie de un atribut(numit cheie) al elementelor.
Pentru a exista o ordine completă, trebuie să alegem o relaţie pe care vrem sa o impunem. Dacă relaţia este valabilă între oricare două elemente pentru care primul element este aşezat la stânga celui de-al doilea, atunci avem o ordine completă.
Exemplu: dacă alegem drept cheie un atribut număr întreg şi relaţia mai mic sau egal(⇐), obţinem ordinea crescătoare.
Vom descrie un algoritm de sortare prin:
Folosim notaţia O(n) pentru a indica:
Fiecare algoritm se bazează pe o metodă de sortare:
Sortarea prin metoda bulelor se consideră drept una din cele mai puţin efective metode de sortare, dar cu un algoritm mai simplu.
fiind comparate elementele alăturate a[i] si a[i+1]. Dacă vor fi găsite 2 elemente neordonate, valorile lor vor fi interschimbate.
elemente neordonate.
//sortare descrescatoare void bubble(int a[],int n) { int i,schimbat,aux; do { schimbat = 0; // parcurgem vectorul for(i = 0; i < n-1; i++) { // daca valoarea i din vectorul a este mai mica decat cea de pe pozitia i+1 if (a[i] < a[i+1]) { // interschimbare aux = a[i]; a[i] = a[i+1]; a[i+1] = aux; schimbat = 1; } } } while(schimbat); }
Acest algoritm selectează, la fiecare pas i, cel mai mic element din vectorul nesortat(de la poziţia i până la n).Valoarea minimă găsită la pasul i este pusă în vector la poziţia i,facându-se intereschimbarea cu poziţia actuală a minimului.Nu este un algoritm indicat pentru vectorii mari, în majoritatea cazurilor oferind rezultate mai slabe decât insertion sort şi bubble sort.
void selectionSort(int a[],int n) { int i,j,aux,min,minPoz; for(i = 0; i < n - 1;i++) { minPoz = i; min = a[i]; for(j = i + 1;j < n;j++) //selectam minimul //din vectorul ramas( de la i+1 la n) { if(min > a[j]) //sortare crescatoare { minPoz = j; //pozitia elementului minim min = a[j]; } } aux = a[i] ; a[i] = a[minPoz]; //interschimbare a[minPoz] = aux; } }
Spre deosebire de alţi algoritmi de sortare, sortarea prin inserţie este folosită destul de des pentru sortarea tablourilor cu număr mic de elemente. De exemplu, poate fi folosit pentru a îmbunătăţi rutina de sortare rapidă.
imaginar în două părţi - o parte sortată şi o parte nesortată. La început, partea sortată conţine primul element al tabloului şi partea nesortată conţine restul tabloului.
void insertionSort(int a[], int n) { int i, j, aux; for (i = 1; i < n; i++) { j = i; while (j > 0 && a[j - 1] > a[j]) { //cautam pozitia pe care sa mutam a[i] aux = a[j]; //interschimbare a[j] = a[j - 1]; a[--j] = aux; } } }
În cazul sortării prin interclasare, vectorii care se interclasează sunt două secvenţe ordonate din acelaşi vector. Sortarea prin interclasare utilizează metoda Divide et Impera:
ordonată la un moment dat şi interclasată cu o altă secvenţă din vector corespunzătoare.
Quick Sort este unul dintre cei mai rapizi şi mai utilizaţi algoritmi de sortare până în acest moment,bazându-se pe tehnica „Divide et impera“.Deşi cazul cel mai nefavorabil este O(N^2), în practică, QuickSort oferă rezultate mai bune decât restul algoritmilor de sortare din clasa „O(N log N)“.
Algoritmul se bazează pe următorii paşi:
E0. Alegeţi un algoritm A(dintre Bubble, Insertion şi Selection) şi un algoritm B(dintre Merge şi Quick). Introduceţi nişte variabile globale cu care să contorizaţi numărul de comparaţii pentru algoritmii A şi B. Comparaţi rezultatele pentru un vector de întregi de lungime n = 20.
E1. Implementaţi un algoritm(dintre Bubble, Insertion şi Selection) pentru sortarea unui vector cu n cuvinte de maxim 4 litere fiecare.
E2. Implementaţi un algoritm(dintre Merge şi Quick) pentru sortarea unui vector de structuri, unde fiecare structură reprezintă un moment de timp(int ora,min,sec).
E3. Se dă un vector de n întregi, iar toate valorile din vector sunt între 0 şi 1000. Sortaţi vectorul în timp O(n).
Puteţi utiliza următorul model pentru exerciţiile propuse: scheletsortare.zip
Pentru acest laborator puteți descărca scheletul de cod de aici. Descărcați arhiva și dezarhivați-o.
Puteti folosi utilitarul wget
pentru descarcare si utilitarul unzip
pentru dezarhivare.
wget http://elf.cs.pub.ro/sda-ab/wiki/_media/laboratoare/lab8_sortari-skel.zip
unzip lab8_sortari-skel.zip
Pentru compilare folositi comanda make
. Pentru rulare puteti folosi comanda make run
sau ./sort
.