
Network simulation in Haskell

Matei Popovici

April 2, 2015

1 Motivation

Firewall Proxy

F:0 F:1 P:0 P:1

F:2 P:2

R:0

Router

R:1

Allow src=1 or
src=3 from F:0,F:2,

 forward on F:1

Allow from P:0,
Rewrite dst = 2,
 forward on P:1

and P:2

Allow from R:0,
Rewrite src=3, dst = 3,

 forward on R:1

Figure 1: Toy network

Network topologies are increasingly harder to understand
and reason about. Thus, it is reasonable to build tools that
aid network administrators in verifying that topologies behave
as intended. Consider for instance the toy topology from Fig-
ure 1. How is traffic directed and modified? For instance, if we
send an arbitrary packet on port F:0 of the Firewall, what is
the received traffic on port P:1 of the Proxy?

The objective of this homework is to solve the reachability
problem: for a (i) given topology, (ii) input port, (iii) output
port and (iv) traffic pattern, what is the traffic which reaches
the output port, if the given traffic pattern is sent on the input
port ?

2 Details

The idea that we take is to interpret the topology as an im-
perative program which manipulates a fixed number of packet
header fields.

2.1 Traffic patterns

A packet header will contain a fixed number of header fields,
which is known in advance. For simplicity, in the following
examples, we shall assume a packet header contains two fields:
src and dst.

A traffic pattern is a description of a set of packets. Ex-
amples:

• “src = 1” — the set of packets having the header field src
equal to 1;

• “src = any” — the set of packets having the header field
src equal to any possible value;

• “src = 1 and dst = 0”;

• “src = 1 or dst = 0”;

• “(src = any and dst = 0) or src = 999”;

When solving homework, you must decide on a representa-
tion of traffic patterns, depending on the language of use. Hints
(and some simplifications) will be available for each homework.

2.2 Traffic patterns through the network

The simplified example from Figure 2 shows how traffic pat-
terns change, as they traverse the network. Assume an arbi-
trary traffic pattern is introduced on port F:0 of the Firewall.
The filtering policy of the firewall tells us that only packet head-
ers with the src header set to 1 will be forwarded on port F:1.
Next, F:1 is connected to port P:0 of the Proxy. The policy of
the proxy is to rewrite the dst field with the value of 2. Hence,
on port P:1 of the Proxy, only packets having src=1 and dst=2

are reachable.

Firewall Proxy

F:0 F:1 P:0 P:1

Allow src=1 from

F:0,

forward on F:1

Allow from P:0,

Rewrite dst = 2,

forward on P:1

Any | Any

Src Dst

1 | Any 1 | 2

Figure 2: An example of traffic processing

Thus, if the traffic pattern which is sent on F:0 is “src = any
and dst = any”, then the traffic pattern which is received on
P:1 is “src = 1 and dst = 2”.

In Figure 3 we have more elaborate policies implemented by
the Proxy and Firewall. Hence, the possible packets reachable
at port F:1 are those having either src=1 or src=3.

Hence, if the traffic pattern sent on F:0 is “src = any and
dst = any”, on F:1 we receive “src = 1 or src = 3”. Further on,
at port P:1, the traffic pattern is P:1 “(src = 1 or src = 3) and
dst = 2”.

2.3 Traffic pattern operations

The behaviour of each network device can be described by a
combination of basic operations: intersection, reunion, subset,
rewrite, which are applied traffic patterns:

1

Firewall Proxy

F:0 F:1 P:0 P:1

Allow src=1 or

src=3 from F:0,

forward on F:1

Allow from P:0,

Rewrite dst = 2,

forward on P:1

Figure 3: More complicated processing

• the intersection of the patterns p1 and p2 is the pattern:
“p1 and p2”.

• the reunion of patterns p1 and p2 is pattern: “p1 or p2”.

• p1 is a subset of p2 if all packet headers belonging to p1
are also in p2.

• rewriting v = e in pattern p means forcing header variable
v to have the value e, in p.

For instance, the filtering policy of the Firewall from Figure 2
can be modelled as the intersection of the arbitrary input pat-
tern p with the pattern “(src = 1 or src = 3)”. Similarly, the
policy of the Proxy can be modelled as the rewriting dst = 2
on the input flow.

2.4 Representing the topology

Every network processing unit (switch, router, firewall, etc.)
performs some modification on the traffic pattern it receives,
then it forwards the modified traffic pattern to the correct suc-
cessor. In other words, a network processing unit (henceforth
called NPU) must:

• establish if the traffic pattern received on some port is sub-
ject to modification

• modify the traffic pattern accordingly, if this is the case

We shall use rules to describe how NPUs answer these ques-
tions. A rule is a pair consisting of:

1. A match function. It takes a traffic pattern p as parameter
and returns match(p), which is true/false depending on
whether or not the rule should process the pattern. The
match function establishes if the rule is applicable on a
pattern p.

2. A modify function. It takes an initial pattern p and re-
turns a modified pattern modify(p). The modify function
encodes how the rule modifies p.

In what follows, to make the modelling more uniform, we
shall consider that a traffic pattern also contains it’s location
in the network. Hence, each pattern will contain “port =
〈port value〉. Thus, all packets arriving at port F:0 are rep-
resented by the pattern “src = any and dst = any and
port = F:0”.

Under this assumption, the devices from Example 3 can be
modelled as follows. The Firewall is modelled as a rule with:

• Match(p): check if p is a subset of “port = F:0”.

• Modify(p): compute the intersection of p with “(src = 1
and dst = any) or (src = 3 and dst = any)”. Next, rewrite
port = F:1 in the result.

Notice that the modify rule also models the sending of the flow
on the appropriate port. The proxy is modelled by the rule:

• Match(p): check if p is a subset of “port = P:0”.

• Modify(p): rewrite dst = 2 and port = P : 1 in p.

By adhering to our convention, port connections (wires) can
also be modelled as rules. For instance, the wire between ports
F:1 and P:0 can be modelled by the following rule:

• Match(p): check if p is a subset of “port = F:1”

• Modify(p): rewrite port = P:0 in p.

Also, we allow building more complicated rules from simpler
ones, by performing rule composition. Let r1 and r2 be rules
defined by functions match1(p), modify1(p) and match2(p),
modify2(p). The composition of rules r1 and r2 is defined by
the match function match1(p)∧match2(p) and the modify func-
tion modify1(modify2(p)). For instance, let rfwd encode the

forwarding logic of the Firewall:

• Match(p): check if p is a subset of “port = F:0”

• Modify(p): rewrite port = F:1 in p.

and rfilt encode the filtering policy:

• Match(p): return True

• Modify(p): compute the intersection of pattern p with
“(src = 1 and dst = any) or (src = 3 and dst = any)”;

Then, the Firewall can be modelled by the composition of
rfwd with rfilt. The advantage of this approach is that, via

composition, we can apply the same transformation logic to
several devices (working on different ports) in the network.

2.5 Reachability

Having a representation for packet headers and NPUs, we at-
tempt to address the reachability problem discussed in the in-
troductory section.

We assume the network topology is represented as a set NT
of rules, which include both NPU and wire rules. Computing
reachability can be described by the following procedure:

1. Start with A = {p}, where p is the initial pattern con-
taining the initial port. All = ∅. The set A contains all
patterns which are due exploration, and All contains all
previously-explored patterns.

2. Identify the set App ⊆ NT of rules which are applicable
on patterns from A.

(a) If App is empty, stop. Return All.

(b) Otherwise make A′ = ∅. A′ will contain the newly-
created patterns resulted in this step.

(c) For each rule r in App applicable on a pattern p in
A:

i. Compute p′ by applying r on p.

ii. Put p′ in A′.

(d) Make All = All ∪ A. We have explored all patterns
from A, thus, we move them in All.

2

(e) Make A = A′ \All. A now contains all newly
computed patterns in the current iteration

i. If A = ∅, then each current pattern was previ-
ously explored: we have a loop. Stop. Return
All.

ii. Otherwise, go to step 2 and repeat the process.

Once the procedure ends, it will return a set All of pat-
terns resulting from the entire network exploration. To find
out which patterns are reachable at a given destination port
pdest, it suffices to select from All those patterns containing
port = pdest.

To show how reachability works, we turn to the more com-
plicated network from Figure 1. NF contains four rules for the
devices and three rules for the links. The particularity is in
representing the Proxy, where two rules are now needed. One
rule models the policy from P:0 to 1 and the other, from P:0 to
P:2. Assume the initial pattern is pi ≡“src = any and dst = any
and port = F:0”.

step1 Only the rule modelling the firewall is applicable, on the
initial flow. Thus, A′ contains only the pattern p1 =
“(src = 1 and dst = any and port = F:1) or (src = 3 and
dst = any and port = F:1)”. At the end of this iteration
(after ii.), A = {p1}, while All= {pi}.

step2 The wire rule between the Firewall and the
Proxy is applicable. Hence, A′ contains p2 =
{{(src,1), (dst,any), (port,P:0)}, {(src,3), (dst,any), (port,P:0)}}.
A = {p2} and All= {pi, p1}.

step3 The two rules of the Proxy are applicable. Hence, A′ con-
tains p3 = “ (src = 1 and dst = 2 and port = P:1) or
(src = 3 and dst = 2 and port = P:1)“ and p4 =“(src = 1
and dst = 2 and port = P:2) or (src = 3 and dst = 2 and
port = P:2) A = {p3, p4} and All = {pi, p1, p2}.

step4 Only the wire rule from the Proxy to the Router is appli-
cable, on flow p4. A′ contains p5 = “(src = 1 and dst = 2
and port = R:0) or (src = 3 and dst = 2 and port = R:0)”.
A = {p5} and All = {pi, p1, p2, p3, p4}.

step5 The router rule is applicable on flow p5. A′ contains p6 =
“src = 3 and dst = 3 and port = R:1”. At the end of this
iteration A = {p6} and All = {pi, p1, p2, p3, p4, p5}.

step6 The wire rule from the Router to the Firewall is ap-
plicable. A′ contains p7 =“src = 3 and dst = 3 and
port = F:2”. At the end of this iteration A = {p7} and
All = {pi, p1, p2, p3, p4, p5, p6}.

step7 The Firewall rule is applicable. A′ contains p8 = “src = 3
and dst = 3 and port = F:1”. At the end of this iteration
A = {p8} and All = {pi, p1, p2, p3, p4, p5, p6, p7}.

step8 The wire rule from the Firewall to the Proxy is appli-
cable. A′ contains p9 = “src = 3 and dst = 3 and
port = P:0”. At the end of this iteration A = {p9} and
All = {pi, p1, p2, p3, p4, p5, p6, p7, p8}.

step9 Both proxy rules are applicable. A′ contains p10 =“src = 3
and dst = 2 and port = P:1” and p11 =“src = 3 and dst = 2
and port = P:2”. At the end of this iteration A = {p10, p11}
and All = {pi, p1, p2, p3, p4, p5, p6, p7, p8, p9}.

step10 The wire rule from the Proxy to the Router is appli-
cable. A′ contains p12 =“src = 3 and dst = 2 and
port = R:0”. At the end of this iteration A = {p12} and
All = {pi, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11}.

step11 The Router is applicable. A′ contains p13 =“src = 3
and dst = 3 and port = R:1”. Note that p13 is al-
ready contained in All since p13 = p6. Hence, at the
end of the iteration A = ∅. The procedure returns
All = {pi, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12}.

Finally, we examine all patterns which contain P:1 as current
port. p3, p10 satisfy this condition. Hence, the reunion of p3
and p10 is reachable on port P:1 of the Proxy.

3

