Lecture 08
Code Reuse (part 1)

CNSS

CTF crunch Computer and Network Security

November 18, 2019

Computer Science and Engineering Department

Notes

CNSS Defense Mechanisms
> static & dynamic analysis
» ASCIIl armored address space
> stack guard, canary value
> DEP: Data Execution Prevention
> ASLR: Address Space Layout Randomization

Notes

CNS’&&J Data Execution Prevention

uuuuuu

> writable code may not be executed
> stack, heap, data, bsss

> you cannot (easily) inject code (and run it)

Code Reuse

uuuuuuu

use existing code
text and library text

>
>
> interesting to use/call functions
> smaller pieces may also be used
>

no need to inject code

Notes

Notes




CNS‘;] return-to-libc

uuuuuuu

> call existing library functions
> canonical exploit is calling system("/bin/sh") in libc

> code pointer is overwriten with address of library function

Notes

CCNSG" Return-Oriented Programming

uuuuuuu

> use smaller pieces of code
> pieces are called ROP gadgets, ending in ret instruction
> payload consists of data on stack and pointers to ROP gadgets

CNSS High-level View

uuuuuu

> call functions in libraries (1ibc)
> call system("/bin/sh") for a shell

> call puts() for information leak

cCNS'éj Steps in a ret-to-libc attack

uuuuuuu

> buffer overflow required

> identify function addresses and addresses of arguments (such
as the " /bin/sh” string)

> ovewrite code pointer with function address

> place arguments on stack

Notes

Notes

Notes




cCNS‘@; Sample Payloads for ret-to-libc attack

uuuuuuu

> padding + overwrite_lib_address +
irrelevant_ret_address + argl + arg2 + ...

> offset*"A" + p32(system_address) + 4%"B" +
p32(bin_sh_address)

> offset*"A" + p32(write) + 4x"B" + p32(1) +
p32(buf_address) + p32(buf_len)

Notes

CCNSG‘ Protecting Against ret-to-libc Attacks

uuuuuuu

> use ASLR to randomize function addresses in library
> use stack canary
> need information leak to bypass protection mechanisms

CNSS ret-to-libc Shortcomings

uuuuuu

> cannot chain multiple calls due to stack limitations

> function calls may be too coarse; you may need smaller chunks

CNS@ Remember ret Instruction

uuuuuuu

> pop instruction/code pointer from stack
> code pointer was placed by call instruction ...

> ... or by exloit payload

Notes

Notes

Notes




CNSS pop-ret

uuuuuuu

> a sequence: data + code pointer on the stack is used by a
pop; ret sequence

> e.g.: pop eax; ret: place data in eax and pop instruction
pointer from stack

> you may use pop2-ret or pop3-ret etc.

Notes

CCNS'GJ Freeing the Stack

uuuuuuu

> chain together multiple functions

> after calling a function do a pop-ret or popX-ret to free
function arguments

CCNSG‘ ROP Payloads

uuuuuu

> offset*"A" + p32(puts) + p32(pop_ret_gadget) +
p32(puts_string_address)

> offsetx"A" + p32(write) + p32(pop3_ret_gadget) +
p32(1) + p32(buf) + p32(buf_len)

CCNSC" Return Oriented Programming

uuuuuuu

> using function calls + ret-based calls to chain together code
reuse chunks

> makes use of ROP gadgets

> is a Turing-complete language

Notes

Notes

Notes




cCNS‘@; ROP Gadget

uuuuuuu

> small sequences ending in ret
> use ROPgadget tool (comes with pwntools)

> use ropgadget or ropsearch or asmsearch in PEDA

Notes

QNSG‘ ROP Chain

uuuuuuu

> chain together function calls + ROP gadgets
» do information leak, rewrites, open sockets, run shells

Notes

CCNSG‘ Use Cases

uuuuuu

> leak information: variables, addresses
> open shell
> call mprotect () to disable DEP and then inject shellcode

cCNS‘:j Keywords

uuuuuuu

» DEP

» ROP gadget
> code reuse

» ROP chain

> return-to-libc
> ROPgadget

» ROP

Notes

Notes




CNSS

https://www.blackhat.com/presentations/bh-usa-08/
Shacham/BH_US_08_Shacham_Return_Oriented_
Programming.pdf
https://trailofbits.files.wordpress.com/2010/04/
practical-rop.pdf
http://codearcana.com/posts/2013/05/28/
introduction-to-return-oriented-programming-rop.
html

https://github.com/JonathanSalwan/ROPgadget

Notes

Notes

Notes

Notes



https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
https://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
http://codearcana.com/posts/2013/05/28/introduction-to-return-oriented-programming-rop.html
https://github.com/JonathanSalwan/ROPgadget

	return-to-libc
	Return-Oriented Programming

