Lecture 7
Strings. Information Leaks

CNST
CTF crunch Computer and Network Security
November 11, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 7, Strings




CNSS Stack Frame

CTF crunch

> created for each function call

v

caller stores function arguments in registers or on stack

> issues call — saves instruction pointer and jumps to function
code

> calee saves frame pointer, points frame pointer to current
stack top and decrements stack pointer (increses the stack)

> the other way around for returning from a function call

CSE Dep, ACS, UPB ecture 7, Strings. Information



CNSS

CTF crunch

vVvYVvyVvVvyVvyy

Stack Pointer

stack top

stack pointer decreases — stack grows
stack pointer increases — stack shrinks
esp on x86

rsp on x86_64

push and pop instructions

CSE Dep, ACS, UPB




CNSE}J Instruction Pointer

CTF crunch

P instruction to run

> value at a given time is the address of the next instruction
(next to the one being currently run)

> affected by jmp & friends, call and ret

v

needs to point to an executable memory area

> may point to an injected code to trigger an exploit

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 5/49



FFFFFF

vvyyy

v

Buffer

contiguous memory area; array of bytes
possesses: base address, length, type
operations: allocate, free, index, get, set, copy to/from

exploitable through: bounds overflow (buffer overflow) and
wrong index (index out of bounds)

exploits often make use of string buffers

CSE Dep, ACS, UPB



QNSG: Shellcode

FFFFFF

vVvYvyyVvyy

set of machine code instructions running as an exploit
injected by the attacker in the stack, heap or another area
the area needs to be executable

instruction pointer is set at the beginning of the shellcode

usually it runs an execve("/bin/bash", "/bin/bash") call

CSE Dep, ACS, UPB



FFFFFF

Defense Mechanisms

static & dynamic analysis

ASCII armored address space

stack guard, canary value

DEP: Data Execution Prevention

ASLR: Address Space Layout Randomization

CSE Dep, ACS, UPB

8/49



CNSS What Is a String?

CTF crunch

memory address

array

array of characters

ends with null character (*\0?)

data exchange between program and user/environment

vVvVvYvyVvYyvyy

difference between code and data at “primary level” —
non-existent

CSE Dep, ACS, UPB



QNSE}J What Is a Character?

FFFFFF

> a singular element of a string
P not inherently signed or unsigned
> character data — used for strings

> representation (number of bits/bytes) may depend on
hardware architecture and compiler

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks



FFFFFF

vVvyYyyvyy

String Data Types

byte character types: char, signed char, unsigned char
char may be defined as either signed char or unsigned char
char is distinct

char is the type of each element of a literal

char is used for character data

CSE Dep, ACS, UPB



vvyyy

v

Data Type Casting

what kind of data type is EQF?
what kind of data type is >a’ or >\0’7
what happens when you compare chars with int?

why does fgetc return an int? why does isalpha() receive
an int as argument?

always cast char to unsigned char for string comparisons

CSE Dep, ACS, UPB




FFFFFF

v

Null-Terminated Byte Strings (NTBS)

naming from Robert Seacord (Secure Coding Initiative at
CERT)

use null character or NUL byte (’>\0?) for ending strings
length is number of characters, excluding null character

string has to fit into a memory/buffer/array, otherwise it
exceeds bounds

CSE Dep, ACS, UPB



CNSS Character Type Operators

CTF crunch

> char is used for strings
> only =, ==, I=should be used for char

P comparisons must be handled by signed char or unsigned
char

15/49

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks



CNSS String Operations

CTF crunch

allocation: static, dynamic
initialization

copying

concatenating

duplicating

truncating

browsing

find length

vVVvVvvyVvVvyYVvyYVvyy

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 16/49



CQNSG: String Bounds

FFFFFF

> you always need to know string length
P a proper string needs to be null-terminated
> never go past a string

> buffer overflows and other kinds of attacks are due to
exceeding string bounds

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks



CNS‘C‘J' Null Termination

CTF crunch

> a proper string ends in the ’\0’ character
> if missing null termination, string operations will go crazy

P any string operation ends at null termination

CSE Dep, ACS, UPB Lecture 19/49




CNSS Truncation

CTF crunch

> functions such as strncpy truncate the string

> string truncation may cause exploits — truncate the string at
the right time and append something else

> if truncation occurs, the programmer must be aware of it and
treat it accordingly

P string size must always be known

CSE Dep, ACS, UPB




ccT;Nse Off-by-One

cccccc

> due to bad computation, a value may be increased or
decreased with a unit

> that may be the string length or placement of the null
terminator

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 21



QNS‘(}J Data Sanitization

FFFFFF

some characters may be invalid for current processing
see SQL injection attacks

string should be validated

white listing or black listing

vVvYvyyVvyy

null terminators inside the string

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks 22/49



CQNS%J String Tokenizing

FFFFFF

P> make sure you don’t break the initial string

v

avoid strtok and strsep

» should be done by a Bison/Flex or a custom parser that is
able to fully browse the whole string

> while tokenizing have in mind the other issues with strings

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks



c(T}NS“‘ String Length

FFFFFF

> needs to always be known

> any string operation functions are there to make it easy for
the programmer, not to assume string length

> most string management functions may be replaced by
memcpy ()

CSE Dep, ACS, UPB



CNS‘(\j‘ Vulnerabilities

CTF crunch

> aim for an exploit
P run arbitrary code
> pass a condition

> execute shellcode

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 26/49



CNSS

CTF crunch

vVvyYyyvyy

Reminders

stack

stack frame
buffer overflow
return address

shellcode

CSE Dep, ACS, UPB

Lecture 7, Strings. Information Leaks

27/49



CNSS String Buffer Overflow

CTF crunch

> go past string boundary

> when using gets (deprecated in C99, removed in C1X)
> when copying strings

P overwrite

> variable value
> function pointer data
> return address

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 28/49



QFNSG: Exploit Types

ccccc

> write variable or function pointer through buffer overflow

> code injection, arbitrary code run, run code on stack/heap,
shell code

> return-to-libc (arc injection) aim for system() or exec()

CSE Dep, ACS, UPB



CNS‘(}J Input Validation

CTF crunch

P input must not be trusted

> always check string content and string size
> be on the lookout for

> invalid characters
> strings that are too large
P string truncation

P input is
» command line arguments
environment variables

standard input
files, sockets and pipes

vvyy

CSE Dep, ACS, UPB




CNSS

Memory Management Models
CTF crunch

> caller allocates, caller frees — strcpy

> callee allocates, caller frees — strdup

> callee allocates, callee frees — init and destroy functions,
constructors and destructor methods

CSE Dep, ACS, UPB

Lecture 7

32/49



CNSS Consistency

CTF crunch

make sure you use the memory management model for strings
use the same functions in the same way

check using the same approaches

vvyyy

if required, define custom string management functions and
use those

CSE Dep, ACS, UPB




FFFFFF

Better String Management Functions

strncpy (ANSI), strlcpy (BSD), strcpy_s (Windows)
these functions are not bullet proof
strncpy solves out of bounds problems

strlcpy is better than strncpy: solves missing Null
termination

string truncation is still a problem
a programmer still needs to know string size

these functions don’'t make a good programmer out of a bad
programmer

CSE Dep, ACS, UPB



QNS‘(}}: String Length

FFFFFF

> needs to always be known (yup, it's the third time we say this)
> know size of the whole string; beware of

> >\0’ characters in string
P string truncation

> beware of sizeof () vs. strlen()

> sizeof(a) == strlen(a), if ais an array
> sizeof(a) != strlen(a), is p is a pointer

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks 35/49



QNSE}J String Mangement in Python

FFFFFF

We use Python for input generation since first lab
encode () /decode () handles hex representation of characters
lambda functions on string characters using join()

list slicing using [x:y]

list indices, also negatives

CSE Dep, ACS, UPB



CNS%J: String Management in pwntools

> p32() and p64() format addresses like its original
representation in memory (endianness and sign)

» unpack function translates back to unpacked number
depending on the data size, endianness and sign

> alternative: pack and unpack functions from struct module

CSE Dep, ACS, UPB



CNS‘C‘J' Information Leak

CTF crunch

> string formats are used to know how to show data and its size

> if the format can be manipulated by program input, private
data can be read

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 39/49



QNSG: Leaking with puts

FFFFFF

puts reads parameter data from stack until terminating null
byte

if the parameter string is not properly placed in memory, puts
will read bytes and leak important information

buffers are placed under old ebp and return address in process
memory layout

usually this data can be leaked using puts

CSE Dep, ACS, UPB

7, Strings. Information Leaks 40/49



CNSS GOT Leaking

CTF crunch

> GOT stores library address
> GOT address is known for non-PIE executables

> usual to leak GOT puts address using puts

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 41/49



CQFNSE‘)' Basic Leaking with printf

cccccc

> printf called without format parameter can let us place our
own format

> printf (buf); considering buf is read from input
> printf reads parameters from stack, by format

CSE Dep, ACS, UPB



QNSA’ Format String Attack

FFFFFF

> printf format argument %x - prints a number in hex format

> printf format argument %n - writes the number of bytes
written. The number is placed at the address given as
parameter

» Enough to read and write memory if the attacker has access
to format parameter

CSE Dep, ACS, UPB



CCNSG‘ Recommendations

cccccc

» STROO-C to STR10-C on “07. Characters and Strings” in
CERT C Secure Coding Standard

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks

45/49



CNSS Rules
» STR30-C to STR38-C on “07. Characters and Strings” in
CERT C Secure Coding Standard




CNSS Keywords

CTF crunch

> string > bounds

» character > overflow

» char, signed char, > truncation
unsigned char > sanitization

» NTBS > gets

» null character > exploit

» character operators > input validation

> string operations » memory model

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks 48/49



CCNS’C;J: References

FFFFFF

» CERT C Secure Coding Standard — 07. Characters and
Strings (STR) — https://www.securecoding.cert.org/
confluence/pages/viewpage.action?pageld=271

» Secure Coding in C and C++ Class

> Module 1. Strings

» Secure Coding in C and C++

> Chapter 2. Strings

CSE Dep, ACS, UPB


https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=271
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=271

	Recap
	Overview of Strings
	Issues with Strings
	String Vulnerabilities
	String Management
	Information Leaks
	Recommendations and Rules
	Conclusion

