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CNSS Stack Frame

CTF crunch

> created for each function call

v

caller stores function arguments in registers or on stack

> issues call — saves instruction pointer and jumps to function
code

> calee saves frame pointer, points frame pointer to current
stack top and decrements stack pointer (increses the stack)

> the other way around for returning from a function call
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CNSS
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Stack Pointer

stack top

stack pointer decreases — stack grows
stack pointer increases — stack shrinks
esp on x86

rsp on x86_64

push and pop instructions
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CNSE}J Instruction Pointer

CTF crunch

P instruction to run

> value at a given time is the address of the next instruction
(next to the one being currently run)

> affected by jmp & friends, call and ret

v

needs to point to an executable memory area

> may point to an injected code to trigger an exploit
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Buffer

contiguous memory area; array of bytes
possesses: base address, length, type
operations: allocate, free, index, get, set, copy to/from

exploitable through: bounds overflow (buffer overflow) and
wrong index (index out of bounds)

exploits often make use of string buffers
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QNSG: Shellcode
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set of machine code instructions running as an exploit
injected by the attacker in the stack, heap or another area
the area needs to be executable

instruction pointer is set at the beginning of the shellcode

usually it runs an execve("/bin/bash", "/bin/bash") call
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Defense Mechanisms

static & dynamic analysis

ASCII armored address space

stack guard, canary value

DEP: Data Execution Prevention

ASLR: Address Space Layout Randomization
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CNSS What Is a String?
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memory address

array

array of characters

ends with null character (*\0?)

data exchange between program and user/environment

vVvVvYvyVvYyvyy

difference between code and data at “primary level” —
non-existent
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QNSE}J What Is a Character?

FFFFFF

> a singular element of a string
P not inherently signed or unsigned
> character data — used for strings

> representation (number of bits/bytes) may depend on
hardware architecture and compiler
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String Data Types

byte character types: char, signed char, unsigned char
char may be defined as either signed char or unsigned char
char is distinct

char is the type of each element of a literal

char is used for character data
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Data Type Casting

what kind of data type is EQF?
what kind of data type is >a’ or >\0’7
what happens when you compare chars with int?

why does fgetc return an int? why does isalpha() receive
an int as argument?

always cast char to unsigned char for string comparisons
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Null-Terminated Byte Strings (NTBS)

naming from Robert Seacord (Secure Coding Initiative at
CERT)

use null character or NUL byte (’>\0?) for ending strings
length is number of characters, excluding null character

string has to fit into a memory/buffer/array, otherwise it
exceeds bounds
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CNSS Character Type Operators

CTF crunch

> char is used for strings
> only =, ==, I=should be used for char

P comparisons must be handled by signed char or unsigned
char
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CNSS String Operations
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allocation: static, dynamic
initialization

copying

concatenating

duplicating

truncating

browsing

find length
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CQNSG: String Bounds
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> you always need to know string length
P a proper string needs to be null-terminated
> never go past a string

> buffer overflows and other kinds of attacks are due to
exceeding string bounds
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CNS‘C‘J' Null Termination
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> a proper string ends in the ’\0’ character
> if missing null termination, string operations will go crazy

P any string operation ends at null termination
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CNSS Truncation
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> functions such as strncpy truncate the string

> string truncation may cause exploits — truncate the string at
the right time and append something else

> if truncation occurs, the programmer must be aware of it and
treat it accordingly

P string size must always be known
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ccT;Nse Off-by-One

cccccc

> due to bad computation, a value may be increased or
decreased with a unit

> that may be the string length or placement of the null
terminator
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QNS‘(}J Data Sanitization
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some characters may be invalid for current processing
see SQL injection attacks

string should be validated

white listing or black listing

vVvYvyyVvyy

null terminators inside the string
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CQNS%J String Tokenizing
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P> make sure you don’t break the initial string

v

avoid strtok and strsep

» should be done by a Bison/Flex or a custom parser that is
able to fully browse the whole string

> while tokenizing have in mind the other issues with strings
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c(T}NS“‘ String Length
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> needs to always be known

> any string operation functions are there to make it easy for
the programmer, not to assume string length

> most string management functions may be replaced by
memcpy ()
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CNS‘(\j‘ Vulnerabilities
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> aim for an exploit
P run arbitrary code
> pass a condition

> execute shellcode
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CNSS
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Reminders

stack

stack frame
buffer overflow
return address

shellcode
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CNSS String Buffer Overflow
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> go past string boundary

> when using gets (deprecated in C99, removed in C1X)
> when copying strings

P overwrite

> variable value
> function pointer data
> return address
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QFNSG: Exploit Types

ccccc

> write variable or function pointer through buffer overflow

> code injection, arbitrary code run, run code on stack/heap,
shell code

> return-to-libc (arc injection) aim for system() or exec()
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CNS‘(}J Input Validation
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P input must not be trusted

> always check string content and string size
> be on the lookout for

> invalid characters
> strings that are too large
P string truncation

P input is
» command line arguments
environment variables

standard input
files, sockets and pipes

vvyy
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CNSS

Memory Management Models
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> caller allocates, caller frees — strcpy

> callee allocates, caller frees — strdup

> callee allocates, callee frees — init and destroy functions,
constructors and destructor methods
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CNSS Consistency
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make sure you use the memory management model for strings
use the same functions in the same way

check using the same approaches

vvyyy

if required, define custom string management functions and
use those
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Better String Management Functions

strncpy (ANSI), strlcpy (BSD), strcpy_s (Windows)
these functions are not bullet proof
strncpy solves out of bounds problems

strlcpy is better than strncpy: solves missing Null
termination

string truncation is still a problem
a programmer still needs to know string size

these functions don’'t make a good programmer out of a bad
programmer
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QNS‘(}}: String Length
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> needs to always be known (yup, it's the third time we say this)
> know size of the whole string; beware of

> >\0’ characters in string
P string truncation

> beware of sizeof () vs. strlen()

> sizeof(a) == strlen(a), if ais an array
> sizeof(a) != strlen(a), is p is a pointer
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QNSE}J String Mangement in Python
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We use Python for input generation since first lab
encode () /decode () handles hex representation of characters
lambda functions on string characters using join()

list slicing using [x:y]

list indices, also negatives
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CNS%J: String Management in pwntools

> p32() and p64() format addresses like its original
representation in memory (endianness and sign)

» unpack function translates back to unpacked number
depending on the data size, endianness and sign

> alternative: pack and unpack functions from struct module
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CNS‘C‘J' Information Leak
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> string formats are used to know how to show data and its size

> if the format can be manipulated by program input, private
data can be read
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QNSG: Leaking with puts
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puts reads parameter data from stack until terminating null
byte

if the parameter string is not properly placed in memory, puts
will read bytes and leak important information

buffers are placed under old ebp and return address in process
memory layout

usually this data can be leaked using puts
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CNSS GOT Leaking
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> GOT stores library address
> GOT address is known for non-PIE executables

> usual to leak GOT puts address using puts
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CQFNSE‘)' Basic Leaking with printf

cccccc

> printf called without format parameter can let us place our
own format

> printf (buf); considering buf is read from input
> printf reads parameters from stack, by format
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QNSA’ Format String Attack
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> printf format argument %x - prints a number in hex format

> printf format argument %n - writes the number of bytes
written. The number is placed at the address given as
parameter

» Enough to read and write memory if the attacker has access
to format parameter
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CCNSG‘ Recommendations

cccccc

» STROO-C to STR10-C on “07. Characters and Strings” in
CERT C Secure Coding Standard
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CNSS Rules
» STR30-C to STR38-C on “07. Characters and Strings” in
CERT C Secure Coding Standard




CNSS Keywords
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> string > bounds

» character > overflow

» char, signed char, > truncation
unsigned char > sanitization

» NTBS > gets

» null character > exploit

» character operators > input validation

> string operations » memory model

CSE Dep, ACS, UPB ecture 7, Strings. Information Leaks 48/49



CCNS’C;J: References
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» CERT C Secure Coding Standard — 07. Characters and
Strings (STR) — https://www.securecoding.cert.org/
confluence/pages/viewpage.action?pageld=271

» Secure Coding in C and C++ Class

> Module 1. Strings

» Secure Coding in C and C++

> Chapter 2. Strings
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