
Lecture 7
Strings. Information Leaks

Computer and Network Security
November 11, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 1/49

Stack Frame

I created for each function call

I caller stores function arguments in registers or on stack

I issues call → saves instruction pointer and jumps to function
code

I calee saves frame pointer, points frame pointer to current
stack top and decrements stack pointer (increses the stack)

I the other way around for returning from a function call

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 3/49

Stack Pointer

I stack top

I stack pointer decreases → stack grows

I stack pointer increases → stack shrinks

I esp on x86

I rsp on x86 64

I push and pop instructions

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 4/49

Instruction Pointer

I instruction to run

I value at a given time is the address of the next instruction
(next to the one being currently run)

I affected by jmp & friends, call and ret

I needs to point to an executable memory area

I may point to an injected code to trigger an exploit

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 5/49

Buffer

I contiguous memory area; array of bytes

I possesses: base address, length, type

I operations: allocate, free, index, get, set, copy to/from

I exploitable through: bounds overflow (buffer overflow) and
wrong index (index out of bounds)

I exploits often make use of string buffers

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 6/49

Shellcode

I set of machine code instructions running as an exploit

I injected by the attacker in the stack, heap or another area

I the area needs to be executable

I instruction pointer is set at the beginning of the shellcode

I usually it runs an execve("/bin/bash", "/bin/bash") call

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 7/49

Defense Mechanisms

I static & dynamic analysis

I ASCII armored address space

I stack guard, canary value

I DEP: Data Execution Prevention

I ASLR: Address Space Layout Randomization

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 8/49

What Is a String?

I memory address

I array

I array of characters

I ends with null character (’\0’)

I data exchange between program and user/environment

I difference between code and data at “primary level” –
non-existent

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 10/49



What Is a Character?

I a singular element of a string

I not inherently signed or unsigned

I character data – used for strings

I representation (number of bits/bytes) may depend on
hardware architecture and compiler

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 11/49

String Data Types

I byte character types: char, signed char, unsigned char

I char may be defined as either signed char or unsigned char

I char is distinct

I char is the type of each element of a literal

I char is used for character data

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 12/49

Data Type Casting

I what kind of data type is EOF?

I what kind of data type is ’a’ or ’\0’?

I what happens when you compare chars with int?

I why does fgetc return an int? why does isalpha() receive
an int as argument?

I always cast char to unsigned char for string comparisons

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 13/49

Null-Terminated Byte Strings (NTBS)

I naming from Robert Seacord (Secure Coding Initiative at
CERT)

I use null character or NUL byte (’\0’) for ending strings

I length is number of characters, excluding null character

I string has to fit into a memory/buffer/array, otherwise it
exceeds bounds

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 14/49

Character Type Operators

I char is used for strings

I only =, ==, != should be used for char

I comparisons must be handled by signed char or unsigned
char

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 15/49

String Operations

I allocation: static, dynamic

I initialization

I copying

I concatenating

I duplicating

I truncating

I browsing

I find length

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 16/49

String Bounds

I you always need to know string length

I a proper string needs to be null-terminated

I never go past a string

I buffer overflows and other kinds of attacks are due to
exceeding string bounds

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 18/49

Null Termination

I a proper string ends in the ’\0’ character

I if missing null termination, string operations will go crazy

I any string operation ends at null termination

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 19/49



Truncation

I functions such as strncpy truncate the string

I string truncation may cause exploits – truncate the string at
the right time and append something else

I if truncation occurs, the programmer must be aware of it and
treat it accordingly

I string size must always be known

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 20/49

Off-by-One

I due to bad computation, a value may be increased or
decreased with a unit

I that may be the string length or placement of the null
terminator

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 21/49

Data Sanitization

I some characters may be invalid for current processing

I see SQL injection attacks

I string should be validated

I white listing or black listing

I null terminators inside the string

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 22/49

String Tokenizing

I make sure you don’t break the initial string

I avoid strtok and strsep

I should be done by a Bison/Flex or a custom parser that is
able to fully browse the whole string

I while tokenizing have in mind the other issues with strings

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 23/49

String Length

I needs to always be known

I any string operation functions are there to make it easy for
the programmer, not to assume string length

I most string management functions may be replaced by
memcpy()

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 24/49

Vulnerabilities

I aim for an exploit

I run arbitrary code

I pass a condition

I execute shellcode

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 26/49

Reminders

I stack

I stack frame

I buffer overflow

I return address

I shellcode

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 27/49

String Buffer Overflow

I go past string boundary

I when using gets (deprecated in C99, removed in C1X)

I when copying strings
I overwrite

I variable value
I function pointer data
I return address

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 28/49



Exploit Types

I write variable or function pointer through buffer overflow

I code injection, arbitrary code run, run code on stack/heap,
shell code

I return-to-libc (arc injection) aim for system() or exec()

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 29/49

Input Validation

I input must not be trusted

I always check string content and string size
I be on the lookout for

I invalid characters
I strings that are too large
I string truncation

I input is
I command line arguments
I environment variables
I standard input
I files, sockets and pipes

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 31/49

Memory Management Models

I caller allocates, caller frees – strcpy

I callee allocates, caller frees – strdup

I callee allocates, callee frees – init and destroy functions,
constructors and destructor methods

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 32/49

Consistency

I make sure you use the memory management model for strings

I use the same functions in the same way

I check using the same approaches

I if required, define custom string management functions and
use those

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 33/49

Better String Management Functions

I strncpy (ANSI), strlcpy (BSD), strcpy_s (Windows)

I these functions are not bullet proof

I strncpy solves out of bounds problems

I strlcpy is better than strncpy: solves missing Null

termination

I string truncation is still a problem

I a programmer still needs to know string size

I these functions don’t make a good programmer out of a bad
programmer

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 34/49

String Length

I needs to always be known (yup, it’s the third time we say this)
I know size of the whole string; beware of

I ’\0’ characters in string
I string truncation

I beware of sizeof() vs. strlen()
I sizeof(a) == strlen(a), if a is an array
I sizeof(a) != strlen(a), is p is a pointer

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 35/49

String Mangement in Python

I We use Python for input generation since first lab

I encode()/decode() handles hex representation of characters

I lambda functions on string characters using join()

I list slicing using [x:y]

I list indices, also negatives

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 36/49

String Management in pwntools

I p32() and p64() format addresses like its original
representation in memory (endianness and sign)

I unpack function translates back to unpacked number
depending on the data size, endianness and sign

I alternative: pack and unpack functions from struct module

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 37/49



Information Leak

I string formats are used to know how to show data and its size

I if the format can be manipulated by program input, private
data can be read

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 39/49

Leaking with puts

I puts reads parameter data from stack until terminating null
byte

I if the parameter string is not properly placed in memory, puts
will read bytes and leak important information

I buffers are placed under old ebp and return address in process
memory layout

I usually this data can be leaked using puts

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 40/49

GOT Leaking

I GOT stores library address

I GOT address is known for non-PIE executables

I usual to leak GOT puts address using puts

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 41/49

Basic Leaking with printf

I printf called without format parameter can let us place our
own format

I printf(buf); considering buf is read from input

I printf reads parameters from stack, by format

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 42/49

Format String Attack

I printf format argument %x - prints a number in hex format

I printf format argument %n - writes the number of bytes
written. The number is placed at the address given as
parameter

I Enough to read and write memory if the attacker has access
to format parameter

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 43/49

Recommendations

I STR00-C to STR10-C on “07. Characters and Strings” in
CERT C Secure Coding Standard

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 45/49

Rules

I STR30-C to STR38-C on “07. Characters and Strings” in
CERT C Secure Coding Standard

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 46/49

Keywords

I string

I character

I char, signed char,
unsigned char

I NTBS

I null character

I character operators

I string operations

I bounds

I overflow

I truncation

I sanitization

I gets

I exploit

I input validation

I memory model

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 48/49



References

I CERT C Secure Coding Standard – 07. Characters and
Strings (STR) – https://www.securecoding.cert.org/

confluence/pages/viewpage.action?pageId=271

I Secure Coding in C and C++ Class
I Module 1. Strings

I Secure Coding in C and C++
I Chapter 2. Strings

CSE Dep, ACS, UPB Lecture 7, Strings. Information Leaks 49/49

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=271
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=271

	Recap
	Overview of Strings
	Issues with Strings
	String Vulnerabilities
	String Management
	Information Leaks
	Recommendations and Rules
	Conclusion

