
Lecture 6
Exploit Protection Mechanisms

Computer and Network Security
November 07, 2022

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 1/40



Outline

Exploiting: Recap

Preventing Existence

Preventing Exploitation

Summary

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 2/40



Why Do Exploiting?

▶ money

▶ fame

▶ money

▶ challenge

▶ money

▶ politics

▶ fun

▶ career

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 3/40



Exploiting for Ethical People/Hackers

▶ penetration testing

▶ security consulting

▶ security auditing

▶ prepare for defense

▶ knowledge base

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 4/40



Attack Objectives

▶ gain control (root access)

▶ leak information (privacy leaks, passwords)

▶ cripple infrastructure (denial of service, shut down)

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 5/40



Runtime Application Attacks

▶ exploit applications while running

▶ alter application behavior

▶ exploiting vulnerabilities and misconfigurations

▶ focus is controlling the system (root account)

▶ an intermediary step is gaining shell access to user

▶ privilege escalation

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 6/40



Steps in Runtime Application Attacks

▶ goal is alter the application control flow

▶ either use existing functionality (in some new way) or inject
new functionality

▶ rewrite/rewire configuration/code to create a new execution
path

▶ it starts with a buffer overflow and an overwrite of data

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 7/40



Control Flow Attacks

▶ buffer overflow overwrites a code pointer

▶ find a suitable address to point new code pointer to

▶ execute new path

▶ code pointer may be: return address (on stack), function
pointer

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 8/40



Buffer Overflow

▶ write beyond buffer limits

▶ stack-based overflow: overwrite variable, return address or
function pointer

▶ heap overflow: corrupt dynamically allocated memory

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 9/40



Shellcode

▶ sequence of machine level instructions

▶ stored in memory at a convenient address

▶ executed when requested by jumping at the start address

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 10/40



Using the Local Stack

▶ place shellcode in local buffer on stack

▶ rewrite return address to point to beginning of the buffer on
the stack

▶ may need NOPs if exact address is not known

▶ unable to be done if stack is non-executable

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 11/40



Shellcode Attack Vector

▶ find vulnerability: buffer overflow

▶ determine offset from buffer to code pointer

▶ determine address of buffer storing the shellcode

▶ build shellcode

▶ create payload: injected shellcode + padding + return address
overwrite in payload

▶ trigger attack: send data as argument, standard input or
environment variable; jump to shellcode address

▶ attack is executed by executing shellcode

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 12/40



Protection Mechanism

▶ (from Jonathan Katz, CMSC 414, Computer and Network
Security)

▶ prevent existence
▶ safe programming/secure coding
▶ input validation
▶ static/dynamic analysis

▶ prevent exploitation
▶ ASCII armored address space
▶ stack guard/stack protection
▶ non executable stack/data execution prevention
▶ address space layout randomization (ASLR)

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 13/40



Outline

Exploiting: Recap

Preventing Existence

Preventing Exploitation

Summary

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 14/40



Safe Programming

▶ string management

▶ integer management

▶ buffer management

▶ bounds checking

▶ safe typing, data conversions

▶ code auditing

▶ . . .

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 15/40



Input Validation

▶ sanitizing input

▶ all are printable characters in case of string functions

▶ proper data type, proper sign

▶ may incur overhead

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 16/40



Static Analysis

▶ analyze source code without running the program

▶ coverity, cppcheck, splint, clang static analyzer

▶ may also be done on binary files: Veracode, CodeSonar

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 17/40



Dynamic Analysis

▶ run program and find vulnerabilities

▶ fuzz testing: send random data as input

▶ slows program, may find more problems

▶ valgrind, purify, dmalloc

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 18/40



Outline

Exploiting: Recap

Preventing Existence

Preventing Exploitation

Summary

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 19/40



At a Glance

▶ code integrity protection

▶ randomize address space

▶ stack guard

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 20/40



ASCII Armored Address Space

▶ place code, data and libraries at addresses starting with 0x00

▶ disables attacks that require the NUL byte to be absent

▶ certain attacks may work even if the NUL byte is present

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 21/40



Code Integrity

▶ do not modify code, do no execute writable zone

▶ stack and other zones of memory that are writable are marked
non-executable

▶ any jump to the stack or heap would result in access violation

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 22/40



W xor X

▶ page/segment is either writable or executable

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 23/40



NX Bit

▶ page is marked as non-executable

▶ CPU bit, set by OS

▶ may be bypassed using mprotect()

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 24/40



Bypassing DEP

▶ jump to existing executable code

▶ return-to-libc (call system)

▶ use return oriented programming

▶ for testing purposes, disable using -z execstack as
argument to ld

▶ use mprotect to update page permissions

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 25/40



DEP Bypass Demo

▶ call system("/bin/sh")

▶ use mprotect() to force writable executable stack

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 26/40



Address Space Layout Randomization

▶ randomize address space, place code, libraries and stack and
random addresses

▶ a buffer will use a different address each time the program is
run

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 27/40



PIC and PIE

▶ Position Independent Code (in libraries)

▶ Position Independent Executable (in executable files)

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 28/40



Bypassing ASLR

▶ brute forcing (32 bit systems)

▶ use format string or other vulnerabilities to learn stack layout

▶ use huge NOP sled

▶ bug: use ulimit -s unlimited – the stack fills all available
space

▶ for testing purposes, you may disable it

Disable ASLR

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

setarch $(uname -m) -R /bin/bash

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 29/40



ASLR Bypass Demo

▶ use brute force to bypass ASLR

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 30/40



Stack Guard/Stack Protection

▶ place a value between buffer and frame pointer/return value

▶ canary value

▶ in case of buffer overflow, value gets written and an exception
handler is run

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 31/40



Canary Values

▶ may contain terminator characters (0x00, 0x0a, 0x0d, 0xff)

▶ may be a random string or a XOR function

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 32/40



Stack Guard Demo

▶ demo

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 33/40



Bypassing Canaries

▶ does not protect internal variables or buffer from another
buffer

▶ you may use string formatting attacks to find the canary value
and rewrite with itself

▶ in case the process forks, you may trigger multiple forks and
then try guessing one byte at a time

▶ for test purposese, disable using -fno-stack-protector as
argument to gcc

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 34/40



Outline

Exploiting: Recap

Preventing Existence

Preventing Exploitation

Summary

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 35/40



Exploit Protection Mechanisms

▶ ASCII-armored address spaces

▶ code integrity protection, data execution prevention

▶ address space layout randomization

▶ stack protection/stack guard, canary value

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 36/40



Other Runtime Attacks

▶ code reuse
▶ return to libc
▶ return oriented programming

▶ data oriented attacks: do not target the alteration of the
control flow, but overwrite data

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 37/40



Keywords

▶ exploit

▶ buffer overflow

▶ shellcode

▶ input validation

▶ static analysis

▶ dynamic analysis

▶ code integrity

▶ DEP

▶ ASLR

▶ PIC, PIE

▶ canary value

▶ stack guard

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 38/40



References

▶ The Art of Exploitation, 2nd Edition
▶ Chapter 0x600. Countermeasures

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 39/40



Useful Links

▶ http://security.stackexchange.com/questions/20497/

stack-overflows-defeating-canaries-aslr-dep-nx

▶ http://security.stackexchange.com/questions/18556/

how-do-aslr-and-dep-work

▶ http://www.phrack.org/issues.html?id=13&issue=67&mode=txt

▶ http://www.cs.umd.edu/~jkatz/security/s12/lecture22.ppt

▶ http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/

10-more-defenses.pdf

CSE Dep, ACS, UPB Lecture 6, Exploit Protection Mechanisms 40/40

http://security.stackexchange.com/questions/20497/stack-overflows-defeating-canaries-aslr-dep-nx
http://security.stackexchange.com/questions/20497/stack-overflows-defeating-canaries-aslr-dep-nx
http://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work
http://security.stackexchange.com/questions/18556/how-do-aslr-and-dep-work
http://www.phrack.org/issues.html?id=13&issue=67&mode=txt
http://www.cs.umd.edu/~jkatz/security/s12/lecture22.ppt
http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/10-more-defenses.pdf
http://www.cs.bham.ac.uk/~covam/teaching/2012/secprog/10-more-defenses.pdf

	Exploiting: Recap
	Preventing Existence
	Preventing Exploitation
	Summary

